SlideShare a Scribd company logo
1 of 5
Download to read offline
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008
Môn thi: TOÁN, khối D
Thời gian làm bài 180 phút, không kể thời gian phát đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH
Câu I (2 điểm)
Cho hàm số 3 2
y x 3x 4 (1).= − +
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2. Chứng minh rằng mọi đường thẳng đi qua điểm I(1;2) với hệ số góc k (k 3> − ) đều cắt đồ
thị của hàm số (1) tại ba điểm phân biệt I, A, B đồng thời I là trung điểm của đoạn thẳng AB.
Câu II (2 điểm)
1. Giải phương trình 2sinx (1 cos2x) sin2x 1 2cosx.+ + = +
2. Giải hệ phương trình
2 2
xy x y x 2y
x 2y y x 1 2x 2y
⎧ + + = −⎪
⎨
− − = −⎪⎩
(x, y ).∈
Câu III (2 điểm)
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3).
1. Viết phương trình mặt cầu đi qua bốn điểm A, B, C, D.
2. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC.
Câu IV (2 điểm)
1. Tính tích phân
2
3
1
lnx
I dx.
x
= ∫
2. Cho x, y là hai số thực không âm thay đổi. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu
thức 2 2
(x y)(1 xy)
P .
(1 x) (1 y)
− −
=
+ +
PHẦN RIÊNG Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b
Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm)
1. Tìm số nguyên dương n thỏa mãn hệ thức 1 3 2n 1
2n 2n 2nC C ... C 2048−
+ + + = ( k
nC là số tổ hợp
chập k của n phần tử).
2. Trong mặt phẳng với hệ tọa độ Oxy, cho parabol (P) : 2
y 16x= và điểm A(1;4). Hai điểm
phân biệt B, C (B và C khác A) di động trên (P) sao cho góc o
BAC 90 .= Chứng minh rằng
đường thẳng BC luôn đi qua một điểm cố định.
Câu V.b. Theo chương trình phân ban (2 điểm)
1. Giải bất phương trình
2
1
2
x 3x 2
log 0.
x
− +
≥
2. Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông, AB = BC = a, cạnh bên
AA' a 2.= Gọi M là trung điểm của cạnh BC. Tính theo a thể tích của khối lăng trụ
ABC.A'B'C' và khoảng cách giữa hai đường thẳng AM, B'C.
...........................Hết...........................
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:........................................................ Số báo danh:.............................................
ĐỀ CHÍNH THỨC
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ CHÍNH THỨC
ĐÁP ÁN - THANG ĐIỂM
ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008
Môn: TOÁN, khối D
(Đáp án - Thang điểm gồm 04 trang)
Nội dungCâu Điểm
I 2,00
1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm)
• Tập xác định : D = .
• Sự biến thiên : ,2
y' 3x 6x= −
x 0
y' 0
x 2
=⎡
= ⇔ ⎢ =⎣ .
0,25
• yCĐ = ( ) ( )CTy 0 4, y y 2 0.= = = 0,25
• Bảng biến thiên :
0,25
• Đồ thị :
Trang 1/4
0,25
2 Chứng minh rằng mọi đường thẳng … (1,00 điểm)
Gọi là đồ thị hàm số (1). Ta thấy thuộc Đường thẳng d đi
qua với hệ số góc k (k > – 3) có phương trình : y = kx – k + 2.
(C) I(1;2) (C).
I(1;2)
Hoành độ giao điểm của và d là nghiệm của phương trình(C)
3 2
x 3x 4 k(x 1) 2− + = − + ⇔ 2
(x 1) x 2x (k 2) 0⎡ ⎤− − − + =⎣ ⎦
⇔ 2
x 1
x 2x (k 2) 0 (*)
=⎡
⎢
− − + =⎣ .
0,50
Do nên phương trình (*) có biệt thức Δ = và không
là nghiệm của (*). Suy ra d luôn cắt tại ba điểm phân biệt I(
với là nghiệm của (*).
k > −
x −∞ 0 2 +∞
y’ + 0 − 0
y
4
0−∞
+
+∞
4
−1
O
y
2 x
(ứng với giao điểm I)
3 + >
x ;y ),
I
' 3 k 0 x 1=
(C) I I
A A B BA(x ;y ),B(x ;y ) A Bx ,x
Vì và I, A, B cùng thuộc d nên I là trung điểm của đoạn
thẳng AB (đpcm).
A Bx x 2 2x+ = =
0,50
II 2,00
1 Giải phương trình lượng giác (1,00 điểm)
Phương trình đã cho tương đương với
2
4sinx cos x sin2x = 1 + 2cosx+ ⇔ (2cosx 1)(sin2x 1) 0.+ − =
0,50
1 2
cosx x k2 .
2 3
π
• = − ⇔ = ± + π
sin2x 1 x k .
4
π
• = ⇔ = + π
Nghiệm của phương trình đã cho là
2
x k2 ,
3
π
= ± + π x k
4
π
= + ).∈π (k
0,50
2 Giải hệ phương trình (1,00 điểm)
Điều kiện : x ≥ 1, y ≥ 0.
Hệ phương trình đã cho tương đương với
(x y)(x 2y 1) 0 (1)
x 2y y x 1 2x 2y (2)
+ − − =⎧⎪
⎨
− − = −⎪⎩
Từ điều kiện ta có x + y > 0 nên (1) ⇔ x = 2y + 1 (3).
Trang 2/4
0,50
Thay (3) vào (2) ta được
(y 1) 2y 2(y 1)+ = + ⇔ y = 2 (do ) ⇒ x = 5.y 1 0+ >
Nghiệm của hệ là (x;y) (5;2).=
0,50
III 2,00
1 Viết phương trình mặt cầu đi qua các điểm A, B, C, D (1,00 điểm)
Phương trình mặt cầu cần tìm có dạng
trong đó2 2 2
x y z 2ax 2by 2cz d 0 (*),+ + + + + + = 2 2 2
a b c d 0 (**).+ + − >
Thay tọa độ của các điểm A, B, C, D vào (*) ta được hệ phương trình
6a 6b d 18
6a 6c d 18
6b 6c d 18
6a 6b 6c d 27.
+ + = −⎧
⎪ + + = −⎪
⎨
+ + = −⎪
⎪ + + + = −⎩
0,50
Giải hệ trên và đối chiếu với điều kiện (**) ta được phương trình mặt cầu là
2 2 2
x y z 3x 3y 3z = 0.+ + − − −
0,50
2 Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC (1,00 điểm)
Mặt cầu đi qua A, B, C, D có tâm
3 3 3
I ; ;
2 2 2
⎛ ⎞
⎜ ⎟
⎝ ⎠
.
Gọi phương trình mặt phẳng đi qua ba điểm A, B, C là
mx ny pz q 0+ + + = 2 2 2
(m n p 0).+ + >
Thay tọa độ các điểm A, B, C vào phương trình trên ta được
3m 3n q 0
3m 3p q 0 6m 6n 6p q 0.
3n 3p q 0.
+ + =⎧
⎪
+ + = ⇒ = = = − ≠⎨
⎪ + + =⎩
Do đó phương trình mặt phẳng (ABC) là x y z 6 0.+ + − =
0,50
Tâm đường tròn ngoại tiếp tam giác ABC chính là hình chiếu vuông góc
của điểm I trên mặt phẳng (ABC).
H
Phương trình đường thẳng IH :
3 3
x y z
2 2 .
1 1 1
− − −
= =
3
2
Tọa độ điểm H là nghiệm của hệ phương trình
x y z 6 0
3 3
x y z
2 2
+ + − =⎧
⎪
⎨
− = − = −⎪⎩
3
.
2
Giải hệ trên ta được H(2;2;2).
0,50
IV 2,00
1 Tính tích phân (1,00 điểm)
Đặt vàu ln x= 3
dx
dv
x
=
dx
du
x
⇒ = và 2
1
v .
2x
= − 0,25
Khi đó
2 2
2 3
1 1
ln x dx
I
2x 2x
= − + ∫
2
2
1
ln 2 1
8 4x
= − − 0,50
3 2ln 2
.
16
−
= 0,25
2 Tìm giá trị lớn nhất và nhỏ nhất của biểu thức (1,00 điểm)
Ta có
[ ]
22 2
(x y)(1 xy) (x y)(1 xy) 1 1 1
P P
(1 x) (1 y) 4 4 4(x y) (1 xy)
− − + +
= ≤ ≤ ⇔ − ≤
+ + + + +
Trang 3/4
.≤ 0,50
• Khi thìx 0,y 1= =
1
P .
4
= −
• Khi thìx 1,y 0= =
1
P .
4
=
Giá trị nhỏ nhất của P bằng
1
,
4
− giá trị lớn nhất của P bằng
1
.
4
0,50
V.a 2,00
1 Tìm n biết rằng…(1,00)
Ta có 2n 0 1 2n 1 2n
2n 2n 2n 2n0 (1 1) C C ... C C .−
= − = − + − +
2n 2n 0 1 2n 1 2n
2n 2n 2n 2n2 (1 1) C C ... C C .−
= + = + + + +
0,50
⇒ 1 3 2n 1 2n
2n 2n 2nC C ... C 2 .− −
+ + + = 1
6.Từ giả thiết suy ra 2n 1
2 2048 n−
= ⇔ =
0,50
2 Tìm tọa độ đỉnh C ...(1,00 điểm)
Do B,C thuộc (P), B khác C, B và C khác A nên
2
b
B( ;b),
16
2
c
C( ;c)
16
với b, c
là hai số thực phân biệt, b 4≠ và c 4.≠
2 2
b c
AB 1;b 4 , AC 1;c 4 .
16 16
⎛ ⎞ ⎛
= − − = − −⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎞
⎟
⎠
Góc nêno
BAC 90=
AB.AC 0= ⇔
2 2
b c
1 1 (b 4)(c 4)
16 16
⎛ ⎞⎛ ⎞
− − + − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
0=
⇔ (1).272 4(b c) bc 0+ + + =
0,50
Phương trình đường thẳng BC là:
2
2 2
c
x
y c16
b c b c
16 16
−
−
=
−
−
16x (b c)y bc 0⇔ − + + = (2).
Từ (1), (2) suy ra đường thẳng BC luôn đi qua điểm cố định I(17; 4).−
0,50
V.b 2,00
1 Giải bất phương trình logarit (1,00 điểm)
Bpt đã cho tương đương với
2
x 3x 2
0 1
x
− +
< ≤ . 0,50
2
0 x 1x 3x 2
0
x 2.x
< <⎡− +
• > ⇔ ⎢ >⎣
2 x 0x 4x 2
0
x 2 2 x 2 2
<⎡− +
• ≤ ⇔ ⎢
− ≤ ≤ +⎣ .
Tập nghiệm của bất phương trình là : ) (2 2 ;1 2;2 2 .⎡ ⎤− ∪ +⎣ ⎦
0,50
2 Tính thể tích khối lăng trụ và khoảng cách giữa hai đường thẳng (1,00 điểm)
Từ giả thiết suy ra tam giác ABC vuông cân tại B.
Thể tích khối lăng trụ là 2 3
ABC.A'B'C' ABC
1 2
V AA'.S a 2. .a
2 2
= = =
Trang 4/4
a (đvtt).
0,50
A'
B'
B
M
E
C
A
C'
Gọi E là trung điểm của BB Khi đó mặt phẳng (AME) song song với
nên khoảng cách giữa hai đường thẳng AM, bằng khoảng cách giữa
và mặt phẳng (AME).
'. B'C
B'C
B'C
Nhận thấy khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C
đến mặt phẳng (AME).
Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do tứ diện BAME có BA,
BM, BE đôi một vuông góc nên
0,50
2 2 2 2
1 1 1 1
h BA BM BE
= + + 2 2 2 2
1 1 4 2
h a a a
= + + = 2
7
a
a 7
h .
7
⇒ =⇒
a 7
.
7
Khoảng cách giữa hai đường thẳng và AM bằngB'C
NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× ®−îc ®ñ ®iÓm tõng phÇn
nh− ®¸p ¸n quy ®Þnh.
----------------Hết----------------

More Related Content

What's hot

[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015Marco Reus Le
 
De thi-tuyen-sinh-vao-lop-10-mon-toan-so-gd-dt-hai-duong
De thi-tuyen-sinh-vao-lop-10-mon-toan-so-gd-dt-hai-duongDe thi-tuyen-sinh-vao-lop-10-mon-toan-so-gd-dt-hai-duong
De thi-tuyen-sinh-vao-lop-10-mon-toan-so-gd-dt-hai-duongmcbooksjsc
 
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...Megabook
 
Tuyen tap de thi va dap an on vao lop 10
Tuyen tap de thi va dap an on vao lop 10 Tuyen tap de thi va dap an on vao lop 10
Tuyen tap de thi va dap an on vao lop 10 letambp2003
 
Thi thử toán đặng thúc hứa na 2012 lần 2 k ab
Thi thử toán đặng thúc hứa na 2012 lần 2 k abThi thử toán đặng thúc hứa na 2012 lần 2 k ab
Thi thử toán đặng thúc hứa na 2012 lần 2 k abThế Giới Tinh Hoa
 
Toan pt.de025.2011
Toan pt.de025.2011Toan pt.de025.2011
Toan pt.de025.2011BẢO Hí
 
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015Marco Reus Le
 
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3dlinh123
 
Toan pt.de075.2011
Toan pt.de075.2011Toan pt.de075.2011
Toan pt.de075.2011BẢO Hí
 
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
[Vnmath.com]  de thi thpt qg 2015 quynh luu 3[Vnmath.com]  de thi thpt qg 2015 quynh luu 3
[Vnmath.com] de thi thpt qg 2015 quynh luu 3Dang_Khoi
 
De va dap an thi thu lan 01 2015 khoi a a1
De va dap an thi thu lan 01 2015 khoi a a1De va dap an thi thu lan 01 2015 khoi a a1
De va dap an thi thu lan 01 2015 khoi a a1Đăng Hoàng
 
60 đề thi thử toán của các trường thpt 2015 có đáp án chi tiết
60 đề thi thử toán của các trường thpt 2015   có đáp án chi tiết60 đề thi thử toán của các trường thpt 2015   có đáp án chi tiết
60 đề thi thử toán của các trường thpt 2015 có đáp án chi tiếtDương Ngọc Taeny
 
200 bai tap hinh hoc toa do phang tran si tung (2)
200 bai tap hinh hoc toa do phang   tran si tung (2)200 bai tap hinh hoc toa do phang   tran si tung (2)
200 bai tap hinh hoc toa do phang tran si tung (2)Song Tử Mắt Nâu
 
đề Và đáp án thi thử cvp truonghocso.com
đề Và đáp án thi thử cvp   truonghocso.comđề Và đáp án thi thử cvp   truonghocso.com
đề Và đáp án thi thử cvp truonghocso.comThế Giới Tinh Hoa
 
Hình học giải tích trong mặt phẳng
Hình học giải tích trong mặt phẳngHình học giải tích trong mặt phẳng
Hình học giải tích trong mặt phẳngtuituhoc
 
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015Marco Reus Le
 
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/Vui Lên Bạn Nhé
 

What's hot (20)

[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
 
Bộ đề thi thử Đại học môn Toán có đáp án chi tiết
Bộ đề thi thử Đại học môn Toán có đáp án chi tiếtBộ đề thi thử Đại học môn Toán có đáp án chi tiết
Bộ đề thi thử Đại học môn Toán có đáp án chi tiết
 
De thi-tuyen-sinh-vao-lop-10-mon-toan-so-gd-dt-hai-duong
De thi-tuyen-sinh-vao-lop-10-mon-toan-so-gd-dt-hai-duongDe thi-tuyen-sinh-vao-lop-10-mon-toan-so-gd-dt-hai-duong
De thi-tuyen-sinh-vao-lop-10-mon-toan-so-gd-dt-hai-duong
 
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
 
Tuyen tap de thi va dap an on vao lop 10
Tuyen tap de thi va dap an on vao lop 10 Tuyen tap de thi va dap an on vao lop 10
Tuyen tap de thi va dap an on vao lop 10
 
Thi thử toán đặng thúc hứa na 2012 lần 2 k ab
Thi thử toán đặng thúc hứa na 2012 lần 2 k abThi thử toán đặng thúc hứa na 2012 lần 2 k ab
Thi thử toán đặng thúc hứa na 2012 lần 2 k ab
 
Toan pt.de025.2011
Toan pt.de025.2011Toan pt.de025.2011
Toan pt.de025.2011
 
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
 
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
 
Toan pt.de075.2011
Toan pt.de075.2011Toan pt.de075.2011
Toan pt.de075.2011
 
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
[Vnmath.com]  de thi thpt qg 2015 quynh luu 3[Vnmath.com]  de thi thpt qg 2015 quynh luu 3
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
 
De va dap an thi thu lan 01 2015 khoi a a1
De va dap an thi thu lan 01 2015 khoi a a1De va dap an thi thu lan 01 2015 khoi a a1
De va dap an thi thu lan 01 2015 khoi a a1
 
60 đề thi thử toán của các trường thpt 2015 có đáp án chi tiết
60 đề thi thử toán của các trường thpt 2015   có đáp án chi tiết60 đề thi thử toán của các trường thpt 2015   có đáp án chi tiết
60 đề thi thử toán của các trường thpt 2015 có đáp án chi tiết
 
200 bai tap hinh hoc toa do phang tran si tung (2)
200 bai tap hinh hoc toa do phang   tran si tung (2)200 bai tap hinh hoc toa do phang   tran si tung (2)
200 bai tap hinh hoc toa do phang tran si tung (2)
 
Hinh chuong3
Hinh chuong3Hinh chuong3
Hinh chuong3
 
đề Và đáp án thi thử cvp truonghocso.com
đề Và đáp án thi thử cvp   truonghocso.comđề Và đáp án thi thử cvp   truonghocso.com
đề Và đáp án thi thử cvp truonghocso.com
 
Hình học giải tích trong mặt phẳng
Hình học giải tích trong mặt phẳngHình học giải tích trong mặt phẳng
Hình học giải tích trong mặt phẳng
 
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
 
Khoi d.2011
Khoi d.2011Khoi d.2011
Khoi d.2011
 
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
 

Similar to Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008

3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/Vui Lên Bạn Nhé
 
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Jo Calderone
 
đE thi thu lan 1 2014-toan thay tam
đE thi thu lan 1 2014-toan thay tamđE thi thu lan 1 2014-toan thay tam
đE thi thu lan 1 2014-toan thay tamHồng Nguyễn
 
13 đề thi đại học môn toán
13 đề thi đại học môn toán13 đề thi đại học môn toán
13 đề thi đại học môn toánLong Nguyen
 
Toan pt.de009.2010
Toan pt.de009.2010Toan pt.de009.2010
Toan pt.de009.2010BẢO Hí
 
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-aNam Hoài
 
Toan pt.de094.2011
Toan pt.de094.2011Toan pt.de094.2011
Toan pt.de094.2011BẢO Hí
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009Trungtâmluyệnthi Qsc
 
thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4Oanh MJ
 
De thi-thu-dh-lan1-khoi-a-2015
De thi-thu-dh-lan1-khoi-a-2015De thi-thu-dh-lan1-khoi-a-2015
De thi-thu-dh-lan1-khoi-a-2015onthitot .com
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010Trungtâmluyệnthi Qsc
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012BẢO Hí
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010Trungtâmluyệnthi Qsc
 
Toan pt.de027.2011
Toan pt.de027.2011Toan pt.de027.2011
Toan pt.de027.2011BẢO Hí
 
Toan pt.de031.2010
Toan pt.de031.2010Toan pt.de031.2010
Toan pt.de031.2010BẢO Hí
 

Similar to Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008 (20)

Da toan d_2
Da toan d_2Da toan d_2
Da toan d_2
 
Da toan b_2
Da toan b_2Da toan b_2
Da toan b_2
 
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
 
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
 
đE thi thu lan 1 2014-toan thay tam
đE thi thu lan 1 2014-toan thay tamđE thi thu lan 1 2014-toan thay tam
đE thi thu lan 1 2014-toan thay tam
 
De thi thu dai hoc so 88
De thi thu dai hoc so 88De thi thu dai hoc so 88
De thi thu dai hoc so 88
 
13 đề thi đại học môn toán
13 đề thi đại học môn toán13 đề thi đại học môn toán
13 đề thi đại học môn toán
 
Toan pt.de009.2010
Toan pt.de009.2010Toan pt.de009.2010
Toan pt.de009.2010
 
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
 
Toan pt.de094.2011
Toan pt.de094.2011Toan pt.de094.2011
Toan pt.de094.2011
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
 
thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4
 
Khoi b.2010
Khoi b.2010Khoi b.2010
Khoi b.2010
 
De thi-thu-dh-lan1-khoi-a-2015
De thi-thu-dh-lan1-khoi-a-2015De thi-thu-dh-lan1-khoi-a-2015
De thi-thu-dh-lan1-khoi-a-2015
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
 
Toan pt.de027.2011
Toan pt.de027.2011Toan pt.de027.2011
Toan pt.de027.2011
 
Toan pt.de031.2010
Toan pt.de031.2010Toan pt.de031.2010
Toan pt.de031.2010
 

More from Trungtâmluyệnthi Qsc

Tai lieu luyen thi mon sinh de thi dh sinh khoi b - nam 2007
Tai lieu luyen thi mon sinh   de thi dh sinh khoi b - nam 2007Tai lieu luyen thi mon sinh   de thi dh sinh khoi b - nam 2007
Tai lieu luyen thi mon sinh de thi dh sinh khoi b - nam 2007Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi mon hoa de thi dh hoa khoi b - nam 2007
Tai lieu luyen thi mon hoa   de thi dh hoa khoi b - nam 2007Tai lieu luyen thi mon hoa   de thi dh hoa khoi b - nam 2007
Tai lieu luyen thi mon hoa de thi dh hoa khoi b - nam 2007Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi mon hoa de thi dh hoa khoi a - nam 2007
Tai lieu luyen thi mon hoa   de thi dh hoa khoi a - nam 2007Tai lieu luyen thi mon hoa   de thi dh hoa khoi a - nam 2007
Tai lieu luyen thi mon hoa de thi dh hoa khoi a - nam 2007Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi mon dia de thi dh mon dia khoi c - nam 2008
Tai lieu luyen thi mon dia   de thi dh mon dia khoi c - nam 2008Tai lieu luyen thi mon dia   de thi dh mon dia khoi c - nam 2008
Tai lieu luyen thi mon dia de thi dh mon dia khoi c - nam 2008Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi mon su de thi dh mon su khoi c - nam 2008
Tai lieu luyen thi mon su   de thi dh mon su khoi c - nam 2008Tai lieu luyen thi mon su   de thi dh mon su khoi c - nam 2008
Tai lieu luyen thi mon su de thi dh mon su khoi c - nam 2008Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi mon van de thi dh mon van khoi c - nam 2008
Tai lieu luyen thi mon van   de thi dh mon van khoi c - nam 2008Tai lieu luyen thi mon van   de thi dh mon van khoi c - nam 2008
Tai lieu luyen thi mon van de thi dh mon van khoi c - nam 2008Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi mon sinh de thi dh mon sinh khoi b - nam 2008
Tai lieu luyen thi mon sinh   de thi dh mon sinh khoi b - nam 2008Tai lieu luyen thi mon sinh   de thi dh mon sinh khoi b - nam 2008
Tai lieu luyen thi mon sinh de thi dh mon sinh khoi b - nam 2008Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi mon ly de thi dh mon ly khoi a - nam 2008
Tai lieu luyen thi mon ly   de thi dh mon ly khoi a - nam 2008Tai lieu luyen thi mon ly   de thi dh mon ly khoi a - nam 2008
Tai lieu luyen thi mon ly de thi dh mon ly khoi a - nam 2008Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi mon toan de thi dh mon toan khoi a - nam 2008
Tai lieu luyen thi mon toan   de thi dh mon toan khoi a - nam 2008Tai lieu luyen thi mon toan   de thi dh mon toan khoi a - nam 2008
Tai lieu luyen thi mon toan de thi dh mon toan khoi a - nam 2008Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi mon anh de thi dh mon anh khoi d - nam 2008
Tai lieu luyen thi mon anh   de thi dh mon anh khoi d - nam 2008Tai lieu luyen thi mon anh   de thi dh mon anh khoi d - nam 2008
Tai lieu luyen thi mon anh de thi dh mon anh khoi d - nam 2008Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi d - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi d - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi d - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi d - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon dia khoi c - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon dia khoi c - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon dia khoi c - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon dia khoi c - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon su khoi c - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon su khoi c - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon su khoi c - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon su khoi c - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon sinh khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon sinh khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon sinh khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon sinh khoi b - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon hoa khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon hoa khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon hoa khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon hoa khoi b - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon hoa khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon hoa khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon hoa khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon hoa khoi a - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon ly khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon ly khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon ly khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon ly khoi a - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon anh khoi d - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon anh khoi d - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon anh khoi d - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon anh khoi d - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon van khoi d - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon van khoi d - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon van khoi d - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon van khoi d - nam 2010Trungtâmluyệnthi Qsc
 

More from Trungtâmluyệnthi Qsc (20)

Tai lieu luyen thi mon sinh de thi dh sinh khoi b - nam 2007
Tai lieu luyen thi mon sinh   de thi dh sinh khoi b - nam 2007Tai lieu luyen thi mon sinh   de thi dh sinh khoi b - nam 2007
Tai lieu luyen thi mon sinh de thi dh sinh khoi b - nam 2007
 
Tai lieu luyen thi mon hoa de thi dh hoa khoi b - nam 2007
Tai lieu luyen thi mon hoa   de thi dh hoa khoi b - nam 2007Tai lieu luyen thi mon hoa   de thi dh hoa khoi b - nam 2007
Tai lieu luyen thi mon hoa de thi dh hoa khoi b - nam 2007
 
Tai lieu luyen thi mon hoa de thi dh hoa khoi a - nam 2007
Tai lieu luyen thi mon hoa   de thi dh hoa khoi a - nam 2007Tai lieu luyen thi mon hoa   de thi dh hoa khoi a - nam 2007
Tai lieu luyen thi mon hoa de thi dh hoa khoi a - nam 2007
 
Tai lieu luyen thi mon dia de thi dh mon dia khoi c - nam 2008
Tai lieu luyen thi mon dia   de thi dh mon dia khoi c - nam 2008Tai lieu luyen thi mon dia   de thi dh mon dia khoi c - nam 2008
Tai lieu luyen thi mon dia de thi dh mon dia khoi c - nam 2008
 
Tai lieu luyen thi mon su de thi dh mon su khoi c - nam 2008
Tai lieu luyen thi mon su   de thi dh mon su khoi c - nam 2008Tai lieu luyen thi mon su   de thi dh mon su khoi c - nam 2008
Tai lieu luyen thi mon su de thi dh mon su khoi c - nam 2008
 
Tai lieu luyen thi mon van de thi dh mon van khoi c - nam 2008
Tai lieu luyen thi mon van   de thi dh mon van khoi c - nam 2008Tai lieu luyen thi mon van   de thi dh mon van khoi c - nam 2008
Tai lieu luyen thi mon van de thi dh mon van khoi c - nam 2008
 
Tai lieu luyen thi mon sinh de thi dh mon sinh khoi b - nam 2008
Tai lieu luyen thi mon sinh   de thi dh mon sinh khoi b - nam 2008Tai lieu luyen thi mon sinh   de thi dh mon sinh khoi b - nam 2008
Tai lieu luyen thi mon sinh de thi dh mon sinh khoi b - nam 2008
 
Tai lieu luyen thi mon ly de thi dh mon ly khoi a - nam 2008
Tai lieu luyen thi mon ly   de thi dh mon ly khoi a - nam 2008Tai lieu luyen thi mon ly   de thi dh mon ly khoi a - nam 2008
Tai lieu luyen thi mon ly de thi dh mon ly khoi a - nam 2008
 
Tai lieu luyen thi mon toan de thi dh mon toan khoi a - nam 2008
Tai lieu luyen thi mon toan   de thi dh mon toan khoi a - nam 2008Tai lieu luyen thi mon toan   de thi dh mon toan khoi a - nam 2008
Tai lieu luyen thi mon toan de thi dh mon toan khoi a - nam 2008
 
Tai lieu luyen thi mon anh de thi dh mon anh khoi d - nam 2008
Tai lieu luyen thi mon anh   de thi dh mon anh khoi d - nam 2008Tai lieu luyen thi mon anh   de thi dh mon anh khoi d - nam 2008
Tai lieu luyen thi mon anh de thi dh mon anh khoi d - nam 2008
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi d - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi d - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi d - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi d - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon dia khoi c - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon dia khoi c - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon dia khoi c - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon dia khoi c - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon su khoi c - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon su khoi c - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon su khoi c - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon su khoi c - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon sinh khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon sinh khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon sinh khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon sinh khoi b - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon hoa khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon hoa khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon hoa khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon hoa khoi b - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon hoa khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon hoa khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon hoa khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon hoa khoi a - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon ly khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon ly khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon ly khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon ly khoi a - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon anh khoi d - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon anh khoi d - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon anh khoi d - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon anh khoi d - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon van khoi d - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon van khoi d - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon van khoi d - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon van khoi d - nam 2010
 

Recently uploaded

3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIĐiện Lạnh Bách Khoa Hà Nội
 
Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfCampbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfTrnHoa46
 
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptxBài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptxDungxPeach
 
kinh tế chính trị mác lênin chương hai và hàng hoá và sxxhh
kinh tế chính trị mác lênin chương hai và hàng hoá và sxxhhkinh tế chính trị mác lênin chương hai và hàng hoá và sxxhh
kinh tế chính trị mác lênin chương hai và hàng hoá và sxxhhdtlnnm
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................TrnHoa46
 
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...Nguyen Thanh Tu Collection
 
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdfBỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdfNguyen Thanh Tu Collection
 
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docxTHAO316680
 
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIGIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIĐiện Lạnh Bách Khoa Hà Nội
 
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgspowerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgsNmmeomeo
 
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...ChuThNgnFEFPLHN
 
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...Nguyen Thanh Tu Collection
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-KhnhHuyn546843
 
Access: Chuong III Thiet ke truy van Query.ppt
Access: Chuong III Thiet ke truy van Query.pptAccess: Chuong III Thiet ke truy van Query.ppt
Access: Chuong III Thiet ke truy van Query.pptPhamThiThuThuy1
 
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoáCác điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoámyvh40253
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...Nguyen Thanh Tu Collection
 
Bài giảng môn Truyền thông đa phương tiện
Bài giảng môn Truyền thông đa phương tiệnBài giảng môn Truyền thông đa phương tiện
Bài giảng môn Truyền thông đa phương tiệnpmtiendhti14a5hn
 
bài thi bảo vệ nền tảng tư tưởng của Đảng.docx
bài thi bảo vệ nền tảng tư tưởng của Đảng.docxbài thi bảo vệ nền tảng tư tưởng của Đảng.docx
bài thi bảo vệ nền tảng tư tưởng của Đảng.docxTrnHiYn5
 

Recently uploaded (20)

3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
 
Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfCampbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
 
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptxBài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
Bài tập nhóm Kỹ Năng Gỉai Quyết Tranh Chấp Lao Động (1).pptx
 
kinh tế chính trị mác lênin chương hai và hàng hoá và sxxhh
kinh tế chính trị mác lênin chương hai và hàng hoá và sxxhhkinh tế chính trị mác lênin chương hai và hàng hoá và sxxhh
kinh tế chính trị mác lênin chương hai và hàng hoá và sxxhh
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................
 
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
TUYỂN TẬP 50 ĐỀ LUYỆN THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN NĂM 2024 CÓ LỜI GIẢ...
 
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdfBỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
 
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
 
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIGIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
 
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgspowerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
 
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
SD-05_Xây dựng website bán váy Lolita Alice - Phùng Thị Thúy Hiền PH 2 7 8 6 ...
 
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
 
Access: Chuong III Thiet ke truy van Query.ppt
Access: Chuong III Thiet ke truy van Query.pptAccess: Chuong III Thiet ke truy van Query.ppt
Access: Chuong III Thiet ke truy van Query.ppt
 
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoáCác điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
 
Bài giảng môn Truyền thông đa phương tiện
Bài giảng môn Truyền thông đa phương tiệnBài giảng môn Truyền thông đa phương tiện
Bài giảng môn Truyền thông đa phương tiện
 
bài thi bảo vệ nền tảng tư tưởng của Đảng.docx
bài thi bảo vệ nền tảng tư tưởng của Đảng.docxbài thi bảo vệ nền tảng tư tưởng của Đảng.docx
bài thi bảo vệ nền tảng tư tưởng của Đảng.docx
 

Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008

  • 1. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối D Thời gian làm bài 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số 3 2 y x 3x 4 (1).= − + 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Chứng minh rằng mọi đường thẳng đi qua điểm I(1;2) với hệ số góc k (k 3> − ) đều cắt đồ thị của hàm số (1) tại ba điểm phân biệt I, A, B đồng thời I là trung điểm của đoạn thẳng AB. Câu II (2 điểm) 1. Giải phương trình 2sinx (1 cos2x) sin2x 1 2cosx.+ + = + 2. Giải hệ phương trình 2 2 xy x y x 2y x 2y y x 1 2x 2y ⎧ + + = −⎪ ⎨ − − = −⎪⎩ (x, y ).∈ Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). 1. Viết phương trình mặt cầu đi qua bốn điểm A, B, C, D. 2. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC. Câu IV (2 điểm) 1. Tính tích phân 2 3 1 lnx I dx. x = ∫ 2. Cho x, y là hai số thực không âm thay đổi. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 2 (x y)(1 xy) P . (1 x) (1 y) − − = + + PHẦN RIÊNG Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm) 1. Tìm số nguyên dương n thỏa mãn hệ thức 1 3 2n 1 2n 2n 2nC C ... C 2048− + + + = ( k nC là số tổ hợp chập k của n phần tử). 2. Trong mặt phẳng với hệ tọa độ Oxy, cho parabol (P) : 2 y 16x= và điểm A(1;4). Hai điểm phân biệt B, C (B và C khác A) di động trên (P) sao cho góc o BAC 90 .= Chứng minh rằng đường thẳng BC luôn đi qua một điểm cố định. Câu V.b. Theo chương trình phân ban (2 điểm) 1. Giải bất phương trình 2 1 2 x 3x 2 log 0. x − + ≥ 2. Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông, AB = BC = a, cạnh bên AA' a 2.= Gọi M là trung điểm của cạnh BC. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách giữa hai đường thẳng AM, B'C. ...........................Hết........................... Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:........................................................ Số báo danh:............................................. ĐỀ CHÍNH THỨC
  • 2. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn: TOÁN, khối D (Đáp án - Thang điểm gồm 04 trang) Nội dungCâu Điểm I 2,00 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) • Tập xác định : D = . • Sự biến thiên : ,2 y' 3x 6x= − x 0 y' 0 x 2 =⎡ = ⇔ ⎢ =⎣ . 0,25 • yCĐ = ( ) ( )CTy 0 4, y y 2 0.= = = 0,25 • Bảng biến thiên : 0,25 • Đồ thị : Trang 1/4 0,25 2 Chứng minh rằng mọi đường thẳng … (1,00 điểm) Gọi là đồ thị hàm số (1). Ta thấy thuộc Đường thẳng d đi qua với hệ số góc k (k > – 3) có phương trình : y = kx – k + 2. (C) I(1;2) (C). I(1;2) Hoành độ giao điểm của và d là nghiệm của phương trình(C) 3 2 x 3x 4 k(x 1) 2− + = − + ⇔ 2 (x 1) x 2x (k 2) 0⎡ ⎤− − − + =⎣ ⎦ ⇔ 2 x 1 x 2x (k 2) 0 (*) =⎡ ⎢ − − + =⎣ . 0,50 Do nên phương trình (*) có biệt thức Δ = và không là nghiệm của (*). Suy ra d luôn cắt tại ba điểm phân biệt I( với là nghiệm của (*). k > − x −∞ 0 2 +∞ y’ + 0 − 0 y 4 0−∞ + +∞ 4 −1 O y 2 x (ứng với giao điểm I) 3 + > x ;y ), I ' 3 k 0 x 1= (C) I I A A B BA(x ;y ),B(x ;y ) A Bx ,x Vì và I, A, B cùng thuộc d nên I là trung điểm của đoạn thẳng AB (đpcm). A Bx x 2 2x+ = = 0,50 II 2,00 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với 2 4sinx cos x sin2x = 1 + 2cosx+ ⇔ (2cosx 1)(sin2x 1) 0.+ − = 0,50 1 2 cosx x k2 . 2 3 π • = − ⇔ = ± + π sin2x 1 x k . 4 π • = ⇔ = + π Nghiệm của phương trình đã cho là 2 x k2 , 3 π = ± + π x k 4 π = + ).∈π (k 0,50
  • 3. 2 Giải hệ phương trình (1,00 điểm) Điều kiện : x ≥ 1, y ≥ 0. Hệ phương trình đã cho tương đương với (x y)(x 2y 1) 0 (1) x 2y y x 1 2x 2y (2) + − − =⎧⎪ ⎨ − − = −⎪⎩ Từ điều kiện ta có x + y > 0 nên (1) ⇔ x = 2y + 1 (3). Trang 2/4 0,50 Thay (3) vào (2) ta được (y 1) 2y 2(y 1)+ = + ⇔ y = 2 (do ) ⇒ x = 5.y 1 0+ > Nghiệm của hệ là (x;y) (5;2).= 0,50 III 2,00 1 Viết phương trình mặt cầu đi qua các điểm A, B, C, D (1,00 điểm) Phương trình mặt cầu cần tìm có dạng trong đó2 2 2 x y z 2ax 2by 2cz d 0 (*),+ + + + + + = 2 2 2 a b c d 0 (**).+ + − > Thay tọa độ của các điểm A, B, C, D vào (*) ta được hệ phương trình 6a 6b d 18 6a 6c d 18 6b 6c d 18 6a 6b 6c d 27. + + = −⎧ ⎪ + + = −⎪ ⎨ + + = −⎪ ⎪ + + + = −⎩ 0,50 Giải hệ trên và đối chiếu với điều kiện (**) ta được phương trình mặt cầu là 2 2 2 x y z 3x 3y 3z = 0.+ + − − − 0,50 2 Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC (1,00 điểm) Mặt cầu đi qua A, B, C, D có tâm 3 3 3 I ; ; 2 2 2 ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ . Gọi phương trình mặt phẳng đi qua ba điểm A, B, C là mx ny pz q 0+ + + = 2 2 2 (m n p 0).+ + > Thay tọa độ các điểm A, B, C vào phương trình trên ta được 3m 3n q 0 3m 3p q 0 6m 6n 6p q 0. 3n 3p q 0. + + =⎧ ⎪ + + = ⇒ = = = − ≠⎨ ⎪ + + =⎩ Do đó phương trình mặt phẳng (ABC) là x y z 6 0.+ + − = 0,50 Tâm đường tròn ngoại tiếp tam giác ABC chính là hình chiếu vuông góc của điểm I trên mặt phẳng (ABC). H Phương trình đường thẳng IH : 3 3 x y z 2 2 . 1 1 1 − − − = = 3 2 Tọa độ điểm H là nghiệm của hệ phương trình x y z 6 0 3 3 x y z 2 2 + + − =⎧ ⎪ ⎨ − = − = −⎪⎩ 3 . 2 Giải hệ trên ta được H(2;2;2). 0,50 IV 2,00 1 Tính tích phân (1,00 điểm) Đặt vàu ln x= 3 dx dv x = dx du x ⇒ = và 2 1 v . 2x = − 0,25 Khi đó 2 2 2 3 1 1 ln x dx I 2x 2x = − + ∫ 2 2 1 ln 2 1 8 4x = − − 0,50 3 2ln 2 . 16 − = 0,25
  • 4. 2 Tìm giá trị lớn nhất và nhỏ nhất của biểu thức (1,00 điểm) Ta có [ ] 22 2 (x y)(1 xy) (x y)(1 xy) 1 1 1 P P (1 x) (1 y) 4 4 4(x y) (1 xy) − − + + = ≤ ≤ ⇔ − ≤ + + + + + Trang 3/4 .≤ 0,50 • Khi thìx 0,y 1= = 1 P . 4 = − • Khi thìx 1,y 0= = 1 P . 4 = Giá trị nhỏ nhất của P bằng 1 , 4 − giá trị lớn nhất của P bằng 1 . 4 0,50 V.a 2,00 1 Tìm n biết rằng…(1,00) Ta có 2n 0 1 2n 1 2n 2n 2n 2n 2n0 (1 1) C C ... C C .− = − = − + − + 2n 2n 0 1 2n 1 2n 2n 2n 2n 2n2 (1 1) C C ... C C .− = + = + + + + 0,50 ⇒ 1 3 2n 1 2n 2n 2n 2nC C ... C 2 .− − + + + = 1 6.Từ giả thiết suy ra 2n 1 2 2048 n− = ⇔ = 0,50 2 Tìm tọa độ đỉnh C ...(1,00 điểm) Do B,C thuộc (P), B khác C, B và C khác A nên 2 b B( ;b), 16 2 c C( ;c) 16 với b, c là hai số thực phân biệt, b 4≠ và c 4.≠ 2 2 b c AB 1;b 4 , AC 1;c 4 . 16 16 ⎛ ⎞ ⎛ = − − = − −⎜ ⎟ ⎜ ⎝ ⎠ ⎝ ⎞ ⎟ ⎠ Góc nêno BAC 90= AB.AC 0= ⇔ 2 2 b c 1 1 (b 4)(c 4) 16 16 ⎛ ⎞⎛ ⎞ − − + − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ 0= ⇔ (1).272 4(b c) bc 0+ + + = 0,50 Phương trình đường thẳng BC là: 2 2 2 c x y c16 b c b c 16 16 − − = − − 16x (b c)y bc 0⇔ − + + = (2). Từ (1), (2) suy ra đường thẳng BC luôn đi qua điểm cố định I(17; 4).− 0,50 V.b 2,00 1 Giải bất phương trình logarit (1,00 điểm) Bpt đã cho tương đương với 2 x 3x 2 0 1 x − + < ≤ . 0,50 2 0 x 1x 3x 2 0 x 2.x < <⎡− + • > ⇔ ⎢ >⎣ 2 x 0x 4x 2 0 x 2 2 x 2 2 <⎡− + • ≤ ⇔ ⎢ − ≤ ≤ +⎣ . Tập nghiệm của bất phương trình là : ) (2 2 ;1 2;2 2 .⎡ ⎤− ∪ +⎣ ⎦ 0,50
  • 5. 2 Tính thể tích khối lăng trụ và khoảng cách giữa hai đường thẳng (1,00 điểm) Từ giả thiết suy ra tam giác ABC vuông cân tại B. Thể tích khối lăng trụ là 2 3 ABC.A'B'C' ABC 1 2 V AA'.S a 2. .a 2 2 = = = Trang 4/4 a (đvtt). 0,50 A' B' B M E C A C' Gọi E là trung điểm của BB Khi đó mặt phẳng (AME) song song với nên khoảng cách giữa hai đường thẳng AM, bằng khoảng cách giữa và mặt phẳng (AME). '. B'C B'C B'C Nhận thấy khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME). Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do tứ diện BAME có BA, BM, BE đôi một vuông góc nên 0,50 2 2 2 2 1 1 1 1 h BA BM BE = + + 2 2 2 2 1 1 4 2 h a a a = + + = 2 7 a a 7 h . 7 ⇒ =⇒ a 7 . 7 Khoảng cách giữa hai đường thẳng và AM bằngB'C NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× ®−îc ®ñ ®iÓm tõng phÇn nh− ®¸p ¸n quy ®Þnh. ----------------Hết----------------