Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Humans & Machines                     collaborating on vision                                     Pietro Perona           ...
“Collaborative vision’’ ?                                        Pietro Perona                              California Ins...
Objectives                     • Sketch new area of research                     • Sampler of initial work                ...
Plan                     • Define area (10’)                     • Presentations (50’): Perona, Geman,                     ...
DefinitionFriday, August 26, 2011
6Friday, August 26, 2011
?                          6Friday, August 26, 2011
7Friday, August 26, 2011
Friday, August 26, 2011
Friday, August 26, 2011
Friday, August 26, 2011
9Friday, August 26, 2011
Lessons:                     • Visual queries                          •   Easy for humans                          •   Di...
Unsupervised learning?                                                          11                          [Fergus et al....
Unsupervised learning?                                                          11                          [Fergus et al....
12Friday, August 26, 2011
Friday, August 26, 2011
ThroatFriday, August 26, 2011
ThroatFriday, August 26, 2011
Visual knowledge          Categorical (experts)   14   Task-oriented (practitioners)Friday, August 26, 2011
World                                                                         Ob                                   n      ...
World                                                                         Ob                                   n      ...
World                                                                         Ob                                   n      ...
World                                                                         Ob                                   n      ...
Some progress...Friday, August 26, 2011
DUCKS Waterbirds                              Mallard         American Black Duck               Canada Goose         Red N...
Multidimensional signals and annotators                                                   p(xi | zi = 1)                  ...
Multidimensional signals and annotators                                                   p(xi | zi = 1)                  ...
Multidimensional signals and annotators                                                        p(xi | zi = 1)             ...
α                      γ                     Full model                       annotators                                  ...
Is there a duck in the image?   2  xi                                                           1                         ...
Is there a duck in the image?   2  xi                                                           1                         ...
Is there a duck in the image?   2  xi                                                           1                         ...
Is there a duck in the image?   2  xi                                                           1                         ...
Is there a duck in the image?   2  xi                                                           1                         ...
Is there a duck in the image?   2  xi                                                           1                         ...
Is there a duck in the image?   2  xi                                                           1                         ...
Concluding...Friday, August 26, 2011
Collaborative vision   100%            Automation                0%             Performance   100%Friday, August 26, 2011
Collaborative vision   100%            Automation                0%             Performance   100%Friday, August 26, 2011
Collaborative vision   100%            Automation                0%             Performance   100%Friday, August 26, 2011
Collaborative vision   100%            Automation                0%             Performance   100%Friday, August 26, 2011
Collaborative vision   100%                                      +            Automation                                 A...
World                                                                         Ob                                   n      ...
New research directions             • Incremental learning             • Models of human vision, decision, attention      ...
Prochain SlideShare
Chargement dans…5
×

Fcv hum mach_perona

Livres associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir

Livres audio associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Fcv hum mach_perona

  1. 1. Humans & Machines collaborating on vision Pietro Perona California Institute of Technology NSF Workshop - Frontiers in Vision Cambridge, 23 Aug 2011Friday, August 26, 2011
  2. 2. “Collaborative vision’’ ? Pietro Perona California Institute of Technology NSF Workshop - Frontiers in Vision Cambridge, 23 Aug 2011Friday, August 26, 2011
  3. 3. Objectives • Sketch new area of research • Sampler of initial work • Drawing lessons • Brainstorm: potential, way forwardFriday, August 26, 2011
  4. 4. Plan • Define area (10’) • Presentations (50’): Perona, Geman, Grauman, Berg, Belongie • Discussion (15’)Friday, August 26, 2011
  5. 5. DefinitionFriday, August 26, 2011
  6. 6. 6Friday, August 26, 2011
  7. 7. ? 6Friday, August 26, 2011
  8. 8. 7Friday, August 26, 2011
  9. 9. Friday, August 26, 2011
  10. 10. Friday, August 26, 2011
  11. 11. Friday, August 26, 2011
  12. 12. 9Friday, August 26, 2011
  13. 13. Lessons: • Visual queries • Easy for humans • Difficult for machines • Much information is available on line • Pictures are digital dark matter • Experts not providing visual knowledge 10Friday, August 26, 2011
  14. 14. Unsupervised learning? 11 [Fergus et al., CVPR03]Friday, August 26, 2011
  15. 15. Unsupervised learning? 11 [Fergus et al., CVPR03]Friday, August 26, 2011
  16. 16. 12Friday, August 26, 2011
  17. 17. Friday, August 26, 2011
  18. 18. ThroatFriday, August 26, 2011
  19. 19. ThroatFriday, August 26, 2011
  20. 20. Visual knowledge Categorical (experts) 14 Task-oriented (practitioners)Friday, August 26, 2011
  21. 21. World Ob n ser io va at tio rv n se Ob Science, Shared Education Users expertise knowledge Experts ers sw es An eri Models Image Qu annotations Machine vision Annotators Automata scientists 15Friday, August 26, 2011
  22. 22. World Ob n ser io va at tio rv n se Ob Science, Shared Education Users expertise knowledge Experts ers sw es An eri Models Image Qu annotations Machine vision Annotators Automata scientists 15Friday, August 26, 2011
  23. 23. World Ob n ser io va at tio rv n se Ob Science, Shared Education Users expertise knowledge Experts ers sw es An eri Models Image Qu annotations Machine vision Annotators Automata scientists 15Friday, August 26, 2011
  24. 24. World Ob n ser io va at tio rv n se Ob Science, Shared Education Users expertise knowledge Experts ers sw es An eri Models Image Qu annotations Machine vision Annotators Automata scientists 15Friday, August 26, 2011
  25. 25. Some progress...Friday, August 26, 2011
  26. 26. DUCKS Waterbirds Mallard American Black Duck Canada Goose Red Necked Grebe ClutterFriday, August 26, 2011
  27. 27. Multidimensional signals and annotators p(xi | zi = 1) 2 xi 1 2 xi = (xi , xi ) 1 xi p(xi | zi = 0)Friday, August 26, 2011
  28. 28. Multidimensional signals and annotators p(xi | zi = 1) 2 xi 1 2 xi = (xi , xi ) 1 xi p(xi | zi = 0)Friday, August 26, 2011
  29. 29. Multidimensional signals and annotators p(xi | zi = 1) 2 xi 1 2 xi = (xi , xi ) 1 xi τj 1 2 wj = (wj , wj ) p(xi | zi = 0)Friday, August 26, 2011
  30. 30. α γ Full model annotators σj wj τj β θz M zi xi yij lij Ji ij images N labels |Lij | [Welinder et al., NIPS2010]Friday, August 26, 2011
  31. 31. Is there a duck in the image? 2 xi 1 xiFriday, August 26, 2011
  32. 32. Is there a duck in the image? 2 xi 1 xiFriday, August 26, 2011
  33. 33. Is there a duck in the image? 2 xi 1 xiFriday, August 26, 2011
  34. 34. Is there a duck in the image? 2 xi 1 xiFriday, August 26, 2011
  35. 35. Is there a duck in the image? 2 xi 1 xiFriday, August 26, 2011
  36. 36. Is there a duck in the image? 2 xi 1 xiFriday, August 26, 2011
  37. 37. Is there a duck in the image? 2 xi 1 xiFriday, August 26, 2011
  38. 38. Concluding...Friday, August 26, 2011
  39. 39. Collaborative vision 100% Automation 0% Performance 100%Friday, August 26, 2011
  40. 40. Collaborative vision 100% Automation 0% Performance 100%Friday, August 26, 2011
  41. 41. Collaborative vision 100% Automation 0% Performance 100%Friday, August 26, 2011
  42. 42. Collaborative vision 100% Automation 0% Performance 100%Friday, August 26, 2011
  43. 43. Collaborative vision 100% + Automation Applications Training data - Complexity Cost 0% Performance 100%Friday, August 26, 2011
  44. 44. World Ob n ser io va at tio rv n se Ob Science, Shared Education Users expertise knowledge Experts ers sw es An eri Models Image Qu annotations Machine vision Annotators Automata scientists 24Friday, August 26, 2011
  45. 45. New research directions • Incremental learning • Models of human vision, decision, attention • Systems composed of machines and humans • Performance bounds (humans, machines) • Representations (human-machine-friendly) • Extracting visual knowledge from expertsFriday, August 26, 2011

    Soyez le premier à commenter

    Identifiez-vous pour voir les commentaires

Vues

Nombre de vues

334

Sur Slideshare

0

À partir des intégrations

0

Nombre d'intégrations

3

Actions

Téléchargements

2

Partages

0

Commentaires

0

Mentions J'aime

0

×