SlideShare une entreprise Scribd logo
1  sur  34
Télécharger pour lire hors ligne
Department of Computer Eng.
Sharif University of Technology
Discrete-time signal processing
Chapter 3:
THE Z-TRANSFORM
Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer and Buck, ©1999-2000 Prentice Hall Inc.
3.1 The Z-Transform
• Counterpart of the Laplace transform for discrete-time signals
• Generalization of the Fourier Transform
Fourier Transform does not exist for all signals
• Definition:
• Compare to DTFT definition:
• z is a complex variable that can be represented as z=r ej
• Substituting z=ej will reduce the z-transform to DTFT
Chapter 3: The Z-Transform 1
   






n
n
z
n
x
z
X
    n
j
n
j
e
n
x
e
X 
 





 
   
 
 

j
n
n
z
n
n
re
z
z
n
x
z
X
z
X
n
x
z
X
z
n
x
n
x
















0
)
(
)
(
)
(
r
:
‫اندازه‬
:
‫فاز‬ 
‫تبدیل‬
z
‫طرفه‬‫یک‬
‫تبدیل‬
z
‫طرفه‬‫دو‬
3.1 The Z-Transform
The z-transform and the DTFT
• Convenient to describe on the complex z-plane
• If we plot z=ej for =0 to 2 we get the unit circle
Chapter 3: The Z-Transform 3
Re
Im
Unit Circle

r=1
0
2 0 2
 

j
e
X
Convergence of the z-Transform
• DTFT does not always converge
Example: x[n] = anu[n] for |a|>1 does not have a DTFT
• Complex variable z can be written as r ej so the z-
transform
convert to the DTFT of x[n] multiplied with exponential
sequence r –n
• For certain choices of r the sum
maybe made finite
Chapter 3: The Z-Transform 4
      
 














n
n
j
n
n
n
j
j
e
n
x
e
n
x
re
X 


r
r
    n
j
n
j
e
n
x
e
X 
 





  





n
n
x r n
-
Region of Convergence (ROC)
• ROC: The set of values of z for which the z-transform converges
• The region of convergence is made of circles
Chapter 3: The Z-Transform 5
Re
Im
• Example: z-transform converges for
values of 0.5<r<2
ROC is shown on the left
In this example the ROC includes the unit circle,
so DTFT exists
• Example:
Doesn't converge for any r.
DTFT exists.
It has finite energy.
DTFT converges in a mean square sense.
• Example:
Doesn't converge for any r.
It doesn’t have even finite energy.
But we define a useful DTFT with
impulse function.
   
n
n
x o

cos

 
sin c n
x n
n



Region of Convergence (ROC)
Example 1: Right-Sided Exponential Sequence
• For Convergence we require
• Hence the ROC is defined as
• Inside the ROC series converges to
Chapter 3: The Z-Transform 7
         













0
n
n
1
n
n
n
n
az
z
n
u
a
z
X
n
u
a
n
x






0
n
n
1
az
a
z
1
az
n
1




    a
z
z
az
1
1
az
z
X
0
n
1
n
1




 




Re
Im
a 1
o x
• Region outside the circle of
radius a is the ROC
• Right-sided sequence ROCs
extend outside a circle
(
‫ا‬‫ر‬‫چپگ‬‫دنباله‬
)
   
   
 
a
z
z
az
z
a
z
X
a
z
z
a
z
a
ROC
z
a
z
a
z
a
z
n
u
a
z
X
n
n
n n
n
n
n
n
n
n
n
n












































 


1
1
1
0
1
1 0
1
1
1
1
1
1
1
1
1
:
1
1
   
1



 n
u
a
n
x n
Example 2: Left-Sided Exponential Sequence
Example 3: Two-Sided Exponential Sequence
Chapter 3: The Z-Transform 9
     
1
-
n
-
u
2
1
-
n
u
3
1
n
x
n
n














1
1
1
0
1
0
1
3
1
1
1
3
1
1
3
1
3
1
3
1



































z
z
z
z
z
n
n
1
1
0
1
1
1
n
n
1
z
2
1
1
1
z
2
1
1
z
2
1
z
2
1
z
2
1


































z
3
1
1
z
3
1
:
ROC 1


 
z
2
1
1
z
2
1
:
ROC 1



 




























2
1
z
3
1
z
12
1
z
z
2
z
2
1
1
1
z
3
1
1
1
z
X
1
1
Im
2
1
oo
12
1
x
x
3
1

Example 4: Finite Length Sequence
Chapter 3: The Z-Transform 10
 


 



otherwise
0
1
0 N
n
a
n
x
n
N=16
Pole-zero plot
     
 
N
n
u
n
u
a
n
x n



   
0
:
1
1
1
)
(
1
0
1
1
1
1
1
1
0
1
1
0
































z
az
az
ROC
a
z
a
z
z
az
az
az
z
a
z
X
N
n
n
N
N
N
N
N
n
n
N
n
n
n
Some common Z-transform pairs
Chapter 3: The Z-Transform 11
SEQUENCE TRANSFORM ROC
1

z
 
 
0
m
if
or
0
m
if
0
except
z
All



1

z
1
1
1

 z
1
1
1

 z
m
z
 
 
 
 
m
n
n
u
n
u
n






1
1 z
ALL
Some common Z-transform pairs
 
 
 
 
 
 
     
 
1
:
cos
2
1
cos
1
cos
:
1
1
:
1
:
1
1
1
:
1
1
2
1
0
1
0
0
2
1
1
2
1
1
1
1




































z
ROC
z
z
z
n
u
n
a
z
ROC
az
az
n
u
na
a
z
ROC
az
az
n
u
na
a
z
ROC
az
n
u
a
a
z
ROC
az
n
u
a
Z
Z
n
Z
n
Z
n
Z
n



Some common Z-transform pairs
     
 
0
:
1
1
0
1
0
:
cos
2
1
sin
sin
1
2
2
1
0
1
0
0







 












z
ROC
az
z
a
otherwise
N
n
a
r
z
ROC
z
r
z
r
z
r
n
u
n
r
N
N
Z
n
Z
n



     
 
     
 
r
z
ROC
z
r
z
r
z
r
n
u
n
r
z
ROC
z
z
z
n
u
n
Z
n
Z

















:
cos
2
1
cos
1
cos
1
:
cos
2
1
sin
sin
2
2
1
0
1
0
0
2
1
0
1
0
0






Some common Z-transform pairs
3.2 Properties of The ROC of Z-Transform
• The ROC is a ring or disk centered at the origin
• DTFT exists if and only if the ROC includes the unit circle
• The ROC cannot contain any poles
• The ROC for finite-length sequence is the entire z-plane
except possibly z=0 and z=
• The ROC for a right-handed sequence extends outward from the
outermost pole possibly including z= 
• The ROC for a left-handed sequence extends inward from the
innermost pole possibly including z=0
• The ROC of a two-sided sequence is a ring bounded by poles
• The ROC must be a connected region
• A z-transform does not uniquely determine a sequence without
specifying the ROC
Chapter 3: The Z-Transform 15
Stability, Causality, and the ROC
• Consider a system with impulse response h[n]
• The z-transform H(z) and the pole-zero plot shown below
• Without any other information h[n] is not uniquely determined
|z|>2 or |z|<½ or ½<|z|<2
• If system stable ROC must include unit-circle: ½<|z|<2
• If system is causal must be right sided: |z|>2
Chapter 3: The Z-Transform 16
3.4 Z-Transform Properties: Linearity
• Notation
• Linearity
– Note that the ROC of combined sequence may be larger than either ROC
– This would happen if some pole/zero cancellation occurs
– Example:
•Both sequences are right-sided
•Both sequences have a pole z=a
•Both have a ROC defined as |z|>|a|
•In the combined sequence the pole at z=a cancels with a zero at z=a
•The combined ROC is the entire z plane except z=0
Chapter 3: The Z-Transform 17
    x
Z
R
ROC
z
X
n
x 

 

        2
1 x
x
2
1
Z
2
1 R
R
ROC
z
bX
z
aX
n
bx
n
ax 



 


     
N
-
n
u
a
-
n
u
a
n
x n
n

Z-Transform Properties: Time Shifting
• Here no is an integer
– If positive the sequence is shifted right
– If negative the sequence is shifted left
• The ROC can change
– The new term may add or remove poles at z=0 or z=
• Example
Chapter 3: The Z-Transform 18
    x
n
Z
o R
ROC
z
X
z
n
n
x o


 

 
 
4
1
z
z
4
1
1
1
z
z
X
1
1

















   
1
-
n
u
4
1
n
x
1
-
n







Z-Transform Properties: Multiplication by
Exponential
• ROC is scaled by |zo|
• All pole/zero locations are scaled
• If zo is a positive real number: z-plane shrinks or expands
• If zo is a complex number with unit magnitude it rotates
• Example: We know the z-transform pair
• Let’s find the z-transform of
Chapter 3: The Z-Transform 19
    x
o
o
Z
n
o R
z
ROC
z
/
z
X
n
x
z 

 

  1
z
:
ROC
z
-
1
1
n
u 1
-
Z


 

             
n
u
re
2
1
n
u
re
2
1
n
u
n
cos
r
n
x
n
j
n
j
o
n o
o 






  r
z
z
re
1
2
/
1
z
re
1
2
/
1
z
X 1
j
1
j o
o




 




Z-Transform Properties: Differentiation
• Example: We want the inverse z-transform of
• Let’s differentiate to obtain rational expression
• Making use of z-transform properties and ROC
Chapter 3: The Z-Transform 20
   
x
Z
R
ROC
dz
z
dX
z
n
nx 


 

    a
z
az
1
log
z
X 1


 
   
1
1
1
2
az
1
1
az
dz
z
dX
z
az
1
az
dz
z
dX











     
1
n
u
a
a
n
nx
1
n




     
1
n
u
n
a
1
n
x
n
1
n




Z-Transform Properties: Conjugation
Chapter 3: The Z-Transform 21
    x
*
*
Z
*
R
ROC
z
X
n
x 

 

   
     
         
 
n
n
n n
n n
n n
n n
X z x n z
X z x n z x n z
X z x n z x n z Z x n




 
  
 
 

     
 

 
 
 
 
  

 
 
Z-Transform Properties: Time Reversal
• ROC is inverted
• Example:
• Time reversed version of
Chapter 3: The Z-Transform 22
   
x
Z
R
1
ROC
z
/
1
X
n
x 

 


   
n
u
a
n
x n

 
 
n
u
an
  1
1
1
-
1
-1
a
z
z
a
-
1
z
a
-
az
1
1
z
X 






Z-Transform Properties: Convolution
• Convolution in time domain is multiplication in z-domain
• Example: Let’s calculate the convolution of
• Multiplications of z-transforms is
• ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|
• Partial fractional expansion of Y(z)
Chapter 3: The Z-Transform 23
        2
x
1
x
2
1
Z
2
1 R
R
:
ROC
z
X
z
X
n
x
n
x 

 


       
n
u
n
x
and
n
u
a
n
x 2
n
1 

  a
z
:
ROC
az
1
1
z
X 1
1 

 
  1
z
:
ROC
z
1
1
z
X 1
2 

 
     
  
1
1
2
1
z
1
az
1
1
z
X
z
X
z
Y 





  1
z
:
ROC
assume
1
1
1
1
1
1
1











 

az
a
z
a
z
Y      
 
n
u
a
n
u
a
1
1
n
y 1
n



Some Z-transform properties
Chapter 3: The Z-Transform 24
3.3 The Inverse Z-Transform
• Formal inverse z-transform is based on a Cauchy integral
• Less formal ways sufficient most of the time
– Inspection method
– Partial fraction expansion
– Power series expansion
• Inspection Method
Make use of known z-transform pairs such as
Example: The inverse z-transform of
Chapter 3: The Z-Transform 25
  a
z
az
1
1
n
u
a 1
Z
n



 
 
     
n
u
2
1
n
x
2
1
z
z
2
1
1
1
z
X
n
1












Inverse Z-Transform by Partial Fraction
Expansion
• Assume that a given z-transform can be expressed as
• Apply partial fractional expansion
• First term exist only if M>N
– Br is obtained by long division
• Second term represents all first order poles
• Third term represents an order s pole
– There will be a similar term for every high-order pole
• Each term can be inverse transformed by inspection
Chapter 3: The Z-Transform 26
 






 N
0
k
k
k
M
0
k
k
k
z
a
z
b
z
X
 
 


 












s
1
m
m
1
i
m
N
i
k
,
1
k
1
k
k
N
M
0
r
r
r
z
d
1
C
z
d
1
A
z
B
z
X
Inverse Z-Transform by Partial Fraction
Expansion
• Coefficients are given as
• Easier to understand with examples
Chapter 3: The Z-Transform 27
 
 


 












s
1
m
m
1
i
m
N
i
k
,
1
k
1
k
k
N
M
0
r
r
r
z
d
1
C
z
d
1
A
z
B
z
X
    k
d
z
1
k
k z
X
z
d
1
A 



   
   
  1
i
d
w
1
s
i
m
s
m
s
m
s
i
m w
X
w
d
1
dw
d
d
!
m
s
1
C
















Example 5: 2nd Order Z-Transform
Chapter 3: The Z-Transform 28
 
2
1
z
:
ROC
z
2
1
1
z
4
1
1
1
z
X
1
1


















 

















 1
2
1
1
z
2
1
1
A
z
4
1
1
A
z
X
  1
4
1
2
1
1
1
z
X
z
4
1
1
A 1
4
1
z
1
1 
























 


  2
2
1
4
1
1
1
z
X
z
2
1
1
A 1
2
1
z
1
2 























 


Example 5 Continued
• ROC extends to infinity
– Indicates right sided sequence
Chapter 3: The Z-Transform 29
 
2
1
z
z
2
1
1
2
z
4
1
1
1
z
X
1
1




















     
n
u
4
1
-
n
u
2
1
2
n
x
n
n













Example 6
• Long division to obtain Bo
Chapter 3: The Z-Transform 30
   
 
1
z
z
1
z
2
1
1
z
1
z
2
1
z
2
3
1
z
z
2
1
z
X
1
1
2
1
2
1
2
1























1
z
5
2
z
3
z
2
1
z
2
z
1
z
2
3
z
2
1
1
1
2
1
2
1
2














 
 
1
1
1
z
1
z
2
1
1
z
5
1
2
z
X















  1
2
1
1
z
1
A
z
2
1
1
A
2
z
X 
 




  9
z
X
z
2
1
1
A
2
1
z
1
1 











    8
z
X
z
1
A
1
z
1
2 




Example 5 Continued
• ROC extends to infinity
– Indicates right-sided sequence
Chapter 3: The Z-Transform 31
  1
z
z
1
8
z
2
1
1
9
2
z
X 1
1





 

       
n
8u
-
n
u
2
1
9
n
2
n
x
n









Inverse Z-Transform by Power Series
Expansion
• The z-transform is power series
• In expanded form
• Z-transforms of this form can generally be inversed easily
• Especially useful for finite-length series
Chapter 3: The Z-Transform 32
   






n
n
z
n
x
z
X
            
 







 
 2
1
1
2
2
1
0
1
2 z
x
z
x
x
z
x
z
x
z
X
    
1
2
1
1
1
2
z
2
1
1
z
2
1
z
z
1
z
1
z
2
1
1
z
z
X


















         
1
n
2
1
n
1
n
2
1
2
n
n
x 










 



















2
n
0
1
n
2
1
0
n
1
1
n
2
1
2
n
1
n
x
Example 6

Contenu connexe

Similaire à Signals and systems3 ppt

DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformAmr E. Mohamed
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Waqas Afzal
 
Region of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planeRegion of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planevenkatasuman1983
 
dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointAnujKumar734472
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transformRowenaDulay1
 
Z trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabZ trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabHasnain Yaseen
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
 

Similaire à Signals and systems3 ppt (20)

ADSP (17 Nov).ppt
ADSP (17 Nov).pptADSP (17 Nov).ppt
ADSP (17 Nov).ppt
 
Z transform
Z transformZ transform
Z transform
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
lecture8.ppt
lecture8.pptlecture8.ppt
lecture8.ppt
 
ch3-4
ch3-4ch3-4
ch3-4
 
Z TRRANSFORM
Z  TRRANSFORMZ  TRRANSFORM
Z TRRANSFORM
 
Z transform
Z transformZ transform
Z transform
 
Z transform
Z transformZ transform
Z transform
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
 
Z transform
Z transformZ transform
Z transform
 
Region of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planeRegion of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-plane
 
dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power point
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transform
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
Z trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabZ trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlab
 
z transform.pptx
z transform.pptxz transform.pptx
z transform.pptx
 
Z Transform
Z TransformZ Transform
Z Transform
 
Unit 7 &amp; 8 z-transform
Unit 7 &amp; 8  z-transformUnit 7 &amp; 8  z-transform
Unit 7 &amp; 8 z-transform
 
Z Transform
Z TransformZ Transform
Z Transform
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 

Plus de Engr umar

RES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptxRES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptxEngr umar
 
renewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdfrenewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdfEngr umar
 
Chapter 06_Pdu.pptx
Chapter 06_Pdu.pptxChapter 06_Pdu.pptx
Chapter 06_Pdu.pptxEngr umar
 
Electric Welding 7.ppt
Electric Welding  7.pptElectric Welding  7.ppt
Electric Welding 7.pptEngr umar
 
Ps all examples
Ps all examplesPs all examples
Ps all examplesEngr umar
 
Probability chap 1 note.
Probability chap 1 note.Probability chap 1 note.
Probability chap 1 note.Engr umar
 
Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)Engr umar
 
Linear algebra (summer) lec 11
Linear algebra (summer) lec 11Linear algebra (summer) lec 11
Linear algebra (summer) lec 11Engr umar
 
Linear algebra (summer) lec 9
Linear algebra (summer) lec 9Linear algebra (summer) lec 9
Linear algebra (summer) lec 9Engr umar
 
Linear algebra (summer) lec 7
Linear algebra (summer) lec 7Linear algebra (summer) lec 7
Linear algebra (summer) lec 7Engr umar
 
Linear algebra (summer) lec 6
Linear algebra (summer) lec 6Linear algebra (summer) lec 6
Linear algebra (summer) lec 6Engr umar
 
Linear algebra (summer) lec 5
Linear algebra (summer) lec 5Linear algebra (summer) lec 5
Linear algebra (summer) lec 5Engr umar
 
Linear algebra (summer) lec 4
Linear algebra (summer) lec 4Linear algebra (summer) lec 4
Linear algebra (summer) lec 4Engr umar
 
Linear algebra (summer) lec 3
Linear algebra (summer) lec 3Linear algebra (summer) lec 3
Linear algebra (summer) lec 3Engr umar
 
Linear algebra (summer) lec 1
Linear algebra (summer) lec 1Linear algebra (summer) lec 1
Linear algebra (summer) lec 1Engr umar
 
Ems project
Ems project Ems project
Ems project Engr umar
 
Cs project ppt
Cs project pptCs project ppt
Cs project pptEngr umar
 
Project presentation of engineering subject
Project presentation   of engineering  subjectProject presentation   of engineering  subject
Project presentation of engineering subjectEngr umar
 
Amperes law and_it_application
Amperes law and_it_applicationAmperes law and_it_application
Amperes law and_it_applicationEngr umar
 
Lecture week 5
Lecture week 5Lecture week 5
Lecture week 5Engr umar
 

Plus de Engr umar (20)

RES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptxRES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptx
 
renewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdfrenewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdf
 
Chapter 06_Pdu.pptx
Chapter 06_Pdu.pptxChapter 06_Pdu.pptx
Chapter 06_Pdu.pptx
 
Electric Welding 7.ppt
Electric Welding  7.pptElectric Welding  7.ppt
Electric Welding 7.ppt
 
Ps all examples
Ps all examplesPs all examples
Ps all examples
 
Probability chap 1 note.
Probability chap 1 note.Probability chap 1 note.
Probability chap 1 note.
 
Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)
 
Linear algebra (summer) lec 11
Linear algebra (summer) lec 11Linear algebra (summer) lec 11
Linear algebra (summer) lec 11
 
Linear algebra (summer) lec 9
Linear algebra (summer) lec 9Linear algebra (summer) lec 9
Linear algebra (summer) lec 9
 
Linear algebra (summer) lec 7
Linear algebra (summer) lec 7Linear algebra (summer) lec 7
Linear algebra (summer) lec 7
 
Linear algebra (summer) lec 6
Linear algebra (summer) lec 6Linear algebra (summer) lec 6
Linear algebra (summer) lec 6
 
Linear algebra (summer) lec 5
Linear algebra (summer) lec 5Linear algebra (summer) lec 5
Linear algebra (summer) lec 5
 
Linear algebra (summer) lec 4
Linear algebra (summer) lec 4Linear algebra (summer) lec 4
Linear algebra (summer) lec 4
 
Linear algebra (summer) lec 3
Linear algebra (summer) lec 3Linear algebra (summer) lec 3
Linear algebra (summer) lec 3
 
Linear algebra (summer) lec 1
Linear algebra (summer) lec 1Linear algebra (summer) lec 1
Linear algebra (summer) lec 1
 
Ems project
Ems project Ems project
Ems project
 
Cs project ppt
Cs project pptCs project ppt
Cs project ppt
 
Project presentation of engineering subject
Project presentation   of engineering  subjectProject presentation   of engineering  subject
Project presentation of engineering subject
 
Amperes law and_it_application
Amperes law and_it_applicationAmperes law and_it_application
Amperes law and_it_application
 
Lecture week 5
Lecture week 5Lecture week 5
Lecture week 5
 

Dernier

Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...KrishnaveniKrishnara1
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
The Satellite applications in telecommunication
The Satellite applications in telecommunicationThe Satellite applications in telecommunication
The Satellite applications in telecommunicationnovrain7111
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptForming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptNoman khan
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmDeepika Walanjkar
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labsamber724300
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfManish Kumar
 
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...gerogepatton
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 

Dernier (20)

Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
The Satellite applications in telecommunication
The Satellite applications in telecommunicationThe Satellite applications in telecommunication
The Satellite applications in telecommunication
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptForming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).ppt
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labs
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
 
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 

Signals and systems3 ppt

  • 1. Department of Computer Eng. Sharif University of Technology Discrete-time signal processing Chapter 3: THE Z-TRANSFORM Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer and Buck, ©1999-2000 Prentice Hall Inc.
  • 2. 3.1 The Z-Transform • Counterpart of the Laplace transform for discrete-time signals • Generalization of the Fourier Transform Fourier Transform does not exist for all signals • Definition: • Compare to DTFT definition: • z is a complex variable that can be represented as z=r ej • Substituting z=ej will reduce the z-transform to DTFT Chapter 3: The Z-Transform 1           n n z n x z X     n j n j e n x e X        
  • 3.            j n n z n n re z z n x z X z X n x z X z n x n x                 0 ) ( ) ( ) ( r : ‫اندازه‬ : ‫فاز‬  ‫تبدیل‬ z ‫طرفه‬‫یک‬ ‫تبدیل‬ z ‫طرفه‬‫دو‬ 3.1 The Z-Transform
  • 4. The z-transform and the DTFT • Convenient to describe on the complex z-plane • If we plot z=ej for =0 to 2 we get the unit circle Chapter 3: The Z-Transform 3 Re Im Unit Circle  r=1 0 2 0 2    j e X
  • 5. Convergence of the z-Transform • DTFT does not always converge Example: x[n] = anu[n] for |a|>1 does not have a DTFT • Complex variable z can be written as r ej so the z- transform convert to the DTFT of x[n] multiplied with exponential sequence r –n • For certain choices of r the sum maybe made finite Chapter 3: The Z-Transform 4                        n n j n n n j j e n x e n x re X    r r     n j n j e n x e X                 n n x r n -
  • 6. Region of Convergence (ROC) • ROC: The set of values of z for which the z-transform converges • The region of convergence is made of circles Chapter 3: The Z-Transform 5 Re Im • Example: z-transform converges for values of 0.5<r<2 ROC is shown on the left In this example the ROC includes the unit circle, so DTFT exists
  • 7. • Example: Doesn't converge for any r. DTFT exists. It has finite energy. DTFT converges in a mean square sense. • Example: Doesn't converge for any r. It doesn’t have even finite energy. But we define a useful DTFT with impulse function.     n n x o  cos    sin c n x n n    Region of Convergence (ROC)
  • 8. Example 1: Right-Sided Exponential Sequence • For Convergence we require • Hence the ROC is defined as • Inside the ROC series converges to Chapter 3: The Z-Transform 7                        0 n n 1 n n n n az z n u a z X n u a n x       0 n n 1 az a z 1 az n 1         a z z az 1 1 az z X 0 n 1 n 1           Re Im a 1 o x • Region outside the circle of radius a is the ROC • Right-sided sequence ROCs extend outside a circle
  • 9. ( ‫ا‬‫ر‬‫چپگ‬‫دنباله‬ )           a z z az z a z X a z z a z a ROC z a z a z a z n u a z X n n n n n n n n n n n n                                                 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 : 1 1     1     n u a n x n Example 2: Left-Sided Exponential Sequence
  • 10. Example 3: Two-Sided Exponential Sequence Chapter 3: The Z-Transform 9       1 - n - u 2 1 - n u 3 1 n x n n               1 1 1 0 1 0 1 3 1 1 1 3 1 1 3 1 3 1 3 1                                    z z z z z n n 1 1 0 1 1 1 n n 1 z 2 1 1 1 z 2 1 1 z 2 1 z 2 1 z 2 1                                   z 3 1 1 z 3 1 : ROC 1     z 2 1 1 z 2 1 : ROC 1                                  2 1 z 3 1 z 12 1 z z 2 z 2 1 1 1 z 3 1 1 1 z X 1 1 Im 2 1 oo 12 1 x x 3 1 
  • 11. Example 4: Finite Length Sequence Chapter 3: The Z-Transform 10          otherwise 0 1 0 N n a n x n N=16 Pole-zero plot         N n u n u a n x n        0 : 1 1 1 ) ( 1 0 1 1 1 1 1 1 0 1 1 0                                 z az az ROC a z a z z az az az z a z X N n n N N N N N n n N n n n
  • 12. Some common Z-transform pairs Chapter 3: The Z-Transform 11
  • 13. SEQUENCE TRANSFORM ROC 1  z     0 m if or 0 m if 0 except z All    1  z 1 1 1   z 1 1 1   z m z         m n n u n u n       1 1 z ALL Some common Z-transform pairs
  • 14.                     1 : cos 2 1 cos 1 cos : 1 1 : 1 : 1 1 1 : 1 1 2 1 0 1 0 0 2 1 1 2 1 1 1 1                                     z ROC z z z n u n a z ROC az az n u na a z ROC az az n u na a z ROC az n u a a z ROC az n u a Z Z n Z n Z n Z n    Some common Z-transform pairs
  • 15.         0 : 1 1 0 1 0 : cos 2 1 sin sin 1 2 2 1 0 1 0 0                      z ROC az z a otherwise N n a r z ROC z r z r z r n u n r N N Z n Z n                    r z ROC z r z r z r n u n r z ROC z z z n u n Z n Z                  : cos 2 1 cos 1 cos 1 : cos 2 1 sin sin 2 2 1 0 1 0 0 2 1 0 1 0 0       Some common Z-transform pairs
  • 16. 3.2 Properties of The ROC of Z-Transform • The ROC is a ring or disk centered at the origin • DTFT exists if and only if the ROC includes the unit circle • The ROC cannot contain any poles • The ROC for finite-length sequence is the entire z-plane except possibly z=0 and z= • The ROC for a right-handed sequence extends outward from the outermost pole possibly including z=  • The ROC for a left-handed sequence extends inward from the innermost pole possibly including z=0 • The ROC of a two-sided sequence is a ring bounded by poles • The ROC must be a connected region • A z-transform does not uniquely determine a sequence without specifying the ROC Chapter 3: The Z-Transform 15
  • 17. Stability, Causality, and the ROC • Consider a system with impulse response h[n] • The z-transform H(z) and the pole-zero plot shown below • Without any other information h[n] is not uniquely determined |z|>2 or |z|<½ or ½<|z|<2 • If system stable ROC must include unit-circle: ½<|z|<2 • If system is causal must be right sided: |z|>2 Chapter 3: The Z-Transform 16
  • 18. 3.4 Z-Transform Properties: Linearity • Notation • Linearity – Note that the ROC of combined sequence may be larger than either ROC – This would happen if some pole/zero cancellation occurs – Example: •Both sequences are right-sided •Both sequences have a pole z=a •Both have a ROC defined as |z|>|a| •In the combined sequence the pole at z=a cancels with a zero at z=a •The combined ROC is the entire z plane except z=0 Chapter 3: The Z-Transform 17     x Z R ROC z X n x              2 1 x x 2 1 Z 2 1 R R ROC z bX z aX n bx n ax               N - n u a - n u a n x n n 
  • 19. Z-Transform Properties: Time Shifting • Here no is an integer – If positive the sequence is shifted right – If negative the sequence is shifted left • The ROC can change – The new term may add or remove poles at z=0 or z= • Example Chapter 3: The Z-Transform 18     x n Z o R ROC z X z n n x o          4 1 z z 4 1 1 1 z z X 1 1                      1 - n u 4 1 n x 1 - n       
  • 20. Z-Transform Properties: Multiplication by Exponential • ROC is scaled by |zo| • All pole/zero locations are scaled • If zo is a positive real number: z-plane shrinks or expands • If zo is a complex number with unit magnitude it rotates • Example: We know the z-transform pair • Let’s find the z-transform of Chapter 3: The Z-Transform 19     x o o Z n o R z ROC z / z X n x z        1 z : ROC z - 1 1 n u 1 - Z                    n u re 2 1 n u re 2 1 n u n cos r n x n j n j o n o o          r z z re 1 2 / 1 z re 1 2 / 1 z X 1 j 1 j o o          
  • 21. Z-Transform Properties: Differentiation • Example: We want the inverse z-transform of • Let’s differentiate to obtain rational expression • Making use of z-transform properties and ROC Chapter 3: The Z-Transform 20     x Z R ROC dz z dX z n nx           a z az 1 log z X 1         1 1 1 2 az 1 1 az dz z dX z az 1 az dz z dX                  1 n u a a n nx 1 n           1 n u n a 1 n x n 1 n    
  • 22. Z-Transform Properties: Conjugation Chapter 3: The Z-Transform 21     x * * Z * R ROC z X n x                            n n n n n n n n n n X z x n z X z x n z x n z X z x n z x n z Z x n                                       
  • 23. Z-Transform Properties: Time Reversal • ROC is inverted • Example: • Time reversed version of Chapter 3: The Z-Transform 22     x Z R 1 ROC z / 1 X n x           n u a n x n      n u an   1 1 1 - 1 -1 a z z a - 1 z a - az 1 1 z X       
  • 24. Z-Transform Properties: Convolution • Convolution in time domain is multiplication in z-domain • Example: Let’s calculate the convolution of • Multiplications of z-transforms is • ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a| • Partial fractional expansion of Y(z) Chapter 3: The Z-Transform 23         2 x 1 x 2 1 Z 2 1 R R : ROC z X z X n x n x               n u n x and n u a n x 2 n 1     a z : ROC az 1 1 z X 1 1       1 z : ROC z 1 1 z X 1 2              1 1 2 1 z 1 az 1 1 z X z X z Y         1 z : ROC assume 1 1 1 1 1 1 1               az a z a z Y         n u a n u a 1 1 n y 1 n   
  • 25. Some Z-transform properties Chapter 3: The Z-Transform 24
  • 26. 3.3 The Inverse Z-Transform • Formal inverse z-transform is based on a Cauchy integral • Less formal ways sufficient most of the time – Inspection method – Partial fraction expansion – Power series expansion • Inspection Method Make use of known z-transform pairs such as Example: The inverse z-transform of Chapter 3: The Z-Transform 25   a z az 1 1 n u a 1 Z n              n u 2 1 n x 2 1 z z 2 1 1 1 z X n 1            
  • 27. Inverse Z-Transform by Partial Fraction Expansion • Assume that a given z-transform can be expressed as • Apply partial fractional expansion • First term exist only if M>N – Br is obtained by long division • Second term represents all first order poles • Third term represents an order s pole – There will be a similar term for every high-order pole • Each term can be inverse transformed by inspection Chapter 3: The Z-Transform 26          N 0 k k k M 0 k k k z a z b z X                     s 1 m m 1 i m N i k , 1 k 1 k k N M 0 r r r z d 1 C z d 1 A z B z X
  • 28. Inverse Z-Transform by Partial Fraction Expansion • Coefficients are given as • Easier to understand with examples Chapter 3: The Z-Transform 27                     s 1 m m 1 i m N i k , 1 k 1 k k N M 0 r r r z d 1 C z d 1 A z B z X     k d z 1 k k z X z d 1 A               1 i d w 1 s i m s m s m s i m w X w d 1 dw d d ! m s 1 C                
  • 29. Example 5: 2nd Order Z-Transform Chapter 3: The Z-Transform 28   2 1 z : ROC z 2 1 1 z 4 1 1 1 z X 1 1                                       1 2 1 1 z 2 1 1 A z 4 1 1 A z X   1 4 1 2 1 1 1 z X z 4 1 1 A 1 4 1 z 1 1                                2 2 1 4 1 1 1 z X z 2 1 1 A 1 2 1 z 1 2                            
  • 30. Example 5 Continued • ROC extends to infinity – Indicates right sided sequence Chapter 3: The Z-Transform 29   2 1 z z 2 1 1 2 z 4 1 1 1 z X 1 1                           n u 4 1 - n u 2 1 2 n x n n             
  • 31. Example 6 • Long division to obtain Bo Chapter 3: The Z-Transform 30       1 z z 1 z 2 1 1 z 1 z 2 1 z 2 3 1 z z 2 1 z X 1 1 2 1 2 1 2 1                        1 z 5 2 z 3 z 2 1 z 2 z 1 z 2 3 z 2 1 1 1 2 1 2 1 2                   1 1 1 z 1 z 2 1 1 z 5 1 2 z X                  1 2 1 1 z 1 A z 2 1 1 A 2 z X          9 z X z 2 1 1 A 2 1 z 1 1                 8 z X z 1 A 1 z 1 2     
  • 32. Example 5 Continued • ROC extends to infinity – Indicates right-sided sequence Chapter 3: The Z-Transform 31   1 z z 1 8 z 2 1 1 9 2 z X 1 1                 n 8u - n u 2 1 9 n 2 n x n         
  • 33. Inverse Z-Transform by Power Series Expansion • The z-transform is power series • In expanded form • Z-transforms of this form can generally be inversed easily • Especially useful for finite-length series Chapter 3: The Z-Transform 32           n n z n x z X                          2 1 1 2 2 1 0 1 2 z x z x x z x z x z X
  • 34.      1 2 1 1 1 2 z 2 1 1 z 2 1 z z 1 z 1 z 2 1 1 z z X                             1 n 2 1 n 1 n 2 1 2 n n x                                 2 n 0 1 n 2 1 0 n 1 1 n 2 1 2 n 1 n x Example 6