SlideShare a Scribd company logo
1 of 3
Download to read offline
1 De
nition 3 Maximum-likelihood estimator 
Let 
L() = L(; x1;    ; xn) (1) 
be the likelihood function for the random variables X1;X2;    ;Xn. If b [where 
b = b#(x1; x2;    ; xn) is a function of the observations x1;    ; xn] is the value of  
in  which maximizes L(), then b 
= b#(X1;X2;    ;Xn) is the maximum-likelihood 
estimator of . b = b#(x1;    ; xn) is the maximum-likelihood estimate of  for the 
sample x1;    ; xn. 
The most important cases which we shall consider are those in which X1;X2;    ;Xn 
is a random sample from some density f(x; ), so that the likelihood function is 
L() = f(x1; )f(x2; )    f(xn; ): (2) 
Many likelihood functions satisfy regularily conditions;so the maximum-likelihood 
estimator is the solution of the equation 
dL() 
d 
= 0: (3) 
Also L() and log L()have their maxima at the same value of , and it is some- 
times easier to
nd the maxima of the logarithm of the likelihood. 
If the likelihood function contains k parameters, that is, if 
L(1; 2;    ; k);= 
Yn 
i=1 
f(xi; 1; 2;    k); (4) 
then the maximum-likelihood estimators of the parameters 1; 2;    ; k are the 
1 = b#1(X1;    ;Xn);b 
random variables b 
2 = b#2(X1;    ;Xn);    ;b 
k = b#k(X1;    ;Xn) 
where b1; b2;    ; bk are the values in  which maximize L(1; 2;    ; k). 
If certain regularity conditions are satis

More Related Content

What's hot

Integration
IntegrationIntegration
Integration
lecturer
 
Prob-Dist-Toll-Forecast-Uncertainty
Prob-Dist-Toll-Forecast-UncertaintyProb-Dist-Toll-Forecast-Uncertainty
Prob-Dist-Toll-Forecast-Uncertainty
Ankoor Bhagat
 
Num Integration
Num IntegrationNum Integration
Num Integration
muhdisys
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
dicosmo178
 

What's hot (20)

Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Dynamical systems solved ex
Dynamical systems solved exDynamical systems solved ex
Dynamical systems solved ex
 
Integration
IntegrationIntegration
Integration
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
Veer 5
Veer 5Veer 5
Veer 5
 
Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature Formula
 
Oscilador de duffing forzado - codicación en matlab
Oscilador de duffing forzado - codicación en matlabOscilador de duffing forzado - codicación en matlab
Oscilador de duffing forzado - codicación en matlab
 
K10692 control theory
K10692 control theoryK10692 control theory
K10692 control theory
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
Prob-Dist-Toll-Forecast-Uncertainty
Prob-Dist-Toll-Forecast-UncertaintyProb-Dist-Toll-Forecast-Uncertainty
Prob-Dist-Toll-Forecast-Uncertainty
 
Num Integration
Num IntegrationNum Integration
Num Integration
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Pdfcode
PdfcodePdfcode
Pdfcode
 
Surface3d in R and rgl package.
Surface3d in R and rgl package.Surface3d in R and rgl package.
Surface3d in R and rgl package.
 
Quadrature
QuadratureQuadrature
Quadrature
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integration
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 

Similar to Si report

SI report klied
SI report kliedSI report klied
SI report klied
kliederica
 
lloydtabios2014
lloydtabios2014lloydtabios2014
lloydtabios2014
benjlloyd
 
benjielloyd1234
benjielloyd1234benjielloyd1234
benjielloyd1234
benjlloyd
 
lloydtabios2014
lloydtabios2014lloydtabios2014
lloydtabios2014
benjlloyd
 
A. Basic Calculus [15]A1. The function f (x) is de…ned as.docx
A. Basic Calculus [15]A1. The function f (x) is de…ned as.docxA. Basic Calculus [15]A1. The function f (x) is de…ned as.docx
A. Basic Calculus [15]A1. The function f (x) is de…ned as.docx
annetnash8266
 
Chapter 3 – Random Variables and Probability Distributions
Chapter 3 – Random Variables and Probability DistributionsChapter 3 – Random Variables and Probability Distributions
Chapter 3 – Random Variables and Probability Distributions
JasonTagapanGulla
 

Similar to Si report (20)

SI report klied
SI report kliedSI report klied
SI report klied
 
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
 
lloydtabios2014
lloydtabios2014lloydtabios2014
lloydtabios2014
 
benjielloyd1234
benjielloyd1234benjielloyd1234
benjielloyd1234
 
lloydtabios2014
lloydtabios2014lloydtabios2014
lloydtabios2014
 
A. Basic Calculus [15]A1. The function f (x) is de…ned as.docx
A. Basic Calculus [15]A1. The function f (x) is de…ned as.docxA. Basic Calculus [15]A1. The function f (x) is de…ned as.docx
A. Basic Calculus [15]A1. The function f (x) is de…ned as.docx
 
Chapter 3 – Random Variables and Probability Distributions
Chapter 3 – Random Variables and Probability DistributionsChapter 3 – Random Variables and Probability Distributions
Chapter 3 – Random Variables and Probability Distributions
 
Estimation rs
Estimation rsEstimation rs
Estimation rs
 
Admissions in India 2015
Admissions in India 2015Admissions in India 2015
Admissions in India 2015
 
Multivriada ppt ms
Multivriada   ppt msMultivriada   ppt ms
Multivriada ppt ms
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementation
 
Principal Component Analysis
Principal Component AnalysisPrincipal Component Analysis
Principal Component Analysis
 
Qt random variables notes
Qt random variables notesQt random variables notes
Qt random variables notes
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Prob review
Prob reviewProb review
Prob review
 
chapter3.ppt
chapter3.pptchapter3.ppt
chapter3.ppt
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
 
Lecture5
Lecture5Lecture5
Lecture5
 
stochastic notes
stochastic notes stochastic notes
stochastic notes
 

Si report

  • 2. nition 3 Maximum-likelihood estimator Let L() = L(; x1; ; xn) (1) be the likelihood function for the random variables X1;X2; ;Xn. If b [where b = b#(x1; x2; ; xn) is a function of the observations x1; ; xn] is the value of in which maximizes L(), then b = b#(X1;X2; ;Xn) is the maximum-likelihood estimator of . b = b#(x1; ; xn) is the maximum-likelihood estimate of for the sample x1; ; xn. The most important cases which we shall consider are those in which X1;X2; ;Xn is a random sample from some density f(x; ), so that the likelihood function is L() = f(x1; )f(x2; ) f(xn; ): (2) Many likelihood functions satisfy regularily conditions;so the maximum-likelihood estimator is the solution of the equation dL() d = 0: (3) Also L() and log L()have their maxima at the same value of , and it is some- times easier to
  • 3. nd the maxima of the logarithm of the likelihood. If the likelihood function contains k parameters, that is, if L(1; 2; ; k);= Yn i=1 f(xi; 1; 2; k); (4) then the maximum-likelihood estimators of the parameters 1; 2; ; k are the 1 = b#1(X1; ;Xn);b random variables b 2 = b#2(X1; ;Xn); ;b k = b#k(X1; ;Xn) where b1; b2; ; bk are the values in which maximize L(1; 2; ; k). If certain regularity conditions are satis
  • 4. ed, the point where the likelihood is a maximum is a solution of the k equations @L(1; ; k) @1 = 0 (5) @L(1; ; k) @2 = 0 (6) ... (7) @L(1; ; k) @k = 0 (8) (9) . 1
  • 5. example: Suppose that a randon sample of size n is drawn from the bernoulli distribution, f(x; p) = pxq(1x)I(0;1)(x); 0 p 1 and q = 1 p (10) (11) and the likelihood function is L(p) = Yn i=1 pxiqnxi (12) = p P xiqn P xi (13) let, y = P xi we obtain, L(p) = pyqny (14) logL(p) = y log p + (n y) log q (15) and to
  • 6. nd the location of its maximum, we compute (remembering q = 1 p) d log L(p) dp = y p (n y) q (16) = y p (n y) (1 p) (17) = y(1 p) p(n y) p(1 p) (18) = y py pn + py p(1 p) (19) = y pn p(1 p) (20) (21) from our def'n 3, dL() d = 0 by equating this to zero, we have y pn p(1 p) = 0 (22) y pn = 0 (23) pn y = n n (24) ^p = y n (25) = P xi n (26) = 1 n X xi (27) = x (28) Note that the likelihood function depends on the x0 is only through P xi; Now, to sketch the likelihood function for n=3, we have L0 = L(p; X xi = 0) = p0(1 p)30 = (1 p)3 (29) L1 = L(p; X xi = 1) = p1(1 p)31 = p(1 p)2 (30) L2 = L(p; X xi = 2) = p2(1 p)32 = p2(1 p) (31) L3 = L(p; X xi = 3) = p3(1 p)33 = p3 (32) (33) 2
  • 7. Thus, the point where the maximum of each of the curves takes place for 0 p 1 is the same as the given when n=3. 3