Why is Azure Data Explorer fast in petabyte-scale analytics?

Sheik Uduman Ali
Sheik Uduman AliDirector, Industrial Digital Transformation à HARMAN International
Why is Azure Data Explorer
fast in petabyte-scale
analytics?
www.linkedin.com/in/sheik-uduman-ali-m-54b5ab8
https://technicallysheik.com
Understand how its data storage architecture
makes this possible
sheikudumanali@gmail.com
Sheik (technicallysheik.com)
Azure Data Explorer (ADX)
• Managed large scale big data analytics platform
• Suitable for use cases that have high volume and variety of data ingestion at high velocity
• Internet of things – device telemetry data
• Timeseries data
• Log analytics
• Geo-spatial
• Big data analytics
• Variety of connectors available to ingest data from various sources including streaming data
• Simple query language even for complex data analytics
• Built-in data visualization and native support to Power BI and Grafana
Ingest Analyze (Query) Visualize
Outperforms all industry leading big data analytics services on performance and pricing
Sheik (technicallysheik.com)
"TableName": StormEvents,
"Schema": StartTime:datetime,EndTime:datetime,EpisodeId:int,EventId:int,
State:string,EventType:string,InjuriesDirect:int,InjuriesIndirect:int,
DeathsDirect:int,DeathsIndirect:int,DamageProperty:int,DamageCrops:int,
Source:string,BeginLocation:string,EndLocation:string,BeginLat:real,BeginLon:real,
EndLat:real,EndLon:real,EpisodeNarrative:string,EventNarrative:string,
StormSummary:dynamic,
"DatabaseName": Samples,
"Folder": Storm_Events,
"DocString": US storm events. Data source: https://www.ncdc.noaa.gov/stormevents
StormEvents - Sample table
let us take StormEvents table as a sample
this table contains 22 columns of information on US storm events
Sheik (technicallysheik.com)
"StartTime": 2007-09-18T20:00:00Z,
"EndTime": 2007-09-19T18:00:00Z,
"EpisodeId": 11074,
"EventId": 60904,
"State": FLORIDA,
"EventType": Heavy Rain,
"InjuriesDirect": 0,
"InjuriesIndirect": 0,
"DeathsDirect": 0,
"DeathsIndirect": 0,
"DamageProperty": 0,
"DamageCrops": 0,
"Source": Trained Spotter,
"BeginLocation": ORMOND BEACH,
"EndLocation": NEW SMYRNA BEACH,
"BeginLat": 29.28,
"BeginLon": -81.05,
"EndLat": 29.02,
"EndLon": -80.93,
"EpisodeNarrative": Thunderstorms lingered over Volusia County.,
"EventNarrative": As much as 9 inches of rain fell in a 24-hour period across parts of coastal Volusia County.,
"StormSummary": {
"TotalDamages": 0,
"StartTime": "2007-09-18T20:00:00.0000000Z",
"EndTime": "2007-09-19T18:00:00.0000000Z",
"Details": {
"Description": "As much as 9 inches of rain fell in a 24-hour period across parts of coastal Volusia County.",
"Location": "FLORIDA"
}
}
Sample record
Sheik (technicallysheik.com)
ADX
Storage
Columnar
Store
text
inverted
index
data shard
/ extent
Key tenets of ADX data store
Sheik (technicallysheik.com)
Columnar Store
stores the values from each column together
in separate files per column
instead of storing all the values from a row together
To return a row as a result of a query, it needs
to fetch corresponding position from each
column storage files
append only WRITE operation of ADX helps use
of this storage format
consider StormEvent table data
Sheik (technicallysheik.com)
Advantages of Columnar Store - 1
StormEvents
| take 5
| project StartTime, EndTime, EventType, State;
high query performance
among multiple columns, projection of few columns needs
less disk scans instead of searching all rows in the table
StormEvents
| summarize StormCount = count(),
TypeOfStorms = dcount(EventType) by State
| top 5 by StormCount desc
high performant
aggregation queries
as an immutable data nature, results can be cached
particularly aggregations.
Sheik (technicallysheik.com)
Advantages of Columnar Store - 2
Column compression compressed column storage on disk improves throughput.
by default ADX uses LZ4 compression
StormEvents
| where EventType =="Flood"
| summarize EventCount = count() by State
| where EventCount > 100
queries with WHERE predicate performs well
because the columns contain the rows in the same order
and compression improves disk I/O
vectorized processing
with the compressed columns, when a query needs to
fetch data from disk to apply projection or predicates may
fit into L1 cache itself that avoids unnecessary
memory and disk I/O
Memory
L1
Sheik (technicallysheik.com)
Extent or Shard
Shard 1 Shard 2 Shard 3
StartTime
EndTime
EpisodeId
EventId
State
EventType
StartTime Index
EndTime Index
EpisodeId Index
EventId Index
State Index
EventType Index
Table
An extent or shard holds a collection of records
that are physically arranged in columns
Shard 1 holds StartTime and EndTime
columns collection of records
A shard contains data, metadata and index
All columns are indexed
Sheik (technicallysheik.com)
Shard on both Ingestion and Queries
Shard 1
Shard 2
Shard 3
Table
Data
Ingestion
Cluster Node 1
Cluster Node 2
Distributed
Query
Engine
Query
Shards are evenly spread across the cluster nodes based on the partition key.
By default, ingestion time is the partition key
immutable nature, data
stored in both memory
and SSD
A query will be
distributed across
the nodes and run
concurrently
Distributed
Query
Plan
append only write with effective use of
free-text inverted indexing
A query result will
be fetched from
more than one
shards
ingest into Table
r1:= (c1, c2, c3, …, cn)
append c1, c2
append c3, c4, c5
append cn
query result
r1:= (c1, c8)
return c8
query
return c1
Sheik (technicallysheik.com)
Advantages of Shards
• Scale-out nature of sharding allows to effectively use computing on all nodes that
improves query performance
• Petabyte scale of ingestion and storage is very fast and reliable
Sheik (technicallysheik.com)
Closing Note
• The columnar store, column compression, inverted text index and data shard are the
key tenets of ADX to perform well on petabyte-scale analytics queries
• Immutable records with caching benefit makes your data analytics faster
• Materialized View and Query Result Cache are other ADX features that improves the
performance of data analytics
1 sur 12

Recommandé

Deploying your Data Warehouse on AWS par
Deploying your Data Warehouse on AWSDeploying your Data Warehouse on AWS
Deploying your Data Warehouse on AWSAmazon Web Services
5K vues64 diapositives
Interactive Analytics on AWS - AWS Summit Tel Aviv 2017 par
Interactive Analytics on AWS - AWS Summit Tel Aviv 2017Interactive Analytics on AWS - AWS Summit Tel Aviv 2017
Interactive Analytics on AWS - AWS Summit Tel Aviv 2017Amazon Web Services
513 vues30 diapositives
Masterclass - Redshift par
Masterclass - RedshiftMasterclass - Redshift
Masterclass - RedshiftAmazon Web Services
2.8K vues82 diapositives
Amazon Athena Hands-On Workshop par
Amazon Athena Hands-On WorkshopAmazon Athena Hands-On Workshop
Amazon Athena Hands-On WorkshopDoiT International
2.8K vues52 diapositives
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in... par
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...InfluxData
3.6K vues55 diapositives
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan... par
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...Jürgen Ambrosi
538 vues33 diapositives

Contenu connexe

Similaire à Why is Azure Data Explorer fast in petabyte-scale analytics?

2021 04-20 apache arrow and its impact on the database industry.pptx par
2021 04-20  apache arrow and its impact on the database industry.pptx2021 04-20  apache arrow and its impact on the database industry.pptx
2021 04-20 apache arrow and its impact on the database industry.pptxAndrew Lamb
257 vues37 diapositives
Making sense of your data jug par
Making sense of your data   jugMaking sense of your data   jug
Making sense of your data jugGerald Muecke
150 vues58 diapositives
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database par
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseAzure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseBizTalk360
483 vues61 diapositives
Introduction to Amazon Athena par
Introduction to Amazon AthenaIntroduction to Amazon Athena
Introduction to Amazon AthenaAmazon Web Services
3.7K vues58 diapositives
IBM Cloud Native Day April 2021: Serverless Data Lake par
IBM Cloud Native Day April 2021: Serverless Data LakeIBM Cloud Native Day April 2021: Serverless Data Lake
IBM Cloud Native Day April 2021: Serverless Data LakeTorsten Steinbach
105 vues27 diapositives
Amazon Athena Capabilities and Use Cases Overview par
Amazon Athena Capabilities and Use Cases Overview Amazon Athena Capabilities and Use Cases Overview
Amazon Athena Capabilities and Use Cases Overview Amazon Web Services
7.9K vues67 diapositives

Similaire à Why is Azure Data Explorer fast in petabyte-scale analytics?(20)

2021 04-20 apache arrow and its impact on the database industry.pptx par Andrew Lamb
2021 04-20  apache arrow and its impact on the database industry.pptx2021 04-20  apache arrow and its impact on the database industry.pptx
2021 04-20 apache arrow and its impact on the database industry.pptx
Andrew Lamb257 vues
Making sense of your data jug par Gerald Muecke
Making sense of your data   jugMaking sense of your data   jug
Making sense of your data jug
Gerald Muecke150 vues
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database par BizTalk360
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseAzure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
BizTalk360483 vues
IBM Cloud Native Day April 2021: Serverless Data Lake par Torsten Steinbach
IBM Cloud Native Day April 2021: Serverless Data LakeIBM Cloud Native Day April 2021: Serverless Data Lake
IBM Cloud Native Day April 2021: Serverless Data Lake
Amazon Athena Capabilities and Use Cases Overview par Amazon Web Services
Amazon Athena Capabilities and Use Cases Overview Amazon Athena Capabilities and Use Cases Overview
Amazon Athena Capabilities and Use Cases Overview
Think Like Spark: Some Spark Concepts and a Use Case par Rachel Warren
Think Like Spark: Some Spark Concepts and a Use CaseThink Like Spark: Some Spark Concepts and a Use Case
Think Like Spark: Some Spark Concepts and a Use Case
Rachel Warren600 vues
Writing Continuous Applications with Structured Streaming PySpark API par Databricks
Writing Continuous Applications with Structured Streaming PySpark APIWriting Continuous Applications with Structured Streaming PySpark API
Writing Continuous Applications with Structured Streaming PySpark API
Databricks2.2K vues
The life of a query (oracle edition) par maclean liu
The life of a query (oracle edition)The life of a query (oracle edition)
The life of a query (oracle edition)
maclean liu2.2K vues
Apache IOTDB: a Time Series Database for Industrial IoT par jixuan1989
Apache IOTDB: a Time Series Database for Industrial IoTApache IOTDB: a Time Series Database for Industrial IoT
Apache IOTDB: a Time Series Database for Industrial IoT
jixuan19893.2K vues
Microsoft Azure Big Data Analytics par Mark Kromer
Microsoft Azure Big Data AnalyticsMicrosoft Azure Big Data Analytics
Microsoft Azure Big Data Analytics
Mark Kromer4.2K vues
A Rusty introduction to Apache Arrow and how it applies to a time series dat... par Andrew Lamb
A Rusty introduction to Apache Arrow and how it applies to a  time series dat...A Rusty introduction to Apache Arrow and how it applies to a  time series dat...
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
Andrew Lamb343 vues
Supercharging the Value of Your Data with Amazon S3 par Amazon Web Services
Supercharging the Value of Your Data with Amazon S3Supercharging the Value of Your Data with Amazon S3
Supercharging the Value of Your Data with Amazon S3
Writing Continuous Applications with Structured Streaming in PySpark par Databricks
Writing Continuous Applications with Structured Streaming in PySparkWriting Continuous Applications with Structured Streaming in PySpark
Writing Continuous Applications with Structured Streaming in PySpark
Databricks2.2K vues
Interactively Querying Large-scale Datasets on Amazon S3 par Amazon Web Services
Interactively Querying Large-scale Datasets on Amazon S3Interactively Querying Large-scale Datasets on Amazon S3
Interactively Querying Large-scale Datasets on Amazon S3
Structuring Spark: DataFrames, Datasets, and Streaming by Michael Armbrust par Spark Summit
Structuring Spark: DataFrames, Datasets, and Streaming by Michael ArmbrustStructuring Spark: DataFrames, Datasets, and Streaming by Michael Armbrust
Structuring Spark: DataFrames, Datasets, and Streaming by Michael Armbrust
Spark Summit8.8K vues

Dernier

[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P... par
[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P...DataScienceConferenc1
8 vues36 diapositives
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... par
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...DataScienceConferenc1
7 vues11 diapositives
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... par
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...DataScienceConferenc1
5 vues18 diapositives
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation par
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented GenerationDataScienceConferenc1
15 vues29 diapositives
MOSORE_BRESCIA par
MOSORE_BRESCIAMOSORE_BRESCIA
MOSORE_BRESCIAFederico Karagulian
5 vues8 diapositives
Amy slides.pdf par
Amy slides.pdfAmy slides.pdf
Amy slides.pdfStatsCommunications
5 vues13 diapositives

Dernier(20)

[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P... par DataScienceConferenc1
[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... par DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... par DataScienceConferenc1
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation par DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
Chapter 3b- Process Communication (1) (1)(1) (1).pptx par ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
Ukraine Infographic_22NOV2023_v2.pdf par AnastosiyaGurin
Ukraine Infographic_22NOV2023_v2.pdfUkraine Infographic_22NOV2023_v2.pdf
Ukraine Infographic_22NOV2023_v2.pdf
AnastosiyaGurin1.4K vues
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an... par StatsCommunications
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ... par DataScienceConferenc1
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx par DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
CRIJ4385_Death Penalty_F23.pptx par yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm1007 vues
[DSC Europe 23][AI:CSI] Aleksa Stojanovic - Applying AI for Threat Detection ... par DataScienceConferenc1
[DSC Europe 23][AI:CSI] Aleksa Stojanovic - Applying AI for Threat Detection ...[DSC Europe 23][AI:CSI] Aleksa Stojanovic - Applying AI for Threat Detection ...
[DSC Europe 23][AI:CSI] Aleksa Stojanovic - Applying AI for Threat Detection ...

Why is Azure Data Explorer fast in petabyte-scale analytics?

  • 1. Why is Azure Data Explorer fast in petabyte-scale analytics? www.linkedin.com/in/sheik-uduman-ali-m-54b5ab8 https://technicallysheik.com Understand how its data storage architecture makes this possible sheikudumanali@gmail.com
  • 2. Sheik (technicallysheik.com) Azure Data Explorer (ADX) • Managed large scale big data analytics platform • Suitable for use cases that have high volume and variety of data ingestion at high velocity • Internet of things – device telemetry data • Timeseries data • Log analytics • Geo-spatial • Big data analytics • Variety of connectors available to ingest data from various sources including streaming data • Simple query language even for complex data analytics • Built-in data visualization and native support to Power BI and Grafana Ingest Analyze (Query) Visualize Outperforms all industry leading big data analytics services on performance and pricing
  • 3. Sheik (technicallysheik.com) "TableName": StormEvents, "Schema": StartTime:datetime,EndTime:datetime,EpisodeId:int,EventId:int, State:string,EventType:string,InjuriesDirect:int,InjuriesIndirect:int, DeathsDirect:int,DeathsIndirect:int,DamageProperty:int,DamageCrops:int, Source:string,BeginLocation:string,EndLocation:string,BeginLat:real,BeginLon:real, EndLat:real,EndLon:real,EpisodeNarrative:string,EventNarrative:string, StormSummary:dynamic, "DatabaseName": Samples, "Folder": Storm_Events, "DocString": US storm events. Data source: https://www.ncdc.noaa.gov/stormevents StormEvents - Sample table let us take StormEvents table as a sample this table contains 22 columns of information on US storm events
  • 4. Sheik (technicallysheik.com) "StartTime": 2007-09-18T20:00:00Z, "EndTime": 2007-09-19T18:00:00Z, "EpisodeId": 11074, "EventId": 60904, "State": FLORIDA, "EventType": Heavy Rain, "InjuriesDirect": 0, "InjuriesIndirect": 0, "DeathsDirect": 0, "DeathsIndirect": 0, "DamageProperty": 0, "DamageCrops": 0, "Source": Trained Spotter, "BeginLocation": ORMOND BEACH, "EndLocation": NEW SMYRNA BEACH, "BeginLat": 29.28, "BeginLon": -81.05, "EndLat": 29.02, "EndLon": -80.93, "EpisodeNarrative": Thunderstorms lingered over Volusia County., "EventNarrative": As much as 9 inches of rain fell in a 24-hour period across parts of coastal Volusia County., "StormSummary": { "TotalDamages": 0, "StartTime": "2007-09-18T20:00:00.0000000Z", "EndTime": "2007-09-19T18:00:00.0000000Z", "Details": { "Description": "As much as 9 inches of rain fell in a 24-hour period across parts of coastal Volusia County.", "Location": "FLORIDA" } } Sample record
  • 6. Sheik (technicallysheik.com) Columnar Store stores the values from each column together in separate files per column instead of storing all the values from a row together To return a row as a result of a query, it needs to fetch corresponding position from each column storage files append only WRITE operation of ADX helps use of this storage format consider StormEvent table data
  • 7. Sheik (technicallysheik.com) Advantages of Columnar Store - 1 StormEvents | take 5 | project StartTime, EndTime, EventType, State; high query performance among multiple columns, projection of few columns needs less disk scans instead of searching all rows in the table StormEvents | summarize StormCount = count(), TypeOfStorms = dcount(EventType) by State | top 5 by StormCount desc high performant aggregation queries as an immutable data nature, results can be cached particularly aggregations.
  • 8. Sheik (technicallysheik.com) Advantages of Columnar Store - 2 Column compression compressed column storage on disk improves throughput. by default ADX uses LZ4 compression StormEvents | where EventType =="Flood" | summarize EventCount = count() by State | where EventCount > 100 queries with WHERE predicate performs well because the columns contain the rows in the same order and compression improves disk I/O vectorized processing with the compressed columns, when a query needs to fetch data from disk to apply projection or predicates may fit into L1 cache itself that avoids unnecessary memory and disk I/O Memory L1
  • 9. Sheik (technicallysheik.com) Extent or Shard Shard 1 Shard 2 Shard 3 StartTime EndTime EpisodeId EventId State EventType StartTime Index EndTime Index EpisodeId Index EventId Index State Index EventType Index Table An extent or shard holds a collection of records that are physically arranged in columns Shard 1 holds StartTime and EndTime columns collection of records A shard contains data, metadata and index All columns are indexed
  • 10. Sheik (technicallysheik.com) Shard on both Ingestion and Queries Shard 1 Shard 2 Shard 3 Table Data Ingestion Cluster Node 1 Cluster Node 2 Distributed Query Engine Query Shards are evenly spread across the cluster nodes based on the partition key. By default, ingestion time is the partition key immutable nature, data stored in both memory and SSD A query will be distributed across the nodes and run concurrently Distributed Query Plan append only write with effective use of free-text inverted indexing A query result will be fetched from more than one shards ingest into Table r1:= (c1, c2, c3, …, cn) append c1, c2 append c3, c4, c5 append cn query result r1:= (c1, c8) return c8 query return c1
  • 11. Sheik (technicallysheik.com) Advantages of Shards • Scale-out nature of sharding allows to effectively use computing on all nodes that improves query performance • Petabyte scale of ingestion and storage is very fast and reliable
  • 12. Sheik (technicallysheik.com) Closing Note • The columnar store, column compression, inverted text index and data shard are the key tenets of ADX to perform well on petabyte-scale analytics queries • Immutable records with caching benefit makes your data analytics faster • Materialized View and Query Result Cache are other ADX features that improves the performance of data analytics