Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

A Quick Tutorial on Mahout’s Recommendation Engine (v 0.4)

37 087 vues

Publié le

A quick tutorial on Mahout's recommendation algorithm.

Publié dans : Formation, Technologie
  • DOWNLOAD FULL BOOKS, INTO AVAILABLE FORMAT ......................................................................................................................... ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Répondre 
    Voulez-vous vraiment ?  Oui  Non
    Votre message apparaîtra ici
  • On slide 4 and 5 why do the diagonal yellow cells have different numbers? They represent the same items so they should have 5 or be empty.
       Répondre 
    Voulez-vous vraiment ?  Oui  Non
    Votre message apparaîtra ici

A Quick Tutorial on Mahout’s Recommendation Engine (v 0.4)

  1. 1. A QUICK TUTORIAL ON MAHOUT’S RECOMMENDATION ENGINE (V 0.4) Jee Vang, Ph.D. [email_address] A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License. Slide Version 3.1
  2. 2. What is recommendation? <ul><li>Recommendation involves the prediction of what new items a user would like or dislike based on preferences of or associations to previous items </li></ul><ul><li>(Made-up) Example: </li></ul><ul><ul><li>A user, John Doe, likes the following books (items): </li></ul></ul><ul><ul><ul><li>A Tale of Two Cities </li></ul></ul></ul><ul><ul><ul><li>The Great Gatsby </li></ul></ul></ul><ul><ul><ul><li>For Whom the Bell Tolls </li></ul></ul></ul><ul><ul><li>Recommendations will predict which new books (items), John Doe, will like: </li></ul></ul><ul><ul><ul><li>Jane Eyre </li></ul></ul></ul><ul><ul><ul><li>The Adventures of Tom Sawyer </li></ul></ul></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  3. 3. What is Mahout? <ul><li>Mahout is a machine learning application programming interface (API) built on Hadoop </li></ul><ul><ul><li>MapReduce (MR or M/R) </li></ul></ul><ul><ul><li>Hadoop Distributed File System (HDFS) </li></ul></ul><ul><li>Mahout is written in Java </li></ul><ul><li>Mahout has machine learning algorithms in the following areas: </li></ul><ul><ul><li>Clustering </li></ul></ul><ul><ul><li>Pattern mining </li></ul></ul><ul><ul><li>Classification </li></ul></ul><ul><ul><li>Regression </li></ul></ul><ul><ul><li>Evolutionary algorithms </li></ul></ul><ul><ul><li>Recommenders/Collaborative filtering </li></ul></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  4. 4. How does Mahout’s Recommendation Engine Work? X = S U R <ul><li>S is the similarity matrix between items </li></ul><ul><li>U is the user’s preferences for items </li></ul><ul><li>R is the predicted recommendations </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  5. 5. What is the similarity matrix, S? <ul><li>S is a n x n (square) matrix </li></ul><ul><ul><li>Each element, e, in S are indexed by row (j) and column (k), e jk </li></ul></ul><ul><ul><li>Each e jk in S holds a value that describes how similar are its corresponding j-th and k-th items </li></ul></ul><ul><ul><li>In this example, the similarity of the j-th and k-th items are determined by frequency of their co-occurrence (when the j-th item is seen, the k-th item is seen as well) </li></ul></ul><ul><ul><ul><li>In general, any similarity measure may be used to produce these values </li></ul></ul></ul><ul><ul><li>We see in this example that </li></ul></ul><ul><ul><ul><li>Items 1 and 2 co-occur 3 times, </li></ul></ul></ul><ul><ul><ul><li>Items 1 and 3 co-occur 4 times, </li></ul></ul></ul><ul><ul><ul><li>and so on… </li></ul></ul></ul>S Item 1 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  6. 6. What is the user’s preferences, U? <ul><li>The user’s preference is represented as a column vector </li></ul><ul><ul><li>Each value in the vector represents the user’s preference for j-th item </li></ul></ul><ul><ul><li>In general, this column vector is sparse </li></ul></ul><ul><ul><li>Values of zero, 0, represent no recorded preferences for the j-th item </li></ul></ul>U Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  7. 7. What is the recommendation, R? <ul><li>R is a column vector representing the prediction of recommendation of the j-th item for the user </li></ul><ul><li>R is computed from the multiplication of S and U </li></ul><ul><ul><li>S x U = R </li></ul></ul><ul><li>In this running example, the user already has expressed positive preferences for Items 1, 4, 5 and 7, so we look at only Items 2, 3, and 6 </li></ul><ul><li>We would recommend to the user Items 3, 2, and 6, in this order, to the user </li></ul>R Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  8. 8. What data format does Mahout’s recommendation engine expects? <ul><li>For Mahout v0.4, look at RecommenderJob </li></ul><ul><li>(org.apache.mahout.cf.taste.hadoop.item.RecommenderJob) </li></ul><ul><li>Each line of the input file should have the following format </li></ul><ul><ul><li>userID,itemID[,preferencevalue] </li></ul></ul><ul><ul><ul><li>userID is parsed as a long </li></ul></ul></ul><ul><ul><ul><li>itemID is parsed as a long </li></ul></ul></ul><ul><ul><ul><li>preferencevalue is parsed as a double and is optional </li></ul></ul></ul>Format 1 123,345 123,456 123,789 … 789,458 Format 2 123,345,1.0 123,456,2.2 123,789,3.4 … 789,458,1.2 A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  9. 9. How do you run Mahout’s recommendation engine? <ul><li>Requirements </li></ul><ul><ul><li>Hadoop cluster on GNU/Linux </li></ul></ul><ul><ul><li>Java 1.6.x </li></ul></ul><ul><ul><li>SSH </li></ul></ul><ul><li>Assuming you have a Hadoop cluster installed and configured correctly with the data loaded into HDFS, </li></ul><ul><ul><li>$HADOOP_INSTALL$/bin/hadoop jar $TARGET$/mahout-core-0.4-job.jar org.apache.mahout.cf.taste.hadoop.item.RecommenderJob -Dmapred.input.dir=$INPUT$ -Dmapred.output.dir=$OUTPUT$ </li></ul></ul><ul><ul><ul><li>$HADOOP_INSTALL$ is the location where you installed Hadoop </li></ul></ul></ul><ul><ul><ul><li>$TARGET$ is the directory where you have the Mahout jar file </li></ul></ul></ul><ul><ul><ul><li>$INPUT$ is the input file name </li></ul></ul></ul><ul><ul><ul><li>$OUTPUT$ is the output file name </li></ul></ul></ul><ul><li>There are plenty of runtime options (check javadocs) </li></ul><ul><ul><li>--userFile (path) : optional; a file containing userIDs; only preferences of these userIDs will be computed </li></ul></ul><ul><ul><li>--itemsFile (path) : optional; a file containing itemIDs; only these items will be used in the recommendation predictions </li></ul></ul><ul><ul><li>--numRecommendations (integer) : number of recommendations to compute per user; default 10 </li></ul></ul><ul><ul><li>--booleanData (boolean) : treat input data as having no preference values; default false </li></ul></ul><ul><ul><li>--maxPrefsPerUser (integer) : maximum number of preferences considered per user in final recommendation phase; default 10 </li></ul></ul><ul><ul><li>--similarityClassname (classname): similarity measure (cooccurence, euclidean, log-likelihood, pearson, tanimoto coefficient, uncentered cosine, cosine) </li></ul></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  10. 10. What are the mechanics of Mahout’s recommendation engine? <ul><li>Mahout is built on Hadoop’s MapReduce (MR) API </li></ul><ul><ul><li><K1,V1>  map  <K2,V2> </li></ul></ul><ul><ul><li><K2,List(V2)>  reduce  <K3,V3> </li></ul></ul><ul><li>A series of MR phases (Jobs) are called to accomplish the task of predicting recommendations </li></ul><ul><ul><li>ItemIDIndexMapper, ItemIDIndexReducer </li></ul></ul><ul><ul><li>ItemPrefsMapper,ToUserVectorReducer </li></ul></ul><ul><ul><li>CounterUsersMapper,CounterUsersReducer </li></ul></ul><ul><ul><li>… </li></ul></ul><ul><ul><li>PartialMultiplyMapper,AggregateAndRecommendReducer </li></ul></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  11. 11. Mahout’s Recommender Engine: Phase 1, Generate List of ItemIDs <ul><li>Input: </li></ul><ul><ul><li><LongWritable,Text> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarIntWritable,VarLongWritable> </li></ul></ul><ul><li>Parses out itemID long </li></ul><ul><li>Converts itemID to int, itemID int </li></ul><ul><li>Emits <itemID int ,itemID long > </li></ul><ul><li>Input: </li></ul><ul><ul><li><VarIntWritable,List(VarLongWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarIntWritable,VarLongWritable> </li></ul></ul><ul><li>Find the smallest value in the list of values, itemID long min </li></ul><ul><li>Emits <itemID int , itemID long min > </li></ul><ul><li>ItemIDIndexMapper </li></ul><ul><li>ItemIDIndexReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  12. 12. Mahout’s Recommender Engine: Phase 2, Create Preference Vector <ul><li>Input: </li></ul><ul><ul><li><LongWritable,Text> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarLongWritable,VarLongWritable> </li></ul></ul><ul><li>Parses out userID and itemID </li></ul><ul><li>Emits <userID,itemID> </li></ul><ul><li>Input: </li></ul><ul><ul><li><VarLongWritable,List(VarLongWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarLongWritable,VectorWritable> </li></ul></ul><ul><li>Creates preferences, U </li></ul><ul><ul><li>U is a sparse Vector </li></ul></ul><ul><li>Emits <userID, U> </li></ul><ul><li>ToItemPrefsMapper </li></ul><ul><li>ToUserVectorReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  13. 13. Mahout’s Recommender Engine: Phase 3, Count Unique Users <ul><li>Input: </li></ul><ul><ul><li><LongWritable,Text> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><CountUsersKeyWritable,VarLongWritable> </li></ul></ul><ul><li>Parses out userID </li></ul><ul><li>Emits <userID,userID> </li></ul><ul><li>Input: </li></ul><ul><ul><li><CountUsersKeyWritable,List(VarLongWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarIntWritable,NullWritable> </li></ul></ul><ul><li>Count all unique users, numUsers </li></ul><ul><li>Emits <numUsers, null> </li></ul><ul><li>CountUsersMapper </li></ul><ul><li>CountUsersReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  14. 14. Mahout’s Recommender Engine: Phase 4, Transpose Preferences Vectors <ul><li>Input: </li></ul><ul><ul><li><VarLongWritable,VectorWritable> </li></ul></ul><ul><ul><li>Uses MR output from Phase 2 </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><IntWritable,DistributedRowMatrix.MatrixEntryWritable> </li></ul></ul><ul><li>Transposes MR output from Phase 2 </li></ul><ul><ul><li>MR Phase 2 output had users as rows and items as cols </li></ul></ul><ul><ul><li>Now, items are rows and users are cols </li></ul></ul><ul><li>Each element, e jk , is transposed, e kj </li></ul><ul><li>Emits <k,e kj > </li></ul><ul><li>Input: </li></ul><ul><ul><li><IntWritable,List(DistributedRowMatrix.MatrixEntryWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><IntWritable,VectorWritable> </li></ul></ul><ul><li>Writes transposed user preferences vectors, U’ </li></ul><ul><li>Emits <row, U’> </li></ul><ul><li>MaybePruneRowsMapper </li></ul><ul><li>ToItemVectorsReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  15. 15. Mahout’s Recommender Engine: Phase 5.1, RowSimilarityJob, Compute Weights <ul><li>Input: </li></ul><ul><ul><li><IntWritable,VectorWritable> </li></ul></ul><ul><ul><li>Uses MR output from Phase 4 </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarIntWritable,WeightedOccurences> </li></ul></ul><ul><li>For each element, e jk , compute its weighted occurrence, w jk </li></ul><ul><li>Emits <k,w jk > </li></ul><ul><li>Input: </li></ul><ul><ul><li><VarIntWritable,List(WeightedOccurrences)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarIntWritable,WeightedOccurrenceArray> </li></ul></ul><ul><li>Transfers weighted occurrences to array and writes results </li></ul><ul><li>Emits <k, w jk > </li></ul><ul><li>RowWeightMapper </li></ul><ul><li>WeightedOccurrencesPerColumnReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  16. 16. Mahout’s Recommender Engine: Phase 5.2, RowSimilarityJob, Compute Similarities <ul><li>Input: </li></ul><ul><ul><li><VarIntWritable,WeightedOccurrenceArray> </li></ul></ul><ul><ul><li>Uses MR output from Phase 5.1 </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><WeightedRowPair,Coocurrence> </li></ul></ul><ul><li>For pair of rows, p, write its column coocurrences, c </li></ul><ul><li>Emits < p , c > </li></ul><ul><li>Input: </li></ul><ul><ul><li><WeightedRowPair,List(Coocurrence)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><SimilarityMatrixEntryKey,MatrixEntryWritable> </li></ul></ul><ul><li>Compute the row similarities between row a and row b , and write corresponding position in the matrix </li></ul><ul><li>Emits <row j , matrix entry> </li></ul><ul><li>CooccurrencesMapper </li></ul><ul><li>SimilarityReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  17. 17. Mahout’s Recommender Engine: Phase 5.3, RowSimilarityJob, Similarity Matrix <ul><li>Input: </li></ul><ul><ul><li><SimilarityMatrixEntryKey,MatrixEntryWritable> </li></ul></ul><ul><ul><li>Uses MR output from Phase 5.2 </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><SimilarityMatrixEntryKey,MatrixEntryWritable> </li></ul></ul><ul><li>Writes similarity matrix entry key, sme, and matrix entry, me, as is </li></ul><ul><li>sme is basically each row </li></ul><ul><li>me is basically each row-col entry of the similarity matrix </li></ul><ul><li>Emits <sme,me> </li></ul><ul><li>Input: </li></ul><ul><ul><li><SimilarityMatrixEntryKey,List(MatrixEntryWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><IntWritable,VectorWritable> </li></ul></ul><ul><li>Write the row and its associated vector out </li></ul><ul><li>Emits <row, vector> </li></ul><ul><li>Mapper </li></ul><ul><li>EntriesToVectorsReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  18. 18. Mahout’s Recommender Engine: Phase 6, Pre-partial multiply, Similarity Matrix <ul><li>Input: </li></ul><ul><ul><li>< IntWritable,VectorWritable> </li></ul></ul><ul><ul><li>Uses MR output from Phase 5.3 </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><IntWritable,VectorOrPrefWritable> </li></ul></ul><ul><li>Wraps the similarity vector, v 1 , into a different vector format, v 2 </li></ul><ul><li>Emits <row,v 2 > </li></ul><ul><li>Input: </li></ul><ul><ul><li><IntWritable,List(VectorOrPrefWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><IntWritable,VectorOrPrefWritable> </li></ul></ul><ul><li>Write the row and each of its associated vector out </li></ul><ul><li>Emits <row, vector> </li></ul><ul><li>SimilarityMatrixRowWrapperMapper </li></ul><ul><li>Reducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  19. 19. Mahout’s Recommender Engine: Phase 7, Pre-partial multiply, Preferences <ul><li>Input: </li></ul><ul><ul><li>< VarLongWritable,VectorWritable> </li></ul></ul><ul><ul><li>Uses MR output from Phase 2 </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li>< VarIntWritable,VectorOrPrefWritable> </li></ul></ul><ul><li>Maps userID and preference vector, U </li></ul><ul><li>Emits <userID,U> </li></ul><ul><li>Input: </li></ul><ul><ul><li><IntWritable,List(VectorOrPrefWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><IntWritable,VectorOrPrefWritable> </li></ul></ul><ul><li>Write the row and each of its associated vector out </li></ul><ul><li>Emits <row, vector> </li></ul><ul><li>UserVectorSplitterMapper </li></ul><ul><li>Reducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  20. 20. Mahout’s Recommender Engine: Phase 8, Partial Multiply <ul><li>Input: </li></ul><ul><ul><li>< VarLongWritable,VectorWritable> </li></ul></ul><ul><ul><li>Uses MR outputs from Phases 6 and 7 </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li>< VarIntWritable,VectorOrPrefWritable> </li></ul></ul><ul><li>Maps row and vector, v </li></ul><ul><li>Emits <row,v> </li></ul><ul><li>Input: </li></ul><ul><ul><li><VarIntWritable,List(VectorOrPrefWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><IntWritable,VectorOrPrefWritable> </li></ul></ul><ul><li>Write the row and each of its associated vector similarity, userIDs, and preference values </li></ul><ul><li>Emits <row, vector> </li></ul><ul><li>Mapper </li></ul><ul><li>ToVectorAndPrefReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  21. 21. Mahout’s Recommender Engine: Phase 9, Filters Items <ul><li>Input: </li></ul><ul><ul><li><LongWritable,Text> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarLongWritable,VectorLongWritable> </li></ul></ul><ul><li>Parses userID and itemID </li></ul><ul><li>Emits <itemID,userID> </li></ul><ul><li>Input: </li></ul><ul><ul><li><VarLongWritable,List(VarLongWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarIntWritable,VectorOrPrefWritable> </li></ul></ul><ul><li>Writes itemID and vector of userIDs and preferences </li></ul><ul><li>Emits <itemID, vector> </li></ul><ul><li>ItemFilterMapper </li></ul><ul><li>ItemFilterAsVectorAndPrefReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  22. 22. Mahout’s Recommender Engine: Phase 10, Aggregate and Recommend <ul><li>Input: </li></ul><ul><ul><li><VarIntWritable,VectorAndPrefsWritable> </li></ul></ul><ul><ul><li>Uses MR outputs from phases 8 and 9 </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarLongWritable,PrefAndSimilarityColumnWritable> </li></ul></ul><ul><li>Writes userID and recommendations </li></ul><ul><li>Emits <userID,recommendation> </li></ul><ul><li>Input: </li></ul><ul><ul><li><VarLongWritable,List(PrefAndSimilarityColumnWritable)> </li></ul></ul><ul><li>Output: </li></ul><ul><ul><li><VarLongWritable,RecommendedItemsWritable> </li></ul></ul><ul><li>Writes userID and vector of recommendations </li></ul><ul><li>Emits <userID, vector> </li></ul><ul><li>PartialMultiplyMapper </li></ul><ul><li>AggregateAndRecommendReducer </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  23. 23. Summary and Conclusion <ul><li>Mahout is a machine learning API built on top of Hadoop which includes clustering, pattern mining, classification, regression, evolutionary algorithms, and recommenders </li></ul><ul><li>Mahout’s recommender engine transforms an expected input format into predicted recommendations </li></ul><ul><ul><li>Uses a series of MR phases to accomplish predicting recommendations </li></ul></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.
  24. 24. References <ul><li>S. Owen, R. Anil, T. Dunning, E. Friedman. Mahout in Action . MEAP: Manning Publications, 2010. </li></ul><ul><li>T. White. Hadoop: The Definitive Guide . Sebastopol, CA: O’Reilly Media, Inc., 2009. </li></ul><ul><li>J. Venner. Pro Hadoop . Berkely, CA: Apress, 2009. </li></ul><ul><li>C. Lam. Hadoop in Action . Stamford, CT: Manning Publications Co., 2011. </li></ul>A Quick Tutorial on Mahout's Recommendation Engine is licensed under a Creative Commons Attribution 3.0 Unported License.

×