Chapter summary and solutions to end-of-chapter exercises for "Data Visualization: Principles and Practice" book by Alexandru C. Telea Chapter provides an overview of a number of methods for visualizing tensor data. It explains principal component analysis as a technique used to process a tensor matrix and extract from it information that can directly be used in its visualization. It forms a fundamental part of many tensor data processing and visualization algorithms. Section 7.4 shows how the results of the principal component analysis can be visualized using the simple color-mapping techniques. Next parts of the chapter explain how same data can be visualized using tensor glyphs, and streamline-like visualization techniques. In contrast to Slicer, which is a more general framework for analyzing and visualizing 3D slice-based data volumes, the Diffusion Toolkit focuses on DT-MRI datasets, and thus offers more extensive and easier to use options for fiber tracking.
Chapter summary and solutions to end-of-chapter exercises for "Data Visualization: Principles and Practice" book by Alexandru C. Telea Chapter provides an overview of a number of methods for visualizing tensor data. It explains principal component analysis as a technique used to process a tensor matrix and extract from it information that can directly be used in its visualization. It forms a fundamental part of many tensor data processing and visualization algorithms. Section 7.4 shows how the results of the principal component analysis can be visualized using the simple color-mapping techniques. Next parts of the chapter explain how same data can be visualized using tensor glyphs, and streamline-like visualization techniques. In contrast to Slicer, which is a more general framework for analyzing and visualizing 3D slice-based data volumes, the Diffusion Toolkit focuses on DT-MRI datasets, and thus offers more extensive and easier to use options for fiber tracking.