SlideShare a Scribd company logo
1 of 10
Download to read offline
  	
  
Small	
  Cell	
  
Cluster	
  	
  
Case	
  Study	
  
	
  
	
  
September	
  2011	
  
Small	
  Cell	
  Cluster	
  Case	
  Study	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   ©	
  2011	
  SpiderCloud	
  Wireless,	
  Inc.	
   Page	
  |	
  2	
  
1 Introduction	
  
Drop-­‐In,	
  High-­‐Density	
  Mobile	
  Capacity	
  
SpiderCloud	
  Wireless	
  has	
  produced	
  an	
  industry	
  breakthrough	
  –	
  the	
  SmartCloud®	
  Cluster	
  –	
  the	
  industry’s	
  
first	
  Small	
  Cell	
  Cluster.	
  	
  The	
  SmartCloud	
  Cluster	
  is	
  the	
  most	
  compact	
  and	
  efficient	
  mobile	
  broadband	
  
system	
  ever	
  built,	
  and	
  delivers	
  unprecedented	
  mobile	
  broadband	
  capacity	
  and	
  performance.	
  	
  	
  
SpiderCloud’s	
  Small	
  Cell	
  Cluster	
  ushers	
  in	
  a	
  new	
  era	
  of	
  rapid	
  and	
  targeted	
  deployment	
  for	
  mobile	
  
broadband	
  infrastructures	
  –	
  an	
  era	
  of	
  drop-­‐in,	
  high-­‐density	
  capacity	
  for	
  mobile	
  operators.	
  
The	
  Small	
  Cell	
  Cluster	
  is	
  a	
  new	
  product	
  category	
  and	
  will	
  change	
  the	
  industry’s	
  view	
  of	
  the	
  mobile	
  
infrastructure	
  hierarchy.	
  	
  Because	
  Small	
  Cell	
  Clusters	
  are	
  so	
  efficient	
  at	
  delivering	
  targeted	
  performance	
  
and	
  capacity,	
  macrocell	
  infrastructure	
  will	
  soon	
  function	
  as	
  an	
  umbrella,	
  or	
  fill-­‐in	
  layer	
  in	
  the	
  hierarchy.	
  	
  
As	
  a	
  result,	
  the	
  emergence	
  of	
  Small	
  Cell	
  Cluster	
  products	
  will	
  turn	
  traditional	
  thinking	
  on	
  its	
  head	
  and	
  
will	
  emerge	
  as	
  a	
  new	
  and	
  “defining”	
  layer	
  in	
  the	
  mobile	
  broadband	
  hierarchy.	
  
This	
  Case	
  Study	
  uses	
  data	
  from	
  one	
  of	
  several	
  live	
  installations	
  of	
  the	
  SmartCloud	
  Cluster.	
  	
  All	
  users	
  were	
  
using	
  commercial	
  SIMs	
  and	
  the	
  SmartCloud	
  Cluster	
  was	
  integrated	
  with	
  a	
  mobile	
  operator’s	
  live	
  
production	
  core	
  network.	
  
Small	
  Cell	
  Cluster	
  Case	
  Study	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   ©	
  2011	
  SpiderCloud	
  Wireless,	
  Inc.	
   Page	
  |	
  3	
  
2 Executive	
  Summary	
  
Operational	
  results	
  from	
  a	
  live	
  installation	
  show	
  that	
  SpiderCloud’s	
  Small	
  Cell	
  Cluster	
  –	
  the	
  SmartCloud	
  
Cluster	
  –	
  automatically	
  manages	
  challenging	
  RF	
  environments,	
  operates	
  with	
  true	
  commercial	
  stability,	
  
and	
  efficiently	
  delivers	
  breakthrough	
  capacity	
  and	
  performance.	
  
Challenge	
  
The	
  SmartCloud	
  Cluster	
  was	
  installed	
  in	
  a	
  three-­‐story	
  office	
  building	
  where	
  requirements	
  included:	
  	
  	
  
Providing	
  reliable	
  mobile	
  broadband	
  for	
  an	
  all-­‐mobile	
  work	
  environment	
  with	
  no	
  PBX	
  or	
  
traditional	
  desk	
  phones;	
  
Offloading	
  the	
  building’s	
  600-­‐800	
  commercial	
  users	
  from	
  surrounding	
  macrocell	
  base	
  stations;	
  
Integrating	
  the	
  system	
  with	
  the	
  operator’s	
  live	
  core	
  network,	
  not	
  a	
  trial	
  core;	
  
Delivering	
  the	
  system	
  at	
  a	
  fraction	
  of	
  the	
  cost	
  of	
  a	
  Distributed	
  Antenna	
  System	
  (DAS);	
  
Deploying	
  the	
  system	
  rapidly	
  –	
  and	
  without	
  disruption	
  –	
  in	
  a	
  100,000	
  sq.	
  ft.	
  office	
  building;	
  
Controlling	
  cell-­‐to-­‐cell	
  RF	
  interference	
  in	
  an	
  open	
  office	
  plan	
  with	
  few	
  walls,	
  and	
  a	
  center	
  atrium	
  
that	
  exposed	
  all	
  floors.	
  
Solution	
  
The	
  SmartCloud	
  Cluster	
  controls	
  small	
  cells	
  as	
  a	
  coherent	
  cluster	
  and	
  consists	
  of	
  two	
  elements:	
  a	
  
controller,	
  and	
  the	
  small	
  cells	
  –	
  each	
  of	
  which	
  is	
  a	
  complete	
  UMTS	
  base	
  station	
  (NodeB).	
  	
  In	
  this	
  
installation,	
  the	
  SmartCloud	
  Cluster	
  covered	
  three	
  floors	
  with	
  18	
  small	
  cells	
  –	
  six	
  per	
  floor	
  –	
  utilizing	
  a	
  
single	
  controller	
  (see	
  Figure	
  1).	
  	
  
	
  
Figure	
  1:	
  SmartCloud	
  Cluster	
  Deployment	
  
Small	
  Cell	
  Cluster	
  Case	
  Study	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   ©	
  2011	
  SpiderCloud	
  Wireless,	
  Inc.	
   Page	
  |	
  4	
  
Results	
  
The	
  SmartCloud	
  Cluster	
  proved	
  to	
  be	
  a	
  robust,	
  scalable	
  system.	
  	
  Operating	
  at	
  38%	
  capacity,	
  the	
  cluster	
  
replaced	
  an	
  existing	
  two-­‐sector	
  Distributed	
  Antenna	
  System	
  (DAS)	
  and	
  provided	
  uninterrupted	
  and	
  
trouble-­‐free	
  broadband	
  service	
  for	
  an	
  all-­‐mobile	
  work	
  environment.	
  	
  In	
  addition,	
  the	
  SmartCloud	
  Cluster	
  
performed	
  at	
  breakthrough	
  levels	
  in	
  all	
  categories	
  (see	
  Table	
  1).	
  
Table	
  1:	
  SmartCloud	
  Cluster	
  Operating	
  Results	
  
Category	
   Result	
   Detail	
  
Installation	
   Simple	
   Comparable	
  to	
  Wi-­‐Fi	
  installation,	
  used	
  same	
  contractor	
  
Configuration	
   Rapid	
   RF	
  self-­‐configuration,	
  optimization,	
  and	
  commissioning	
  in	
  45	
  minutes	
  
after	
  physical	
  installation	
  
Capacity	
   Voice	
  Calls	
   High	
   3,000+	
  voice	
  call	
  daily	
  average,	
  served	
  600-­‐800	
  commercial	
  
users	
  in	
  all-­‐mobile-­‐phone	
  work	
  environment	
  with	
  no	
  blocking	
  
Data	
  
Sessions	
  
High	
   50,000+	
  HSPA	
  session	
  daily	
  average	
  
User	
  
Experience	
  
Voice	
  
Quality	
  
High	
  	
   Soft	
  Handover	
  resulted	
  in	
  voice	
  quality	
  PESQ	
  scores	
  of	
  3.7	
  –	
  higher	
  
than	
  typical	
  commercial	
  macrocell	
  scores	
  of	
  3.25	
  
Data	
  
Performance	
  
High	
   High-­‐density	
  deployment	
  with	
  low	
  RF	
  interference	
  allowed	
  individual	
  
users	
  to	
  sustain	
  downlink	
  data	
  at	
  5-­‐10	
  Mbps	
  and	
  uplink	
  data	
  at	
  2	
  
Mbps	
  –	
  much	
  higher	
  than	
  typical	
  shared	
  macrocell	
  environment	
  
Macrocell	
  Offload	
   High	
   Operating	
  at	
  only	
  38%	
  capacity,	
  replaced	
  the	
  capacity	
  of	
  a	
  two-­‐sector	
  
macrocell	
  DAS	
  system	
  
Small	
  Cell	
  Cluster	
  Case	
  Study	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   ©	
  2011	
  SpiderCloud	
  Wireless,	
  Inc.	
   Page	
  |	
  5	
  
3 Vision	
  for	
  Small	
  Cell	
  Clusters	
  
SpiderCloud	
  believes	
  that	
  small	
  cells	
  operating	
  as	
  coherent	
  clusters	
  –	
  called	
  Small	
  Cell	
  Clusters	
  –	
  are	
  the	
  
most	
  efficient	
  way	
  to	
  deliver	
  mobile	
  broadband	
  capacity.	
  Through	
  an	
  architecture	
  that	
  leverages	
  a	
  local	
  
unified	
  cluster	
  controller	
  managing	
  resource	
  allocation	
  and	
  mobility	
  events	
  at	
  each	
  venue,	
  mobile	
  
operators	
  can	
  now	
  easily	
  and	
  efficiently	
  deploy	
  highly	
  targeted	
  capacity	
  at	
  specific	
  points	
  of	
  mobile	
  
broadband	
  consumption.	
  Key	
  deployment	
  use	
  cases	
  include	
  any	
  indoor	
  environment	
  where	
  high	
  
concentrations	
  of	
  users	
  consume	
  mobile	
  broadband:	
  college	
  campuses,	
  high-­‐rise	
  buildings,	
  airports,	
  
hotels,	
  and	
  convention	
  halls.	
  
The	
  SmartCloud	
  Cluster	
  is	
  a	
  high-­‐density	
  and	
  high-­‐performance	
  architecture	
  for	
  licensed	
  spectrum,	
  and	
  
consists	
  of	
  two	
  elements	
  (see	
  Figure	
  2):	
  
Cluster	
  Controller.	
  	
  The	
  SmartCloud	
  Services	
  Node	
  is	
  a	
  cluster	
  controller	
  that	
  provides	
  traffic	
  
aggregation	
  and	
  session	
  management	
  for	
  all	
  mobile	
  sessions	
  delivered	
  through	
  small	
  cells.	
  It	
  is	
  
responsible	
  for	
  access	
  control,	
  radio	
  node	
  management,	
  auto	
  configuration,	
  self-­‐optimization,	
  
interference	
  management,	
  local	
  data	
  offload,	
  soft-­‐handover,	
  and	
  core	
  network	
  integration.	
  
Small	
  Cell.	
  	
  The	
  SmartCloud	
  Radio	
  Node	
  is	
  a	
  high	
  performance	
  small	
  cell.	
  	
  It	
  is	
  a	
  complete	
  UMTS	
  base	
  
station	
  supporting	
  up	
  to	
  16	
  voice	
  and	
  data	
  users	
  and	
  is	
  compatible	
  with	
  3GPP	
  R99,	
  Release	
  5	
  &	
  
Release	
  6	
  UEs.	
  	
  
Typical	
  SmartCloud	
  Cluster	
  configurations	
  involve	
  integration	
  with	
  a	
  mobile	
  operator’s	
  core	
  network	
  via	
  
the	
  Services	
  Node.	
  	
  In	
  this	
  case,	
  the	
  SmartCloud	
  Cluster	
  was	
  integrated	
  with	
  the	
  operator’s	
  commercial	
  
core	
  network	
  and	
  served	
  users	
  on	
  existing	
  billable	
  accounts.	
  
	
  
Figure	
  2:	
  SmartCloud	
  Cluster	
  for	
  Corporate	
  Campus	
  or	
  Hi-­‐Rise	
  Building	
  
Small	
  Cell	
  Cluster	
  Case	
  Study	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   ©	
  2011	
  SpiderCloud	
  Wireless,	
  Inc.	
   Page	
  |	
  6	
  
4 Operational	
  Details	
  
4.1 Installation	
  
The	
  SmartCloud	
  Cluster	
  was	
  dimensioned	
  to	
  cover	
  three	
  floors	
  of	
  a	
  100,000	
  sq.	
  ft.	
  commercial	
  building	
  
with	
  18	
  small	
  cells.	
  The	
  cells	
  were	
  installed	
  six-­‐per-­‐floor	
  using	
  the	
  same	
  cable	
  trays	
  as	
  the	
  Wi-­‐Fi	
  
infrastructure	
  and	
  were	
  mounted	
  by	
  a	
  contractor	
  familiar	
  with	
  LAN	
  and	
  Wi-­‐Fi	
  installations.	
  	
  To	
  control	
  
the	
  building-­‐wide	
  cluster,	
  a	
  single	
  controller	
  was	
  installed	
  in	
  an	
  IT	
  server	
  room.	
  	
  The	
  cells	
  were	
  
connected	
  to	
  the	
  Services	
  Node	
  via	
  Power	
  Over	
  Ethernet	
  (PoE)	
  connections	
  via	
  existing	
  layer	
  2	
  switches.	
  
Since	
  the	
  facility	
  relied	
  solely	
  on	
  mobile	
  phones	
  for	
  communication,	
  SpiderCloud	
  chose	
  a	
  high-­‐capacity	
  
deployment	
  with	
  each	
  cell	
  covering	
  5000	
  sq.	
  ft.,	
  or	
  33	
  employees.	
  This	
  was	
  an	
  unusually	
  dense	
  
configuration	
  –	
  roughly	
  twice	
  the	
  density	
  required	
  to	
  support	
  a	
  facility	
  with	
  traditional	
  desk	
  phones.	
  
Strong	
  Requirement	
  for	
  Soft	
  Handover	
  
The	
  building	
  featured	
  a	
  central	
  atrium	
  open	
  to	
  all	
  floors.	
  	
  This	
  resulted	
  in	
  some	
  interesting	
  RF	
  challenges.	
  	
  
For	
  example,	
  once	
  installed,	
  any	
  cell	
  in	
  the	
  cluster	
  was	
  able	
  to	
  “see”	
  virtually	
  any	
  other	
  small	
  cell	
  in	
  the	
  
facility.	
  	
  As	
  a	
  result,	
  the	
  cluster	
  detected	
  a	
  large	
  number	
  of	
  cells,	
  a	
  high	
  percentage	
  of	
  which	
  were	
  
measured	
  at	
  similar	
  power	
  levels.	
  This	
  made	
  Soft	
  Handover	
  (SHO)	
  a	
  critical	
  feature	
  to	
  ensure	
  high	
  call	
  
quality.	
  	
  In	
  addition,	
  SHO	
  enabled	
  cells	
  to	
  operate	
  with	
  much	
  less	
  overlap	
  than	
  a	
  Hard	
  Handover	
  (HHO)	
  
system	
  and	
  reduce	
  cell-­‐to-­‐cell	
  interference.	
  	
  Without	
  SHO,	
  a	
  small	
  cell	
  system	
  deployed	
  in	
  a	
  building	
  
such	
  as	
  this	
  would	
  face	
  high	
  levels	
  of	
  self-­‐interference,	
  low	
  call	
  quality,	
  and	
  reduced	
  data	
  performance.	
  
Rapid	
  Commissioning	
  
In	
  this	
  environment,	
  the	
  cluster’s	
  ability	
  to	
  adapt	
  to	
  the	
  RF	
  environment	
  was	
  especially	
  important.	
  	
  
SpiderCloud’s	
  local	
  controller,	
  the	
  Services	
  Node,	
  coordinated	
  topology	
  discovery,	
  optimal	
  assignment	
  of	
  
Primary	
  Scrambling	
  Codes	
  (PSCs),	
  power	
  tuning,	
  and	
  the	
  on-­‐going	
  optimization	
  of	
  the	
  cluster.	
  	
  This	
  
locally	
  controlled	
  architecture	
  allowed	
  the	
  Small	
  Cell	
  Cluster	
  to	
  self-­‐configure	
  and	
  startup	
  live	
  operation	
  
in	
  only	
  45-­‐minutes,	
  a	
  commissioning	
  time	
  easily	
  an	
  order	
  of	
  magnitude	
  faster	
  than	
  any	
  other	
  licensed	
  
spectrum	
  broadband	
  system	
  in	
  the	
  market.	
  	
  Beyond	
  initial	
  commissioning,	
  the	
  cluster	
  also	
  made	
  use	
  of	
  
live	
  user	
  UE-­‐based	
  measurements	
  for	
  on-­‐going	
  optimization.	
  	
  This	
  allowed	
  the	
  system	
  to	
  validate	
  
coverage	
  through	
  closed-­‐loop	
  measurements	
  by	
  actual	
  end-­‐users	
  of	
  the	
  system,	
  and	
  provided	
  
optimization	
  for	
  on-­‐going	
  changes	
  in	
  the	
  environment.	
  
4.2 Capacity	
  
Voice	
  Calls	
  
On	
  a	
  daily	
  basis,	
  the	
  overall	
  voice	
  call	
  capacity	
  of	
  the	
  SmartCloud	
  Cluster	
  proved	
  to	
  be	
  very	
  robust.	
  	
  
Compared	
  to	
  any	
  indoor	
  mobile	
  system	
  on	
  the	
  market,	
  the	
  cluster	
  delivered	
  breakthrough	
  voice	
  call	
  
performance.	
  	
  The	
  cluster	
  handled	
  an	
  average	
  of	
  3,000	
  or	
  more	
  voice	
  calls	
  in	
  typical	
  8	
  to	
  10	
  hour	
  
workday.	
  	
  A	
  single	
  day’s	
  performance	
  is	
  detailed	
  below	
  (see	
  Figure	
  3).	
  
Small	
  Cell	
  Cluster	
  Case	
  Study	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   ©	
  2011	
  SpiderCloud	
  Wireless,	
  Inc.	
   Page	
  |	
  7	
  
	
  
Figure	
  3:	
  Single	
  Day,	
  Hourly	
  Voice	
  Calls	
  	
  
Data	
  Sessions	
  
Data	
  sessions	
  were	
  also	
  handled	
  at	
  very	
  high	
  levels,	
  much	
  higher	
  than	
  can	
  be	
  accomplished	
  with	
  any	
  
other	
  licensed	
  spectrum	
  indoor	
  system.	
  	
  On	
  average,	
  the	
  cluster	
  handled	
  more	
  than	
  50,000	
  HSPA	
  
sessions	
  per	
  workday.	
  	
  A	
  single	
  day’s	
  performance	
  is	
  detailed	
  below	
  (see	
  Figure	
  4)	
  
	
  
Figure	
  4:	
  Single	
  Day,	
  Hourly	
  Data	
  Sessions	
  
9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
Total Voice Calls 78 340 609 994 1420 1785 2197 2669 2995 3172
Hourly Voice Calls 78 262 269 385 426 365 412 472 326 177
0
500
1000
1500
2000
2500
3000
3500
0
50
100
150
200
250
300
350
400
450
500
NASSessions
Created
Hourly Voice Calls
Total&Voice&Calls& Hourly&Voice&Calls&
9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
Total HSPA Sessions 2327 6267 13137 19867 26228 32117 38526 45751 50170 53568
Hourly HSPA Sessions 2327 3940 6870 6730 6361 5889 6409 7225 4419 3398
0"
10000"
20000"
30000"
40000"
50000"
60000"
0
1000
2000
3000
4000
5000
6000
7000
8000
NASSessions
Created
Hourly Data Sessions
Total"HSPA"Sessions" Hourly"HSPA"Sessions"
Small	
  Cell	
  Cluster	
  Case	
  Study	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   ©	
  2011	
  SpiderCloud	
  Wireless,	
  Inc.	
   Page	
  |	
  8	
  
4.3 User	
  Experience	
  
Voice	
  Quality	
  
Voice	
  quality	
  on	
  the	
  SmartCloud	
  Cluster	
  scored	
  high	
  –	
  in	
  the	
  range	
  of	
  3.7	
  using	
  PESQ	
  –	
  better	
  than	
  an	
  
average	
  3G	
  macrocell	
  score	
  of	
  3.25,	
  or	
  a	
  2G	
  score	
  of	
  3.0.	
  	
  This	
  was	
  largely	
  attributable	
  to	
  the	
  accurate	
  
and	
  stable	
  Soft	
  Handover	
  available	
  throughout	
  the	
  SmartCloud	
  Cluster	
  (see	
  Figure	
  5).	
  
	
  
Figure	
  5:	
  SmartCloud	
  Cluster	
  Voice	
  Quality	
  PESQ	
  Scores	
  
Data	
  Performance	
  
The	
  SmartCloud	
  Cluster	
  handled	
  high	
  data	
  loading	
  in	
  production.	
  	
  Load	
  testing	
  focused	
  on	
  the	
  impact	
  of	
  
data	
  loading	
  on	
  the	
  cluster’s	
  voice	
  quality	
  –	
  with	
  data	
  traffic	
  injected	
  on	
  six	
  simultaneous	
  cells	
  in	
  the	
  
range	
  of	
  5-­‐10	
  Mbps	
  on	
  the	
  DL	
  and	
  2	
  Mb/s	
  in	
  the	
  UL.	
  	
  Testing	
  yielded	
  very	
  high	
  average	
  DL	
  and	
  UL	
  
performance	
  in	
  both	
  stationary	
  and	
  mobile	
  testing	
  –	
  and	
  in	
  all	
  cases	
  maintained	
  excellent	
  voice	
  
performance.	
  Overall,	
  it	
  was	
  clear	
  that	
  an	
  average	
  of	
  at	
  least	
  5	
  Mbps	
  (DL+UL)	
  could	
  be	
  maintained	
  
simultaneously	
  in	
  each	
  of	
  the	
  18	
  cells	
  in	
  the	
  building,	
  yielding	
  over	
  100	
  Mbps	
  of	
  aggregate	
  capacity.	
  
4.4 Offload	
  
Since	
  the	
  maximum	
  capacity	
  of	
  the	
  SmartCloud	
  Cluster	
  is	
  50	
  cells,	
  the	
  installed	
  18-­‐cell	
  system	
  was	
  only	
  
operating	
  at	
  38%	
  of	
  its	
  design	
  load.	
  	
  Even	
  so,	
  the	
  cluster	
  replaced	
  an	
  existing	
  DAS	
  system	
  that	
  
represented	
  two	
  full	
  sectors	
  of	
  a	
  macrocell	
  base	
  station	
  operating	
  on	
  two	
  different	
  frequencies.	
  	
  Since	
  
the	
  facility’s	
  users	
  were	
  conducting	
  all	
  their	
  business	
  via	
  mobile	
  devices,	
  it	
  is	
  fair	
  to	
  characterize	
  the	
  
offload	
  of	
  macrocell	
  traffic	
  as	
  very	
  significant.	
  	
  Even	
  with	
  such	
  aggressive	
  utilization,	
  the	
  SmartCloud	
  
Cluster	
  operated	
  at	
  a	
  fraction	
  of	
  its	
  capacity	
  and	
  still	
  handled	
  600-­‐800	
  users	
  –	
  often	
  identifying	
  as	
  many	
  
as	
  1,000	
  unique	
  UEs	
  in	
  a	
  single	
  day.	
  
Cell Density
VoiceQuality
PESQ Score - 3.7
SmartCloud Cluster
Low
Low
High
High
PESQ Score – 3.0
Commercial GSM
PESQ Score – 3.2
Commercial UMTS
Small	
  Cell	
  Cluster	
  Case	
  Study	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   ©	
  2011	
  SpiderCloud	
  Wireless,	
  Inc.	
   Page	
  |	
  9	
  
5 Conclusion	
  
Small	
  Cell	
  Cluster	
  Requirements	
  
SpiderCloud’s	
  live	
  deployment	
  shows	
  that	
  efficient	
  Small	
  Cell	
  Clusters	
  such	
  as	
  the	
  SmartCloud	
  Cluster,	
  
can	
  deliver	
  breakthrough	
  performance	
  when	
  they	
  meet	
  the	
  following	
  requirements:	
  
Robust	
  Self-­‐Organizing	
  Network	
  –	
  The	
  system	
  must	
  automatically	
  learn	
  the	
  topology	
  of	
  the	
  
external	
  and	
  internal	
  network,	
  intelligently	
  assign	
  cell	
  powers	
  and	
  PSCs,	
  and	
  easily	
  adapt	
  to	
  
changes	
  in	
  the	
  network.	
  	
  In	
  addition,	
  a	
  robust	
  system	
  must	
  provide	
  on-­‐going	
  self-­‐optimization	
  
that	
  correlates	
  small	
  cell	
  data	
  with	
  measurements	
  collected	
  from	
  live	
  UEs.	
  
Local	
  controller	
  architecture	
  –	
  To	
  scale,	
  a	
  small	
  cell	
  system	
  should	
  form	
  a	
  natural	
  cluster	
  to	
  
manage	
  SoN	
  and	
  Soft	
  Handover.	
  	
  Without	
  a	
  local	
  controller,	
  shared	
  or	
  hosted	
  systems	
  would	
  
need	
  extensive	
  partitioning	
  to	
  support	
  self-­‐organizing	
  network	
  calculations	
  for	
  individual	
  
facilities,	
  and	
  critical	
  mobility	
  features	
  such	
  as	
  Soft	
  Handover	
  would	
  burden	
  backhauls	
  with	
  
significant	
  signaling	
  traffic.	
  	
  
High	
  call	
  capacity	
  and	
  off-­‐load	
  –	
  A	
  Small	
  Cell	
  Cluster	
  must	
  deliver	
  performance	
  that	
  significantly	
  
off-­‐loads	
  a	
  macrocell	
  system.	
  	
  Operators	
  are	
  seeking	
  Small	
  Cell	
  Clusters	
  that	
  can	
  add	
  significant	
  
capacity	
  and	
  perform	
  better	
  than	
  their	
  current	
  macrocell	
  systems.	
  
Soft	
  Handover	
  –	
  This	
  is	
  a	
  mandatory	
  feature	
  for	
  Small	
  Cell	
  Clusters.	
  	
  Soft	
  Handover	
  adds	
  stability	
  
in	
  challenging	
  RF	
  environments,	
  reduces	
  self-­‐interference,	
  and	
  yields	
  excellent	
  voice	
  quality.	
  	
  
Solutions	
  that	
  rely	
  solely	
  on	
  Hard	
  Handover	
  will	
  suffer	
  from	
  low	
  voice	
  quality	
  and	
  high	
  self-­‐
interference.	
  
Competitive	
  Comparison	
  
By	
  comparison,	
  the	
  SmartCloud	
  Cluster	
  exceeded	
  the	
  capabilities	
  of	
  two	
  competing	
  technologies,	
  DAS	
  
and	
  Multi-­‐Femtocell	
  deployments,	
  in	
  several	
  categories	
  (see	
  Table	
  2).	
  
Category	
   SmartCloud	
  Cluster	
   DAS	
   Multi-­‐Femtocell	
  
Self-­‐Configuration	
   45	
  minutes	
   Weeks	
   Days	
  
Non-­‐Disruptive	
  Install	
   Excellent	
   Poor	
   Good	
  
Voice	
  Call	
  Capacity	
   High	
   High	
   Low	
  
Data	
  Session	
  Capacity	
   High	
   High	
   Low	
  
Voice	
  Quality	
   High	
   Medium	
   Medium	
  
Data	
  Performance	
   High	
   Low	
   Medium	
  
Macrocell	
  Offload	
   High	
   None	
   Medium	
  
Table	
  2:	
  Product	
  Comparison	
  
	
   	
  
Small	
  Cell	
  Cluster	
  Case	
  Study	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   ©	
  2011	
  SpiderCloud	
  Wireless,	
  Inc.	
   Page	
  |	
  10	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
About	
  SpiderCloud	
  Wireless,	
  Inc. 	
  
SpiderCloud	
  Wireless,	
  Inc.	
  is	
  a	
  developer	
  of	
  wireless	
  technologies	
  and	
  the	
  pioneer	
  of	
  Small	
  Cell	
  Clusters.	
  SpiderCloud	
  Wireless,	
  Inc.	
  is	
  privately	
  funded	
  and	
  is	
  located	
  
at	
  2500	
  Augustine	
  Drive,	
  Suite	
  200,	
  Santa	
  Clara,	
  CA	
  95054.	
  USA.	
  http://www.spidercloud.com	
  	
  	
  	
  
©2011	
  SpiderCloud	
  Wireless,	
  Inc. SpiderCloud	
  and	
  SmartCloud	
  are	
  registered	
  trademarks	
  of	
  SpiderCloud	
  Wireless,	
  Inc.	
  All	
  rights	
  reserved.	
  (v091911-­‐2).	
  
	
  

More Related Content

What's hot

Optimization Module Overview
Optimization Module OverviewOptimization Module Overview
Optimization Module Overview
iBwave Solutions
 
Cloud RAN for Mobile Networks_Final
Cloud RAN for Mobile Networks_FinalCloud RAN for Mobile Networks_Final
Cloud RAN for Mobile Networks_Final
Sumedh Deshpande
 
das-level-2-training-resource-pdf1
das-level-2-training-resource-pdf1das-level-2-training-resource-pdf1
das-level-2-training-resource-pdf1
Ryan Tyson, MBA
 
Wireless Network Optimization (2010)
Wireless Network Optimization (2010)Wireless Network Optimization (2010)
Wireless Network Optimization (2010)
Marc Jadoul
 
LTE: Building next-gen application services for mobile telecoms
LTE: Building next-gen application services for mobile telecomsLTE: Building next-gen application services for mobile telecoms
LTE: Building next-gen application services for mobile telecoms
NuoDB
 

What's hot (20)

SEBA: SDN Enabled Broadband Access - Transporting SDN principles to PON Networks
SEBA: SDN Enabled Broadband Access - Transporting SDN principles to PON NetworksSEBA: SDN Enabled Broadband Access - Transporting SDN principles to PON Networks
SEBA: SDN Enabled Broadband Access - Transporting SDN principles to PON Networks
 
Enabling MEC as a New Telco Business Opportunity
Enabling MEC as a New Telco Business OpportunityEnabling MEC as a New Telco Business Opportunity
Enabling MEC as a New Telco Business Opportunity
 
Optimization Module Overview
Optimization Module OverviewOptimization Module Overview
Optimization Module Overview
 
Announcing Ensemble SmartWAN: Optimized secure networking solution
Announcing Ensemble SmartWAN: Optimized secure networking solutionAnnouncing Ensemble SmartWAN: Optimized secure networking solution
Announcing Ensemble SmartWAN: Optimized secure networking solution
 
Ready
ReadyReady
Ready
 
SD-WAN
SD-WANSD-WAN
SD-WAN
 
The Ruckus Edge: Networking Solutions
The Ruckus Edge: Networking SolutionsThe Ruckus Edge: Networking Solutions
The Ruckus Edge: Networking Solutions
 
Cloud RAN for Mobile Networks_Final
Cloud RAN for Mobile Networks_FinalCloud RAN for Mobile Networks_Final
Cloud RAN for Mobile Networks_Final
 
TEMS iBuildNet
TEMS iBuildNetTEMS iBuildNet
TEMS iBuildNet
 
das-level-2-training-resource-pdf1
das-level-2-training-resource-pdf1das-level-2-training-resource-pdf1
das-level-2-training-resource-pdf1
 
Strategies to architecting ultra-efficient data centers
Strategies to architecting ultra-efficient data centersStrategies to architecting ultra-efficient data centers
Strategies to architecting ultra-efficient data centers
 
BICSI Wireless DAS Update
BICSI Wireless DAS UpdateBICSI Wireless DAS Update
BICSI Wireless DAS Update
 
Data Center Interconnects: An Overview
Data Center Interconnects: An OverviewData Center Interconnects: An Overview
Data Center Interconnects: An Overview
 
Wireless Network Optimization (2010)
Wireless Network Optimization (2010)Wireless Network Optimization (2010)
Wireless Network Optimization (2010)
 
HP & NFV POC at SDN World Congree
HP & NFV POC at SDN World CongreeHP & NFV POC at SDN World Congree
HP & NFV POC at SDN World Congree
 
Proven and Emerging Use Cases of Software Defined Network
Proven and Emerging Use Cases of Software Defined NetworkProven and Emerging Use Cases of Software Defined Network
Proven and Emerging Use Cases of Software Defined Network
 
The potential of MEC for high resolution video delivery
The potential of MEC for high resolution video deliveryThe potential of MEC for high resolution video delivery
The potential of MEC for high resolution video delivery
 
LTE: Building next-gen application services for mobile telecoms
LTE: Building next-gen application services for mobile telecomsLTE: Building next-gen application services for mobile telecoms
LTE: Building next-gen application services for mobile telecoms
 
Intel® Network Builders - Network Edge Ecosystem Program
Intel® Network Builders - Network Edge Ecosystem ProgramIntel® Network Builders - Network Edge Ecosystem Program
Intel® Network Builders - Network Edge Ecosystem Program
 
Building Next Generation Transport Networks
Building Next Generation Transport NetworksBuilding Next Generation Transport Networks
Building Next Generation Transport Networks
 

Viewers also liked

An introduction to Wireless Small Cell Networks
An introduction to Wireless Small Cell NetworksAn introduction to Wireless Small Cell Networks
An introduction to Wireless Small Cell Networks
Mehdi Bennis
 

Viewers also liked (14)

Spidercloud Wireless - Small Cell enterprise deployment
Spidercloud Wireless  - Small Cell enterprise deploymentSpidercloud Wireless  - Small Cell enterprise deployment
Spidercloud Wireless - Small Cell enterprise deployment
 
Spider Cloud Wireless & Vodafone case studies
Spider Cloud Wireless & Vodafone case studiesSpider Cloud Wireless & Vodafone case studies
Spider Cloud Wireless & Vodafone case studies
 
Overcoming high deployment costs of synchronizing Enterprise Small Cells
Overcoming high deployment costs of synchronizing Enterprise Small CellsOvercoming high deployment costs of synchronizing Enterprise Small Cells
Overcoming high deployment costs of synchronizing Enterprise Small Cells
 
Webinar: Small Cells Going to Volume
Webinar: Small Cells Going to VolumeWebinar: Small Cells Going to Volume
Webinar: Small Cells Going to Volume
 
Rec 12 073 Lte Small Cells Presentation Arrows
Rec 12 073 Lte  Small Cells Presentation ArrowsRec 12 073 Lte  Small Cells Presentation Arrows
Rec 12 073 Lte Small Cells Presentation Arrows
 
SpiderCloud Wireless Scaling Small Cells indoors
SpiderCloud Wireless Scaling Small Cells indoorsSpiderCloud Wireless Scaling Small Cells indoors
SpiderCloud Wireless Scaling Small Cells indoors
 
Managing interference and overlay in complex network scenarios
Managing interference and overlay in complex network scenariosManaging interference and overlay in complex network scenarios
Managing interference and overlay in complex network scenarios
 
UK Spectrum Policy Forum Report: UK Spectrum Usage & Demand - First Edition
UK Spectrum Policy Forum Report: UK Spectrum Usage & Demand - First EditionUK Spectrum Policy Forum Report: UK Spectrum Usage & Demand - First Edition
UK Spectrum Policy Forum Report: UK Spectrum Usage & Demand - First Edition
 
Wireless (Small Cell) challenges for California Cities & Counties
Wireless (Small Cell) challenges for California Cities & CountiesWireless (Small Cell) challenges for California Cities & Counties
Wireless (Small Cell) challenges for California Cities & Counties
 
ThinkSmallCell Analyst Spotlight December 2016
ThinkSmallCell Analyst Spotlight December 2016ThinkSmallCell Analyst Spotlight December 2016
ThinkSmallCell Analyst Spotlight December 2016
 
Addressing the Multi-Small Cell Challenge
Addressing the Multi-Small Cell ChallengeAddressing the Multi-Small Cell Challenge
Addressing the Multi-Small Cell Challenge
 
An introduction to Wireless Small Cell Networks
An introduction to Wireless Small Cell NetworksAn introduction to Wireless Small Cell Networks
An introduction to Wireless Small Cell Networks
 
Ultra-Reliable Networks – A Mobile Operator Perspective
Ultra-Reliable Networks – A Mobile Operator PerspectiveUltra-Reliable Networks – A Mobile Operator Perspective
Ultra-Reliable Networks – A Mobile Operator Perspective
 
Driving Connectivity in the Scottish Islands: Droneways and Airmasts
Driving Connectivity in the Scottish Islands: Droneways and AirmastsDriving Connectivity in the Scottish Islands: Droneways and Airmasts
Driving Connectivity in the Scottish Islands: Droneways and Airmasts
 

Similar to 93136540 spider-cloud-small-cell-cluster-case-study-091911-final

202511257 spidercloud-wp
202511257 spidercloud-wp202511257 spidercloud-wp
202511257 spidercloud-wp
Zarobiza
 
Smarter Grid Demands Flexible Communications - Electric Light & Power
Smarter Grid Demands Flexible Communications - Electric Light & PowerSmarter Grid Demands Flexible Communications - Electric Light & Power
Smarter Grid Demands Flexible Communications - Electric Light & Power
Walt Phillips
 

Similar to 93136540 spider-cloud-small-cell-cluster-case-study-091911-final (20)

202511257 spidercloud-wp
202511257 spidercloud-wp202511257 spidercloud-wp
202511257 spidercloud-wp
 
Capillary Networks – Bridging the Cellular and IoT Worlds
Capillary Networks –  Bridging the Cellular and IoT WorldsCapillary Networks –  Bridging the Cellular and IoT Worlds
Capillary Networks – Bridging the Cellular and IoT Worlds
 
Small Cell & UltraSNT Technology
Small Cell & UltraSNT TechnologySmall Cell & UltraSNT Technology
Small Cell & UltraSNT Technology
 
An Examination of the uses and deployment of small cell solutions
An Examination of the uses and deployment of small cell solutionsAn Examination of the uses and deployment of small cell solutions
An Examination of the uses and deployment of small cell solutions
 
Skt.2013.innovation technology for future convergence network
Skt.2013.innovation technology for future convergence networkSkt.2013.innovation technology for future convergence network
Skt.2013.innovation technology for future convergence network
 
TopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdf
TopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdfTopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdf
TopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdf
 
Wide area network in smart grid kundan
Wide area network in smart grid kundanWide area network in smart grid kundan
Wide area network in smart grid kundan
 
Introduction to Rakuten Mobile Virtual Network Operator
Introduction to Rakuten Mobile Virtual Network OperatorIntroduction to Rakuten Mobile Virtual Network Operator
Introduction to Rakuten Mobile Virtual Network Operator
 
Ericsson Review: Capillary networks – a smart way to get things connected
Ericsson Review: Capillary networks – a smart way to get things connectedEricsson Review: Capillary networks – a smart way to get things connected
Ericsson Review: Capillary networks – a smart way to get things connected
 
“Design of Efficient Mobile Femtocell by Compression and Aggregation Technolo...
“Design of Efficient Mobile Femtocell by Compression and Aggregation Technolo...“Design of Efficient Mobile Femtocell by Compression and Aggregation Technolo...
“Design of Efficient Mobile Femtocell by Compression and Aggregation Technolo...
 
Scalable Small Cell System with Dual Band, Multi-Mode
Scalable Small Cell System with Dual Band, Multi-ModeScalable Small Cell System with Dual Band, Multi-Mode
Scalable Small Cell System with Dual Band, Multi-Mode
 
Smarter Grid Demands Flexible Communications - Electric Light & Power
Smarter Grid Demands Flexible Communications - Electric Light & PowerSmarter Grid Demands Flexible Communications - Electric Light & Power
Smarter Grid Demands Flexible Communications - Electric Light & Power
 
Nokia siemens networks_active_antenna_system_white_paper_26_01_12
Nokia siemens networks_active_antenna_system_white_paper_26_01_12Nokia siemens networks_active_antenna_system_white_paper_26_01_12
Nokia siemens networks_active_antenna_system_white_paper_26_01_12
 
Energy efficient platform designed for sdma applications in mobile wireless ...
Energy efficient platform designed for sdma applications in mobile  wireless ...Energy efficient platform designed for sdma applications in mobile  wireless ...
Energy efficient platform designed for sdma applications in mobile wireless ...
 
List Other Types Of Attacks
List Other Types Of AttacksList Other Types Of Attacks
List Other Types Of Attacks
 
Acronym Soup – NFV, SDN, OVN and VNF
Acronym Soup – NFV, SDN, OVN and VNFAcronym Soup – NFV, SDN, OVN and VNF
Acronym Soup – NFV, SDN, OVN and VNF
 
Improving the Latency Value by Virtualizing Distributed Data Center and Auto...
Improving the Latency Value by Virtualizing Distributed Data  Center and Auto...Improving the Latency Value by Virtualizing Distributed Data  Center and Auto...
Improving the Latency Value by Virtualizing Distributed Data Center and Auto...
 
Iot basics & evolution of 3 gpp technolgies for iot connectivity
Iot basics & evolution of 3 gpp technolgies for iot connectivityIot basics & evolution of 3 gpp technolgies for iot connectivity
Iot basics & evolution of 3 gpp technolgies for iot connectivity
 
Das small cells_view_leading_edge_wp-111425-en
Das small cells_view_leading_edge_wp-111425-enDas small cells_view_leading_edge_wp-111425-en
Das small cells_view_leading_edge_wp-111425-en
 
Agile Fractal Grid - 7-11-14
Agile Fractal Grid - 7-11-14Agile Fractal Grid - 7-11-14
Agile Fractal Grid - 7-11-14
 

93136540 spider-cloud-small-cell-cluster-case-study-091911-final

  • 1.     Small  Cell   Cluster     Case  Study       September  2011  
  • 2. Small  Cell  Cluster  Case  Study                       ©  2011  SpiderCloud  Wireless,  Inc.   Page  |  2   1 Introduction   Drop-­‐In,  High-­‐Density  Mobile  Capacity   SpiderCloud  Wireless  has  produced  an  industry  breakthrough  –  the  SmartCloud®  Cluster  –  the  industry’s   first  Small  Cell  Cluster.    The  SmartCloud  Cluster  is  the  most  compact  and  efficient  mobile  broadband   system  ever  built,  and  delivers  unprecedented  mobile  broadband  capacity  and  performance.       SpiderCloud’s  Small  Cell  Cluster  ushers  in  a  new  era  of  rapid  and  targeted  deployment  for  mobile   broadband  infrastructures  –  an  era  of  drop-­‐in,  high-­‐density  capacity  for  mobile  operators.   The  Small  Cell  Cluster  is  a  new  product  category  and  will  change  the  industry’s  view  of  the  mobile   infrastructure  hierarchy.    Because  Small  Cell  Clusters  are  so  efficient  at  delivering  targeted  performance   and  capacity,  macrocell  infrastructure  will  soon  function  as  an  umbrella,  or  fill-­‐in  layer  in  the  hierarchy.     As  a  result,  the  emergence  of  Small  Cell  Cluster  products  will  turn  traditional  thinking  on  its  head  and   will  emerge  as  a  new  and  “defining”  layer  in  the  mobile  broadband  hierarchy.   This  Case  Study  uses  data  from  one  of  several  live  installations  of  the  SmartCloud  Cluster.    All  users  were   using  commercial  SIMs  and  the  SmartCloud  Cluster  was  integrated  with  a  mobile  operator’s  live   production  core  network.  
  • 3. Small  Cell  Cluster  Case  Study                       ©  2011  SpiderCloud  Wireless,  Inc.   Page  |  3   2 Executive  Summary   Operational  results  from  a  live  installation  show  that  SpiderCloud’s  Small  Cell  Cluster  –  the  SmartCloud   Cluster  –  automatically  manages  challenging  RF  environments,  operates  with  true  commercial  stability,   and  efficiently  delivers  breakthrough  capacity  and  performance.   Challenge   The  SmartCloud  Cluster  was  installed  in  a  three-­‐story  office  building  where  requirements  included:       Providing  reliable  mobile  broadband  for  an  all-­‐mobile  work  environment  with  no  PBX  or   traditional  desk  phones;   Offloading  the  building’s  600-­‐800  commercial  users  from  surrounding  macrocell  base  stations;   Integrating  the  system  with  the  operator’s  live  core  network,  not  a  trial  core;   Delivering  the  system  at  a  fraction  of  the  cost  of  a  Distributed  Antenna  System  (DAS);   Deploying  the  system  rapidly  –  and  without  disruption  –  in  a  100,000  sq.  ft.  office  building;   Controlling  cell-­‐to-­‐cell  RF  interference  in  an  open  office  plan  with  few  walls,  and  a  center  atrium   that  exposed  all  floors.   Solution   The  SmartCloud  Cluster  controls  small  cells  as  a  coherent  cluster  and  consists  of  two  elements:  a   controller,  and  the  small  cells  –  each  of  which  is  a  complete  UMTS  base  station  (NodeB).    In  this   installation,  the  SmartCloud  Cluster  covered  three  floors  with  18  small  cells  –  six  per  floor  –  utilizing  a   single  controller  (see  Figure  1).       Figure  1:  SmartCloud  Cluster  Deployment  
  • 4. Small  Cell  Cluster  Case  Study                       ©  2011  SpiderCloud  Wireless,  Inc.   Page  |  4   Results   The  SmartCloud  Cluster  proved  to  be  a  robust,  scalable  system.    Operating  at  38%  capacity,  the  cluster   replaced  an  existing  two-­‐sector  Distributed  Antenna  System  (DAS)  and  provided  uninterrupted  and   trouble-­‐free  broadband  service  for  an  all-­‐mobile  work  environment.    In  addition,  the  SmartCloud  Cluster   performed  at  breakthrough  levels  in  all  categories  (see  Table  1).   Table  1:  SmartCloud  Cluster  Operating  Results   Category   Result   Detail   Installation   Simple   Comparable  to  Wi-­‐Fi  installation,  used  same  contractor   Configuration   Rapid   RF  self-­‐configuration,  optimization,  and  commissioning  in  45  minutes   after  physical  installation   Capacity   Voice  Calls   High   3,000+  voice  call  daily  average,  served  600-­‐800  commercial   users  in  all-­‐mobile-­‐phone  work  environment  with  no  blocking   Data   Sessions   High   50,000+  HSPA  session  daily  average   User   Experience   Voice   Quality   High     Soft  Handover  resulted  in  voice  quality  PESQ  scores  of  3.7  –  higher   than  typical  commercial  macrocell  scores  of  3.25   Data   Performance   High   High-­‐density  deployment  with  low  RF  interference  allowed  individual   users  to  sustain  downlink  data  at  5-­‐10  Mbps  and  uplink  data  at  2   Mbps  –  much  higher  than  typical  shared  macrocell  environment   Macrocell  Offload   High   Operating  at  only  38%  capacity,  replaced  the  capacity  of  a  two-­‐sector   macrocell  DAS  system  
  • 5. Small  Cell  Cluster  Case  Study                       ©  2011  SpiderCloud  Wireless,  Inc.   Page  |  5   3 Vision  for  Small  Cell  Clusters   SpiderCloud  believes  that  small  cells  operating  as  coherent  clusters  –  called  Small  Cell  Clusters  –  are  the   most  efficient  way  to  deliver  mobile  broadband  capacity.  Through  an  architecture  that  leverages  a  local   unified  cluster  controller  managing  resource  allocation  and  mobility  events  at  each  venue,  mobile   operators  can  now  easily  and  efficiently  deploy  highly  targeted  capacity  at  specific  points  of  mobile   broadband  consumption.  Key  deployment  use  cases  include  any  indoor  environment  where  high   concentrations  of  users  consume  mobile  broadband:  college  campuses,  high-­‐rise  buildings,  airports,   hotels,  and  convention  halls.   The  SmartCloud  Cluster  is  a  high-­‐density  and  high-­‐performance  architecture  for  licensed  spectrum,  and   consists  of  two  elements  (see  Figure  2):   Cluster  Controller.    The  SmartCloud  Services  Node  is  a  cluster  controller  that  provides  traffic   aggregation  and  session  management  for  all  mobile  sessions  delivered  through  small  cells.  It  is   responsible  for  access  control,  radio  node  management,  auto  configuration,  self-­‐optimization,   interference  management,  local  data  offload,  soft-­‐handover,  and  core  network  integration.   Small  Cell.    The  SmartCloud  Radio  Node  is  a  high  performance  small  cell.    It  is  a  complete  UMTS  base   station  supporting  up  to  16  voice  and  data  users  and  is  compatible  with  3GPP  R99,  Release  5  &   Release  6  UEs.     Typical  SmartCloud  Cluster  configurations  involve  integration  with  a  mobile  operator’s  core  network  via   the  Services  Node.    In  this  case,  the  SmartCloud  Cluster  was  integrated  with  the  operator’s  commercial   core  network  and  served  users  on  existing  billable  accounts.     Figure  2:  SmartCloud  Cluster  for  Corporate  Campus  or  Hi-­‐Rise  Building  
  • 6. Small  Cell  Cluster  Case  Study                       ©  2011  SpiderCloud  Wireless,  Inc.   Page  |  6   4 Operational  Details   4.1 Installation   The  SmartCloud  Cluster  was  dimensioned  to  cover  three  floors  of  a  100,000  sq.  ft.  commercial  building   with  18  small  cells.  The  cells  were  installed  six-­‐per-­‐floor  using  the  same  cable  trays  as  the  Wi-­‐Fi   infrastructure  and  were  mounted  by  a  contractor  familiar  with  LAN  and  Wi-­‐Fi  installations.    To  control   the  building-­‐wide  cluster,  a  single  controller  was  installed  in  an  IT  server  room.    The  cells  were   connected  to  the  Services  Node  via  Power  Over  Ethernet  (PoE)  connections  via  existing  layer  2  switches.   Since  the  facility  relied  solely  on  mobile  phones  for  communication,  SpiderCloud  chose  a  high-­‐capacity   deployment  with  each  cell  covering  5000  sq.  ft.,  or  33  employees.  This  was  an  unusually  dense   configuration  –  roughly  twice  the  density  required  to  support  a  facility  with  traditional  desk  phones.   Strong  Requirement  for  Soft  Handover   The  building  featured  a  central  atrium  open  to  all  floors.    This  resulted  in  some  interesting  RF  challenges.     For  example,  once  installed,  any  cell  in  the  cluster  was  able  to  “see”  virtually  any  other  small  cell  in  the   facility.    As  a  result,  the  cluster  detected  a  large  number  of  cells,  a  high  percentage  of  which  were   measured  at  similar  power  levels.  This  made  Soft  Handover  (SHO)  a  critical  feature  to  ensure  high  call   quality.    In  addition,  SHO  enabled  cells  to  operate  with  much  less  overlap  than  a  Hard  Handover  (HHO)   system  and  reduce  cell-­‐to-­‐cell  interference.    Without  SHO,  a  small  cell  system  deployed  in  a  building   such  as  this  would  face  high  levels  of  self-­‐interference,  low  call  quality,  and  reduced  data  performance.   Rapid  Commissioning   In  this  environment,  the  cluster’s  ability  to  adapt  to  the  RF  environment  was  especially  important.     SpiderCloud’s  local  controller,  the  Services  Node,  coordinated  topology  discovery,  optimal  assignment  of   Primary  Scrambling  Codes  (PSCs),  power  tuning,  and  the  on-­‐going  optimization  of  the  cluster.    This   locally  controlled  architecture  allowed  the  Small  Cell  Cluster  to  self-­‐configure  and  startup  live  operation   in  only  45-­‐minutes,  a  commissioning  time  easily  an  order  of  magnitude  faster  than  any  other  licensed   spectrum  broadband  system  in  the  market.    Beyond  initial  commissioning,  the  cluster  also  made  use  of   live  user  UE-­‐based  measurements  for  on-­‐going  optimization.    This  allowed  the  system  to  validate   coverage  through  closed-­‐loop  measurements  by  actual  end-­‐users  of  the  system,  and  provided   optimization  for  on-­‐going  changes  in  the  environment.   4.2 Capacity   Voice  Calls   On  a  daily  basis,  the  overall  voice  call  capacity  of  the  SmartCloud  Cluster  proved  to  be  very  robust.     Compared  to  any  indoor  mobile  system  on  the  market,  the  cluster  delivered  breakthrough  voice  call   performance.    The  cluster  handled  an  average  of  3,000  or  more  voice  calls  in  typical  8  to  10  hour   workday.    A  single  day’s  performance  is  detailed  below  (see  Figure  3).  
  • 7. Small  Cell  Cluster  Case  Study                       ©  2011  SpiderCloud  Wireless,  Inc.   Page  |  7     Figure  3:  Single  Day,  Hourly  Voice  Calls     Data  Sessions   Data  sessions  were  also  handled  at  very  high  levels,  much  higher  than  can  be  accomplished  with  any   other  licensed  spectrum  indoor  system.    On  average,  the  cluster  handled  more  than  50,000  HSPA   sessions  per  workday.    A  single  day’s  performance  is  detailed  below  (see  Figure  4)     Figure  4:  Single  Day,  Hourly  Data  Sessions   9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 Total Voice Calls 78 340 609 994 1420 1785 2197 2669 2995 3172 Hourly Voice Calls 78 262 269 385 426 365 412 472 326 177 0 500 1000 1500 2000 2500 3000 3500 0 50 100 150 200 250 300 350 400 450 500 NASSessions Created Hourly Voice Calls Total&Voice&Calls& Hourly&Voice&Calls& 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 Total HSPA Sessions 2327 6267 13137 19867 26228 32117 38526 45751 50170 53568 Hourly HSPA Sessions 2327 3940 6870 6730 6361 5889 6409 7225 4419 3398 0" 10000" 20000" 30000" 40000" 50000" 60000" 0 1000 2000 3000 4000 5000 6000 7000 8000 NASSessions Created Hourly Data Sessions Total"HSPA"Sessions" Hourly"HSPA"Sessions"
  • 8. Small  Cell  Cluster  Case  Study                       ©  2011  SpiderCloud  Wireless,  Inc.   Page  |  8   4.3 User  Experience   Voice  Quality   Voice  quality  on  the  SmartCloud  Cluster  scored  high  –  in  the  range  of  3.7  using  PESQ  –  better  than  an   average  3G  macrocell  score  of  3.25,  or  a  2G  score  of  3.0.    This  was  largely  attributable  to  the  accurate   and  stable  Soft  Handover  available  throughout  the  SmartCloud  Cluster  (see  Figure  5).     Figure  5:  SmartCloud  Cluster  Voice  Quality  PESQ  Scores   Data  Performance   The  SmartCloud  Cluster  handled  high  data  loading  in  production.    Load  testing  focused  on  the  impact  of   data  loading  on  the  cluster’s  voice  quality  –  with  data  traffic  injected  on  six  simultaneous  cells  in  the   range  of  5-­‐10  Mbps  on  the  DL  and  2  Mb/s  in  the  UL.    Testing  yielded  very  high  average  DL  and  UL   performance  in  both  stationary  and  mobile  testing  –  and  in  all  cases  maintained  excellent  voice   performance.  Overall,  it  was  clear  that  an  average  of  at  least  5  Mbps  (DL+UL)  could  be  maintained   simultaneously  in  each  of  the  18  cells  in  the  building,  yielding  over  100  Mbps  of  aggregate  capacity.   4.4 Offload   Since  the  maximum  capacity  of  the  SmartCloud  Cluster  is  50  cells,  the  installed  18-­‐cell  system  was  only   operating  at  38%  of  its  design  load.    Even  so,  the  cluster  replaced  an  existing  DAS  system  that   represented  two  full  sectors  of  a  macrocell  base  station  operating  on  two  different  frequencies.    Since   the  facility’s  users  were  conducting  all  their  business  via  mobile  devices,  it  is  fair  to  characterize  the   offload  of  macrocell  traffic  as  very  significant.    Even  with  such  aggressive  utilization,  the  SmartCloud   Cluster  operated  at  a  fraction  of  its  capacity  and  still  handled  600-­‐800  users  –  often  identifying  as  many   as  1,000  unique  UEs  in  a  single  day.   Cell Density VoiceQuality PESQ Score - 3.7 SmartCloud Cluster Low Low High High PESQ Score – 3.0 Commercial GSM PESQ Score – 3.2 Commercial UMTS
  • 9. Small  Cell  Cluster  Case  Study                       ©  2011  SpiderCloud  Wireless,  Inc.   Page  |  9   5 Conclusion   Small  Cell  Cluster  Requirements   SpiderCloud’s  live  deployment  shows  that  efficient  Small  Cell  Clusters  such  as  the  SmartCloud  Cluster,   can  deliver  breakthrough  performance  when  they  meet  the  following  requirements:   Robust  Self-­‐Organizing  Network  –  The  system  must  automatically  learn  the  topology  of  the   external  and  internal  network,  intelligently  assign  cell  powers  and  PSCs,  and  easily  adapt  to   changes  in  the  network.    In  addition,  a  robust  system  must  provide  on-­‐going  self-­‐optimization   that  correlates  small  cell  data  with  measurements  collected  from  live  UEs.   Local  controller  architecture  –  To  scale,  a  small  cell  system  should  form  a  natural  cluster  to   manage  SoN  and  Soft  Handover.    Without  a  local  controller,  shared  or  hosted  systems  would   need  extensive  partitioning  to  support  self-­‐organizing  network  calculations  for  individual   facilities,  and  critical  mobility  features  such  as  Soft  Handover  would  burden  backhauls  with   significant  signaling  traffic.     High  call  capacity  and  off-­‐load  –  A  Small  Cell  Cluster  must  deliver  performance  that  significantly   off-­‐loads  a  macrocell  system.    Operators  are  seeking  Small  Cell  Clusters  that  can  add  significant   capacity  and  perform  better  than  their  current  macrocell  systems.   Soft  Handover  –  This  is  a  mandatory  feature  for  Small  Cell  Clusters.    Soft  Handover  adds  stability   in  challenging  RF  environments,  reduces  self-­‐interference,  and  yields  excellent  voice  quality.     Solutions  that  rely  solely  on  Hard  Handover  will  suffer  from  low  voice  quality  and  high  self-­‐ interference.   Competitive  Comparison   By  comparison,  the  SmartCloud  Cluster  exceeded  the  capabilities  of  two  competing  technologies,  DAS   and  Multi-­‐Femtocell  deployments,  in  several  categories  (see  Table  2).   Category   SmartCloud  Cluster   DAS   Multi-­‐Femtocell   Self-­‐Configuration   45  minutes   Weeks   Days   Non-­‐Disruptive  Install   Excellent   Poor   Good   Voice  Call  Capacity   High   High   Low   Data  Session  Capacity   High   High   Low   Voice  Quality   High   Medium   Medium   Data  Performance   High   Low   Medium   Macrocell  Offload   High   None   Medium   Table  2:  Product  Comparison      
  • 10. Small  Cell  Cluster  Case  Study                       ©  2011  SpiderCloud  Wireless,  Inc.   Page  |  10                                                                                                                                   About  SpiderCloud  Wireless,  Inc.   SpiderCloud  Wireless,  Inc.  is  a  developer  of  wireless  technologies  and  the  pioneer  of  Small  Cell  Clusters.  SpiderCloud  Wireless,  Inc.  is  privately  funded  and  is  located   at  2500  Augustine  Drive,  Suite  200,  Santa  Clara,  CA  95054.  USA.  http://www.spidercloud.com         ©2011  SpiderCloud  Wireless,  Inc. SpiderCloud  and  SmartCloud  are  registered  trademarks  of  SpiderCloud  Wireless,  Inc.  All  rights  reserved.  (v091911-­‐2).