Triangular factorization

Syed Hassan
Syed HassanLab Engineer à "UET Abbottabad"
Triangular factorization
Triangular factorization
TRIANGULAR
FACTORIZATION
By Syed Zulqadar Hassan
CIIT Abbottabad Campus
TRIANGULAR FACTORIZATION
• It involves three steps:
• Step 1 Triangular Factorization
• Step 2 Forward Substitution
• Step 3 Back Substitution
Triangular factorization
Triangular factorization
TRIANGULAR FACTORIZATION Count…
• So we can write
• We Know that
• Finally we get
TRIANGULAR FACTORIZATION Count…
ADVANTAGES
• Solution of a linear system by triangular factorization and subsequent forward
and back substitution is very popular because of the many advantages of the
method:
• Efficiency
• Ability to preserve sparsity of the matrix
Sparsity
• The fraction of zero elements (non-zero elements) in a matrix is called
the sparsity (density).
Sparsity in Power System
• Let us analyze the requirements for a 1000 node/2000 branch circuit.
• For this network, the admittance matrix Y will have approximately 5000
nonzero elements. The table of factors for this matrix will have 5000Rs
nonzero elements.
• If Rs = 2.5, then 12,500 nonzero elements need to be stored.
Sparsity in Power System Count…
• The sparsity preservation index also impacts the efficiency of the method.
• This becomes obvious by considering the fact that the forward and back
substitutions require as many multiply-adds as the number of non-zeros
entries in the table of factors.
• If Rs = 2.5, then only 12,500 multiply-adds are required in the forward and
back substitution, a small number compared with the required multiply-
adds for the operation inverse of Y.
• The inverse of Y have 10,000,000 Multiply-adds while Factorization have
900,000 Multiply-adds.
References
• Power System Modeling, Analysis and Control By A. P. Sakis Meliopoulos
(Page 18)
• https://en.wikipedia.org/wiki/Sparse_matrix
• “Triangular Factorization Method for Power Flow Analysis” by Y.Okamoto
Published in journal “Electrical Engineering in Japan” Vol 96, No 1, January
1976, pp 31-35
Triangular factorization
1 sur 14

Recommandé

Restoring and Non-Restoring division algo for CSE par
Restoring and Non-Restoring division algo for CSERestoring and Non-Restoring division algo for CSE
Restoring and Non-Restoring division algo for CSEARoy10
414 vues11 diapositives
Division algorithm par
Division algorithmDivision algorithm
Division algorithmSnehalataAgasti
695 vues7 diapositives
[Data Science Meetup] Bulat Lutfullin & Yuri Gavrilin: Detecting concept drif... par
[Data Science Meetup] Bulat Lutfullin & Yuri Gavrilin: Detecting concept drif...[Data Science Meetup] Bulat Lutfullin & Yuri Gavrilin: Detecting concept drif...
[Data Science Meetup] Bulat Lutfullin & Yuri Gavrilin: Detecting concept drif...Provectus
178 vues29 diapositives
Matrices And Application Of Matrices par
Matrices And Application Of MatricesMatrices And Application Of Matrices
Matrices And Application Of Matricesmailrenuka
132K vues15 diapositives
MATRICES par
MATRICESMATRICES
MATRICESfaijmsk
15.4K vues53 diapositives
Finite difference method for charge calculation par
Finite difference method for charge calculationFinite difference method for charge calculation
Finite difference method for charge calculationSmit Shah
550 vues14 diapositives

Contenu connexe

Similaire à Triangular factorization

VCE Unit 01 (1).pptx par
VCE Unit 01 (1).pptxVCE Unit 01 (1).pptx
VCE Unit 01 (1).pptxskilljiolms
370 vues26 diapositives
Chapter 1 Solution Techniques.pdf par
Chapter 1 Solution Techniques.pdfChapter 1 Solution Techniques.pdf
Chapter 1 Solution Techniques.pdfMurugesanKarthi
59 vues83 diapositives
Design of High Performance 8,16,32-bit Vedic Multipliers using SCL PDK 180nm ... par
Design of High Performance 8,16,32-bit Vedic Multipliers using SCL PDK 180nm ...Design of High Performance 8,16,32-bit Vedic Multipliers using SCL PDK 180nm ...
Design of High Performance 8,16,32-bit Vedic Multipliers using SCL PDK 180nm ...Angel Yogi
1.9K vues42 diapositives
Implemenation of Vedic Multiplier Using Reversible Gates par
Implemenation of Vedic Multiplier Using Reversible Gates Implemenation of Vedic Multiplier Using Reversible Gates
Implemenation of Vedic Multiplier Using Reversible Gates csandit
387 vues10 diapositives
paper term SUMMARY powerpoint.pptx par
paper term SUMMARY powerpoint.pptxpaper term SUMMARY powerpoint.pptx
paper term SUMMARY powerpoint.pptxShathaTaha2
1 vue24 diapositives
Rethinking Attention with Performers par
Rethinking Attention with PerformersRethinking Attention with Performers
Rethinking Attention with PerformersJoonhyung Lee
185 vues48 diapositives

Similaire à Triangular factorization (20)

Design of High Performance 8,16,32-bit Vedic Multipliers using SCL PDK 180nm ... par Angel Yogi
Design of High Performance 8,16,32-bit Vedic Multipliers using SCL PDK 180nm ...Design of High Performance 8,16,32-bit Vedic Multipliers using SCL PDK 180nm ...
Design of High Performance 8,16,32-bit Vedic Multipliers using SCL PDK 180nm ...
Angel Yogi1.9K vues
Implemenation of Vedic Multiplier Using Reversible Gates par csandit
Implemenation of Vedic Multiplier Using Reversible Gates Implemenation of Vedic Multiplier Using Reversible Gates
Implemenation of Vedic Multiplier Using Reversible Gates
csandit387 vues
paper term SUMMARY powerpoint.pptx par ShathaTaha2
paper term SUMMARY powerpoint.pptxpaper term SUMMARY powerpoint.pptx
paper term SUMMARY powerpoint.pptx
ShathaTaha21 vue
Rethinking Attention with Performers par Joonhyung Lee
Rethinking Attention with PerformersRethinking Attention with Performers
Rethinking Attention with Performers
Joonhyung Lee185 vues
Array antenna and LMS algorithm par SHIVI JAIN
Array antenna and LMS algorithmArray antenna and LMS algorithm
Array antenna and LMS algorithm
SHIVI JAIN5.3K vues
Cerebellar Model Articulation Controller par Zahra Sadeghi
Cerebellar Model Articulation ControllerCerebellar Model Articulation Controller
Cerebellar Model Articulation Controller
Zahra Sadeghi1.9K vues
IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition... par IRJET Journal
IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...
IRJET - Design of a Low Power Serial- Parallel Multiplier with Low Transition...
IRJET Journal18 vues
Three Phase Load Balancing par IRJET Journal
Three Phase Load Balancing                                Three Phase Load Balancing
Three Phase Load Balancing
IRJET Journal128 vues
IRJET- Radix 8 Booth Encoded Interleaved Modular Multiplication par IRJET Journal
IRJET- Radix 8 Booth Encoded Interleaved Modular MultiplicationIRJET- Radix 8 Booth Encoded Interleaved Modular Multiplication
IRJET- Radix 8 Booth Encoded Interleaved Modular Multiplication
IRJET Journal24 vues
IRJET- Efficient Shift add Implementation of Fir Filter using Variable Pa... par IRJET Journal
IRJET-  	  Efficient Shift add Implementation of Fir Filter using Variable Pa...IRJET-  	  Efficient Shift add Implementation of Fir Filter using Variable Pa...
IRJET- Efficient Shift add Implementation of Fir Filter using Variable Pa...
IRJET Journal21 vues
Low-power Innovative techniques for Wearable Computing par Omar Elshal
Low-power Innovative techniques for Wearable ComputingLow-power Innovative techniques for Wearable Computing
Low-power Innovative techniques for Wearable Computing
Omar Elshal635 vues
Comparison of different controllers for the improvement of Dynamic response o... par IJERA Editor
Comparison of different controllers for the improvement of Dynamic response o...Comparison of different controllers for the improvement of Dynamic response o...
Comparison of different controllers for the improvement of Dynamic response o...
IJERA Editor277 vues

Dernier

EILO EXCURSION PROGRAMME 2023 par
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023info33492
181 vues40 diapositives
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023 par
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023A Guide to Applying for the Wells Mountain Initiative Scholarship 2023
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023Excellence Foundation for South Sudan
79 vues26 diapositives
Mineral nutrition and Fertilizer use of Cashew par
 Mineral nutrition and Fertilizer use of Cashew Mineral nutrition and Fertilizer use of Cashew
Mineral nutrition and Fertilizer use of CashewAruna Srikantha Jayawardana
53 vues107 diapositives
SURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptx par
SURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptxSURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptx
SURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptxNiranjan Chavan
43 vues54 diapositives
Jibachha publishing Textbook.docx par
Jibachha publishing Textbook.docxJibachha publishing Textbook.docx
Jibachha publishing Textbook.docxDrJibachhaSahVetphys
54 vues14 diapositives
Papal.pdf par
Papal.pdfPapal.pdf
Papal.pdfMariaKenney3
57 vues24 diapositives

Dernier(20)

EILO EXCURSION PROGRAMME 2023 par info33492
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023
info33492181 vues
SURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptx par Niranjan Chavan
SURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptxSURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptx
SURGICAL MANAGEMENT OF CERVICAL CANCER DR. NN CHAVAN 28102023.pptx
Niranjan Chavan43 vues
Career Building in AI - Technologies, Trends and Opportunities par WebStackAcademy
Career Building in AI - Technologies, Trends and OpportunitiesCareer Building in AI - Technologies, Trends and Opportunities
Career Building in AI - Technologies, Trends and Opportunities
WebStackAcademy41 vues
INT-244 Topic 6b Confucianism par S Meyer
INT-244 Topic 6b ConfucianismINT-244 Topic 6b Confucianism
INT-244 Topic 6b Confucianism
S Meyer44 vues
Create a Structure in VBNet.pptx par Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P82 vues
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE... par Nguyen Thanh Tu Collection
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...
Narration lesson plan par TARIQ KHAN
Narration lesson planNarration lesson plan
Narration lesson plan
TARIQ KHAN69 vues
11.30.23A Poverty and Inequality in America.pptx par mary850239
11.30.23A Poverty and Inequality in America.pptx11.30.23A Poverty and Inequality in America.pptx
11.30.23A Poverty and Inequality in America.pptx
mary85023986 vues
Retail Store Scavenger Hunt.pptx par jmurphy154
Retail Store Scavenger Hunt.pptxRetail Store Scavenger Hunt.pptx
Retail Store Scavenger Hunt.pptx
jmurphy15452 vues
The Accursed House by Émile Gaboriau par DivyaSheta
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile Gaboriau
DivyaSheta246 vues

Triangular factorization

  • 3. TRIANGULAR FACTORIZATION By Syed Zulqadar Hassan CIIT Abbottabad Campus
  • 4. TRIANGULAR FACTORIZATION • It involves three steps: • Step 1 Triangular Factorization • Step 2 Forward Substitution • Step 3 Back Substitution
  • 7. TRIANGULAR FACTORIZATION Count… • So we can write • We Know that
  • 8. • Finally we get TRIANGULAR FACTORIZATION Count…
  • 9. ADVANTAGES • Solution of a linear system by triangular factorization and subsequent forward and back substitution is very popular because of the many advantages of the method: • Efficiency • Ability to preserve sparsity of the matrix
  • 10. Sparsity • The fraction of zero elements (non-zero elements) in a matrix is called the sparsity (density).
  • 11. Sparsity in Power System • Let us analyze the requirements for a 1000 node/2000 branch circuit. • For this network, the admittance matrix Y will have approximately 5000 nonzero elements. The table of factors for this matrix will have 5000Rs nonzero elements. • If Rs = 2.5, then 12,500 nonzero elements need to be stored.
  • 12. Sparsity in Power System Count… • The sparsity preservation index also impacts the efficiency of the method. • This becomes obvious by considering the fact that the forward and back substitutions require as many multiply-adds as the number of non-zeros entries in the table of factors. • If Rs = 2.5, then only 12,500 multiply-adds are required in the forward and back substitution, a small number compared with the required multiply- adds for the operation inverse of Y. • The inverse of Y have 10,000,000 Multiply-adds while Factorization have 900,000 Multiply-adds.
  • 13. References • Power System Modeling, Analysis and Control By A. P. Sakis Meliopoulos (Page 18) • https://en.wikipedia.org/wiki/Sparse_matrix • “Triangular Factorization Method for Power Flow Analysis” by Y.Okamoto Published in journal “Electrical Engineering in Japan” Vol 96, No 1, January 1976, pp 31-35