SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
It's an interesting exercise to look back to the year 2000 to see how we approached cyber security. We just started to realize that data might be a useful currency, but for the most part, security pursued preventative avenues, such as firewalls, intrusion prevention systems, and anti-virus. With the advent of log management and security incident and event management (SIEM) solutions we started to gather gigabytes of sensor data and correlate data from different sensors to improve on their weaknesses and accelerate their strengths. But fundamentally, such solutions didn't scale that well and struggled to deliver real security insight.
Today, cybersecurity wouldn't work anymore without large scale data analytics and machine learning approaches, especially in the realm of malware classification and threat intelligence. Nonetheless, we are still just scratching the surface and learning where the real challenges are in data analytics for security.
This talk will go on a journey of big data in cybersecurity, exploring where big data has been and where it must go to make a true difference. We will look at the potential of data mining, machine learning, and artificial intelligence, as well as the boundaries of these approaches. We will also look at both the shortcomings and potential of data visualization and the human computer interface. It is critical that today's systems take into account the human expert and, most importantly, provide the right data.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires