Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Quantitative Analysis of  User-Generated Content  on the Web Xavier Ochoa, ESPOL, Ecuador Erik Duval, KULeuven, Bélgica
Topics <ul><li>Why? </li></ul><ul><li>Studies </li></ul><ul><li>Findings </li></ul><ul><li>Implication of the Findings </l...
Why? <ul><li>UGC economy: </li></ul><ul><ul><li>Supply:  Users publishing their content </li></ul></ul><ul><ul><li>Demand:...
Why? <ul><li>Demand (Popularity) is relatively well understood: </li></ul><ul><li>But Supply (Publication) is not....  </l...
Studies
Studies <ul><ul><li>Descriptive Statistics </li></ul></ul><ul><ul><li>Distribution Fitting </li></ul></ul><ul><ul><li>Conc...
Findings <ul><li>Distribution of supply is not Normal </li></ul>
Findings <ul><li>Distribution of supply has a heavy tail </li></ul>
Findings Lotka (“fat-tail”) Weibull (“fat-belly”)
Implications of the Findings <ul><li>There is not such thing as an “average user ” </li></ul>
Low Class Middle Class High Class
Implications of the Findings <ul><li>The production of different UGC types is similar, but not the same. </li></ul>
Implications of the Findings <ul><li>Pareto Rule (80/20)  </li></ul><ul><li>applies to UGC </li></ul><ul><li>(but no subst...
Implications of the Findings <ul><li>“ Fat-tail” UGC production is similar to professional production. </li></ul>
Implications of Findings <ul><li>The distribution is not affected by  site size  </li></ul><ul><li>or  production effort <...
Implications of the Findings <ul><li>Make your bet,  </li></ul><ul><li>head or tail? </li></ul>
50% of Content is generated here
50% of Content is generated here
Implications of the Findings <ul><li>Informetrics can help us to understand UGC production </li></ul><ul><li>(and vice ver...
Conclusions <ul><li>Measuring is our only way to test our hypothesis about how Web works </li></ul><ul><li>If you admin a ...
Further Work <ul><li>Modeling Production of UGC </li></ul><ul><li>Integrate UGC inside the Informetrics / Scientometrics /...
Xie xie, questions? Xavier Ochoa  –  [email_address] Erik Duval  –  [email_address]
Prochain SlideShare
Chargement dans…5
×

Quantitative Analysis of User-Generated Content on the Web

Web Science Workshop at World Wide Web Conference 2008
Presentation that presents the results of measuring the user contribution to 9 UGC web-sites: Furl, Digg, Slideshare, FanFiction, Scribd, Revver, Merlot, Amazon Reviews and LibraryThing

Livres associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir

Livres audio associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir
  • Soyez le premier à commenter

Quantitative Analysis of User-Generated Content on the Web

  1. 1. Quantitative Analysis of User-Generated Content on the Web Xavier Ochoa, ESPOL, Ecuador Erik Duval, KULeuven, Bélgica
  2. 2. Topics <ul><li>Why? </li></ul><ul><li>Studies </li></ul><ul><li>Findings </li></ul><ul><li>Implication of the Findings </li></ul><ul><li>Conclusion </li></ul><ul><li>FurterWork </li></ul>
  3. 3. Why? <ul><li>UGC economy: </li></ul><ul><ul><li>Supply: Users publishing their content </li></ul></ul><ul><ul><li>Demand: Users viewing content from others </li></ul></ul><ul><ul><li>Currency: Attention </li></ul></ul>
  4. 4. Why? <ul><li>Demand (Popularity) is relatively well understood: </li></ul><ul><li>But Supply (Publication) is not.... </li></ul>How a ‘hit’ is born (S Sinha, RK Pan, 2006)
  5. 5. Studies
  6. 6. Studies <ul><ul><li>Descriptive Statistics </li></ul></ul><ul><ul><li>Distribution Fitting </li></ul></ul><ul><ul><li>Concentration Analysis </li></ul></ul>
  7. 7. Findings <ul><li>Distribution of supply is not Normal </li></ul>
  8. 8. Findings <ul><li>Distribution of supply has a heavy tail </li></ul>
  9. 9. Findings Lotka (“fat-tail”) Weibull (“fat-belly”)
  10. 10. Implications of the Findings <ul><li>There is not such thing as an “average user ” </li></ul>
  11. 11. Low Class Middle Class High Class
  12. 12. Implications of the Findings <ul><li>The production of different UGC types is similar, but not the same. </li></ul>
  13. 13. Implications of the Findings <ul><li>Pareto Rule (80/20) </li></ul><ul><li>applies to UGC </li></ul><ul><li>(but no substitute to measuring) </li></ul>
  14. 14. Implications of the Findings <ul><li>“ Fat-tail” UGC production is similar to professional production. </li></ul>
  15. 15. Implications of Findings <ul><li>The distribution is not affected by site size </li></ul><ul><li>or production effort </li></ul>
  16. 16. Implications of the Findings <ul><li>Make your bet, </li></ul><ul><li>head or tail? </li></ul>
  17. 17. 50% of Content is generated here
  18. 18. 50% of Content is generated here
  19. 19. Implications of the Findings <ul><li>Informetrics can help us to understand UGC production </li></ul><ul><li>(and vice versa) </li></ul>
  20. 20. Conclusions <ul><li>Measuring is our only way to test our hypothesis about how Web works </li></ul><ul><li>If you admin a UGC-based site, measure production to gain insight on the other side of your economy </li></ul><ul><li>Inequality of Contribution of UGC is real and should be dealt with in all its variations. </li></ul>
  21. 21. Further Work <ul><li>Modeling Production of UGC </li></ul><ul><li>Integrate UGC inside the Informetrics / Scientometrics / Webometrics framework </li></ul><ul><li>Expand the data collection and analysis </li></ul><ul><ul><li>Measure growth (size and contributors) </li></ul></ul><ul><ul><li>Measure production rate </li></ul></ul><ul><ul><li>Use at least 3 examples for each type of UGC </li></ul></ul>
  22. 22. Xie xie, questions? Xavier Ochoa – [email_address] Erik Duval – [email_address]

×