Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

The Future of Hadoop in an AI World, Milind Bhandarkar, CEO, Ampool

161 vues

Publié le

Presented at the Hadoop Contributors Meetup, hosted by Oath.
Explore career opportunities at Oath: https://www.oath.com/careers/search-jobs/.

Publié dans : Technologie
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

The Future of Hadoop in an AI World, Milind Bhandarkar, CEO, Ampool

  1. 1. Future of Hadoop In AI World Milind Bhandarkar Founder & CEO,Ampool @techmilind
  2. 2. The Future is not what it used to be -Yogi Berra
  3. 3. Google Papers
  4. 4. Yahoo! Search + =
  5. 5. W-1-W •WebMap : Graph processing for WWW •Dreadnaught: Infrastructure for WebMap •W-1-W:WebMap In One Week •Juggernaut: Infrastructure for W-1-W •JFS, JMR, Condor:Abandoned for Hadoop
  6. 6. Lucene, Nutch
  7. 7. Kryptonite: First Hadoop Cluster AtYahoo!
  8. 8. Hadoop Future in 2006: Hadoop will helpYahoo! win Search Engine Wars
  9. 9. Lessons Learned •Multi-Tenancy from ground-up •Agility in lieu of Performance •Provisioning vs Procurement •“Weird” use cases as learning experience •Academic collaboration
  10. 10. Hadoop Peak Hype 2011-2014
  11. 11. Hadoop Impact on Data Economics $- $20,000 $40,000 $60,000 $80,000 2008 2009 2010 2011 2012 2013 Big Data Platform Price/TB Big Data DB Hadoop
  12. 12. SQL on “Everything” •NoSQL = “Not Yet SQL” - Michael Stonebraker, 2010 •Hive, Cloudera Impala, SparkSQL, Facebook Presto,Apache Drill, IBM BigSQL,Apache HAWQ,ApacheTrafodion
  13. 13. Hadoop Future in 2014: Hadoop will end EDW as we know it.
  14. 14. Hadoop Future Disrupted: 2014
  15. 15. Clouds, Public & Private
  16. 16. IAAS: New Hardware •Public:AWS, Google Cloud,Azure •Private: vSphere, OpenStack •Easy Provisioning •Scalable, Elastic, Ubiquitous •Bundled with Data & Analytics as Services
  17. 17. Cloud Data Fabric •Store massive & diverse data sets economically •Integrate and Ingest from legacy & disparate sources •Ability to rapidly analyze massive data sets •Control,Auditing, Manageability, Self-Service •Object Stores
  18. 18. And Now,AI
  19. 19. So,“Big” Data is Still Important in AI World, So why *NOT* Hadoop?
  20. 20. Back to the Future 2018: What is Hadoop? Hadoop is the OSS Reference Implementation of APIs for managing distributed AI workloads and their access to large datasets.
  21. 21. Hadoop with Compute- Storage Separation
  22. 22. Compute •Containers & Orchestration •DeconstructingYARN •Resource Allocation, Scheduling, Management, Isolation •K8S Everywhere •Logically Separated from Storage
  23. 23. Storage •Massively ScalableTiers •Object Stores, Distributed File Systems, PersistentVolumes •Higher-Level Data Abstractions •Large, dense volatile & non-volatile memories
  24. 24. Questions?