SlideShare une entreprise Scribd logo
1  sur  23
HMA Charaterization Fatigue Cracking 1
Fatigue Cracking
Senior/Graduate
HMA Course
HMA Charaterization Fatigue Cracking 2
Fatigue Cracking
3HMA Charaterization Fatigue Cracking
Mechanisms
• Traditionally considered to start at the
bottom and work up to the top
• Crack starts when tensile strain exceeds
tensile strength of mix
• When cracks visible on top, full layer
cracked
Subgrade
Base
AC Mix εt
Longitudinal pavement profile
4HMA Charaterization Fatigue Cracking
Mechanisms
• Recent observations of fatigue
cracking that starts from the top at the
outside edges of the wheel path
• Tensile stresses due to tire-pavement
interactions at surface
Subgrade
Base
AC Mix
εt
Transverse pavement profile
Transverse pavement profile
5HMA Charaterization Fatigue Cracking
Fatigue Testing
• Most commonly used
• Flexural beam
• Cantilevered beam
• Others
• Diametral fatigue
• Notched beam
6HMA Charaterization Fatigue Cracking
General Terms
• Dynamic load
• Load applied using a sinusoidal wave form
• Repeated load
• Load pulse applied then removed
• Rest period between loads
Load
Load
Time
Time
7HMA Charaterization Fatigue Cracking
Flexural Beam Fatigue Testing
• Repeated load preferred to sinusoidal to
permit stress relaxation
• Loading can be either constant stress or
constant strain
• Failure = 50% loss of stiffness (controlled
strain)
8HMA Charaterization Fatigue Cracking
Determining Failure for Constant Strain
0
0.2
0.4
0.6
0.8
1
1.2
100 1,000 10,000 100,000
Numbers of Cycles
StiffnessRatio
Failure = 0.5 Stiffness Ratio
Flexural Beam Fatigue Testing
Loading
Clamps
Clamps for
holding
beam
Test Results
Strain, ε
• Results dependent upon how test run
• Constant stress means stiffer asphalt
binders perform better
Stress, σ
Soft
Stiff
Test Results
Strain, ε
• Results dependent upon how test run
• Constant strain means softer asphalt
binders perform better
Stress, σ
Soft
Stiff
Constant Stress vs. Constant Strain
Subgrade
Base
HMA 100 mm or less
Subgrade
Base
HMA
150 mm or more
Strain at bottom of
AC layer controls
Stress controls
13HMA Charaterization Fatigue Cracking
Other Fatigue Tests
• Cantilevered beam
• Diametral
• Notched beam
Cantilevered Beam Testing
• Trapezoid beam
configuration
• Requires concrete beam
be fabricated then sawn
• Fixed at bottom, loaded in
a cantilever fashion at top
Diametral Fatigue Testing
• Repeated load (usually)
• Considered less sensitive to mix
properties than flexural
16HMA Charaterization Fatigue Cracking
Example of Test Results
0
15,000
30,000
45,000
Cycles to
Failure
20C
Test Temperature
Flexural
Trapezoid
Diametral
Reported in SHRP A-404, 1994
17HMA Charaterization Fatigue Cracking
Advanced Fatigue Topics
• Notched-beam test (C* line integral)
• Dissipated Energy
• Models for Predicting Fatigue Life
Notched Beam Testing
• C*-line integral approach
Fixed Movable
19HMA Charaterization Fatigue Cracking
Dissipated Energy
• Dissipated energy is the amount of energy
lost for each loading cycle
• Calculated from the changes in stresses
and strains for each cycle of testing
20HMA Charaterization Fatigue Cracking
Difficulties
• Research showed that dissipated energy
equations are dependent on mix variables
and conditions of testing
21HMA Charaterization Fatigue Cracking
Predicting Fatigue from
Binder and Mix Properties
• SHRP strain-dependent model
• Asphalt Institute’s DAMA Program
• University of Nottingham
• Shell
22HMA Charaterization Fatigue Cracking
SHRP Strain-Dependent Model
• Low air voids and crushed, rough-textured
aggregates
• Increase stiffness
• Increase fatigue life (constant strain)
• Indicate that asphalt binder property
information not sufficient for predicting
fatigue life
23HMA Charaterization Fatigue Cracking
QUESTIONS ?

Contenu connexe

Tendances

Q921 de2 lec6 uc v1
Q921 de2 lec6 uc v1Q921 de2 lec6 uc v1
Q921 de2 lec6 uc v1
AFATous
 
Stop criteria for proof load tests verified with field and laboratory testing...
Stop criteria for proof load tests verified with field and laboratory testing...Stop criteria for proof load tests verified with field and laboratory testing...
Stop criteria for proof load tests verified with field and laboratory testing...
Eva Lantsoght
 
Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)
Mahdi Damghani
 
Giborim prestressing protocol
Giborim prestressing protocolGiborim prestressing protocol
Giborim prestressing protocol
nahariya
 
Strength of maerials
Strength of maerialsStrength of maerials
Strength of maerials
NITIN TIWARI
 
Design of Beam for Shear
Design of Beam for ShearDesign of Beam for Shear
Design of Beam for Shear
illpa
 
Buckling test engt110
Buckling test engt110Buckling test engt110
Buckling test engt110
asghar123456
 

Tendances (20)

Q921 de2 lec6 uc v1
Q921 de2 lec6 uc v1Q921 de2 lec6 uc v1
Q921 de2 lec6 uc v1
 
Stop criteria for proof load tests verified with field and laboratory testing...
Stop criteria for proof load tests verified with field and laboratory testing...Stop criteria for proof load tests verified with field and laboratory testing...
Stop criteria for proof load tests verified with field and laboratory testing...
 
design of column ad slenderness ratio
design of column ad slenderness ratiodesign of column ad slenderness ratio
design of column ad slenderness ratio
 
Buckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresBuckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structures
 
13.1 13.3
13.1 13.313.1 13.3
13.1 13.3
 
Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)
 
Giborim prestressing protocol
Giborim prestressing protocolGiborim prestressing protocol
Giborim prestressing protocol
 
0 ne way slab
0 ne way slab0 ne way slab
0 ne way slab
 
Fatigue testing
Fatigue testingFatigue testing
Fatigue testing
 
Strength of maerials
Strength of maerialsStrength of maerials
Strength of maerials
 
Design of Beam for Shear
Design of Beam for ShearDesign of Beam for Shear
Design of Beam for Shear
 
Singly Reinforce Concrete
Singly Reinforce ConcreteSingly Reinforce Concrete
Singly Reinforce Concrete
 
Design of steel beams
Design of steel beamsDesign of steel beams
Design of steel beams
 
Fatigue rsistance test
Fatigue rsistance testFatigue rsistance test
Fatigue rsistance test
 
AITC Coupling Beam Design Procedure (20151106)
AITC Coupling Beam Design Procedure (20151106)AITC Coupling Beam Design Procedure (20151106)
AITC Coupling Beam Design Procedure (20151106)
 
Shear and diagonal tension in beams
Shear and diagonal tension in beamsShear and diagonal tension in beams
Shear and diagonal tension in beams
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Buckling test engt110
Buckling test engt110Buckling test engt110
Buckling test engt110
 
Drillstring & BHA Design
Drillstring & BHA DesignDrillstring & BHA Design
Drillstring & BHA Design
 
Axially loaded columns
Axially loaded columnsAxially loaded columns
Axially loaded columns
 

En vedette

Index properties of rocks
Index properties of rocksIndex properties of rocks
Index properties of rocks
Ali Wassan
 

En vedette (9)

Point load
Point loadPoint load
Point load
 
Uji kuat&point load test
Uji kuat&point load testUji kuat&point load test
Uji kuat&point load test
 
Uji berat titik (point load test) UNPAR
Uji berat titik (point load test) UNPARUji berat titik (point load test) UNPAR
Uji berat titik (point load test) UNPAR
 
Soil and rock for geoscientist and engineers
Soil and rock for geoscientist and engineersSoil and rock for geoscientist and engineers
Soil and rock for geoscientist and engineers
 
تجربة الضغط على نقطة Point load test 2013 full copy
تجربة الضغط على نقطة Point load test 2013 full copyتجربة الضغط على نقطة Point load test 2013 full copy
تجربة الضغط على نقطة Point load test 2013 full copy
 
Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...
Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...
Schmidt's Hammer Rebound Value Analysis for finding Uniaxial Compressive Stre...
 
Index properties of rocks
Index properties of rocksIndex properties of rocks
Index properties of rocks
 
Rock Drilling, Sampling & Testing
Rock Drilling, Sampling & TestingRock Drilling, Sampling & Testing
Rock Drilling, Sampling & Testing
 
Index properties of rocks
Index properties of rocksIndex properties of rocks
Index properties of rocks
 

Plus de Chris Yarnell

Block 33 HMA Overlays c SP 13
Block 33   HMA Overlays c SP 13Block 33   HMA Overlays c SP 13
Block 33 HMA Overlays c SP 13
Chris Yarnell
 
Block 25 Control Charts 13
Block 25   Control Charts 13Block 25   Control Charts 13
Block 25 Control Charts 13
Chris Yarnell
 
Block 24 Obtaining Samples 13
Block 24   Obtaining Samples 13Block 24   Obtaining Samples 13
Block 24 Obtaining Samples 13
Chris Yarnell
 
Block 23 Sampling - Theory 13
Block 23   Sampling - Theory 13Block 23   Sampling - Theory 13
Block 23 Sampling - Theory 13
Chris Yarnell
 
Block 22 basic concepts
Block 22   basic conceptsBlock 22   basic concepts
Block 22 basic concepts
Chris Yarnell
 
Block 21 Background 13
Block 21   Background 13Block 21   Background 13
Block 21 Background 13
Chris Yarnell
 
Block 26 Acceptance 13
Block 26   Acceptance 13Block 26   Acceptance 13
Block 26 Acceptance 13
Chris Yarnell
 
Asphalt Plant Presentation - Guest Speaker
Asphalt Plant Presentation - Guest SpeakerAsphalt Plant Presentation - Guest Speaker
Asphalt Plant Presentation - Guest Speaker
Chris Yarnell
 
Block 20 Types of Rollers 13
Block 20   Types of Rollers 13Block 20   Types of Rollers 13
Block 20 Types of Rollers 13
Chris Yarnell
 
Block 19 Compacitons Background 13
Block 19   Compacitons Background 13Block 19   Compacitons Background 13
Block 19 Compacitons Background 13
Chris Yarnell
 

Plus de Chris Yarnell (20)

Block 3 SP 14
Block 3 SP 14Block 3 SP 14
Block 3 SP 14
 
Block 5 SP 14
Block 5 SP 14Block 5 SP 14
Block 5 SP 14
 
Block 4 SP 14
Block 4 SP 14Block 4 SP 14
Block 4 SP 14
 
Block 2 SP 14
Block 2 SP 14Block 2 SP 14
Block 2 SP 14
 
Block 1 SP 14
Block 1 SP 14Block 1 SP 14
Block 1 SP 14
 
Block 6 SP 14
Block 6 SP 14Block 6 SP 14
Block 6 SP 14
 
Block 33 HMA Overlays c SP 13
Block 33   HMA Overlays c SP 13Block 33   HMA Overlays c SP 13
Block 33 HMA Overlays c SP 13
 
Block 33b SP 13
Block 33b SP 13Block 33b SP 13
Block 33b SP 13
 
Block 33a SP 13
Block 33a SP 13Block 33a SP 13
Block 33a SP 13
 
Block 32 SP 13
Block 32  SP 13Block 32  SP 13
Block 32 SP 13
 
Block 27 sp 13
Block 27 sp 13Block 27 sp 13
Block 27 sp 13
 
Block 25 Control Charts 13
Block 25   Control Charts 13Block 25   Control Charts 13
Block 25 Control Charts 13
 
Block 24 Obtaining Samples 13
Block 24   Obtaining Samples 13Block 24   Obtaining Samples 13
Block 24 Obtaining Samples 13
 
Block 23 Sampling - Theory 13
Block 23   Sampling - Theory 13Block 23   Sampling - Theory 13
Block 23 Sampling - Theory 13
 
Block 22 basic concepts
Block 22   basic conceptsBlock 22   basic concepts
Block 22 basic concepts
 
Block 21 Background 13
Block 21   Background 13Block 21   Background 13
Block 21 Background 13
 
Block 26 Acceptance 13
Block 26   Acceptance 13Block 26   Acceptance 13
Block 26 Acceptance 13
 
Asphalt Plant Presentation - Guest Speaker
Asphalt Plant Presentation - Guest SpeakerAsphalt Plant Presentation - Guest Speaker
Asphalt Plant Presentation - Guest Speaker
 
Block 20 Types of Rollers 13
Block 20   Types of Rollers 13Block 20   Types of Rollers 13
Block 20 Types of Rollers 13
 
Block 19 Compacitons Background 13
Block 19   Compacitons Background 13Block 19   Compacitons Background 13
Block 19 Compacitons Background 13
 

Dernier

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 

Dernier (20)

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 

Block 29 SP 13

  • 1. HMA Charaterization Fatigue Cracking 1 Fatigue Cracking Senior/Graduate HMA Course
  • 2. HMA Charaterization Fatigue Cracking 2 Fatigue Cracking
  • 3. 3HMA Charaterization Fatigue Cracking Mechanisms • Traditionally considered to start at the bottom and work up to the top • Crack starts when tensile strain exceeds tensile strength of mix • When cracks visible on top, full layer cracked Subgrade Base AC Mix εt Longitudinal pavement profile
  • 4. 4HMA Charaterization Fatigue Cracking Mechanisms • Recent observations of fatigue cracking that starts from the top at the outside edges of the wheel path • Tensile stresses due to tire-pavement interactions at surface Subgrade Base AC Mix εt Transverse pavement profile Transverse pavement profile
  • 5. 5HMA Charaterization Fatigue Cracking Fatigue Testing • Most commonly used • Flexural beam • Cantilevered beam • Others • Diametral fatigue • Notched beam
  • 6. 6HMA Charaterization Fatigue Cracking General Terms • Dynamic load • Load applied using a sinusoidal wave form • Repeated load • Load pulse applied then removed • Rest period between loads Load Load Time Time
  • 7. 7HMA Charaterization Fatigue Cracking Flexural Beam Fatigue Testing • Repeated load preferred to sinusoidal to permit stress relaxation • Loading can be either constant stress or constant strain • Failure = 50% loss of stiffness (controlled strain)
  • 8. 8HMA Charaterization Fatigue Cracking Determining Failure for Constant Strain 0 0.2 0.4 0.6 0.8 1 1.2 100 1,000 10,000 100,000 Numbers of Cycles StiffnessRatio Failure = 0.5 Stiffness Ratio
  • 9. Flexural Beam Fatigue Testing Loading Clamps Clamps for holding beam
  • 10. Test Results Strain, ε • Results dependent upon how test run • Constant stress means stiffer asphalt binders perform better Stress, σ Soft Stiff
  • 11. Test Results Strain, ε • Results dependent upon how test run • Constant strain means softer asphalt binders perform better Stress, σ Soft Stiff
  • 12. Constant Stress vs. Constant Strain Subgrade Base HMA 100 mm or less Subgrade Base HMA 150 mm or more Strain at bottom of AC layer controls Stress controls
  • 13. 13HMA Charaterization Fatigue Cracking Other Fatigue Tests • Cantilevered beam • Diametral • Notched beam
  • 14. Cantilevered Beam Testing • Trapezoid beam configuration • Requires concrete beam be fabricated then sawn • Fixed at bottom, loaded in a cantilever fashion at top
  • 15. Diametral Fatigue Testing • Repeated load (usually) • Considered less sensitive to mix properties than flexural
  • 16. 16HMA Charaterization Fatigue Cracking Example of Test Results 0 15,000 30,000 45,000 Cycles to Failure 20C Test Temperature Flexural Trapezoid Diametral Reported in SHRP A-404, 1994
  • 17. 17HMA Charaterization Fatigue Cracking Advanced Fatigue Topics • Notched-beam test (C* line integral) • Dissipated Energy • Models for Predicting Fatigue Life
  • 18. Notched Beam Testing • C*-line integral approach Fixed Movable
  • 19. 19HMA Charaterization Fatigue Cracking Dissipated Energy • Dissipated energy is the amount of energy lost for each loading cycle • Calculated from the changes in stresses and strains for each cycle of testing
  • 20. 20HMA Charaterization Fatigue Cracking Difficulties • Research showed that dissipated energy equations are dependent on mix variables and conditions of testing
  • 21. 21HMA Charaterization Fatigue Cracking Predicting Fatigue from Binder and Mix Properties • SHRP strain-dependent model • Asphalt Institute’s DAMA Program • University of Nottingham • Shell
  • 22. 22HMA Charaterization Fatigue Cracking SHRP Strain-Dependent Model • Low air voids and crushed, rough-textured aggregates • Increase stiffness • Increase fatigue life (constant strain) • Indicate that asphalt binder property information not sufficient for predicting fatigue life
  • 23. 23HMA Charaterization Fatigue Cracking QUESTIONS ?

Notes de l'éditeur

  1. References: Asphalt Institute. Computer Program DAMA: Pavement Structural Analysis Using Multi-Layered Elastic Theory Users Manual. 1984. Asphalt Research Program, Institute of Transportation Studies, University of California, Berkeley. Fatigue Response of Asphalt-Aggregate Mixes. Strategic Highway Research Program Report SHRP-A-404, National Research Council, Washington, D.C. 1994. Judycki, J. Comparison of Fatigue Criteria for Flexible and Semi-Rigid Pavements. Proceedings, Eighth International Conference on Asphalt Pavements, Seattle Washington. Aug. 10-14, 1997.) Myers, L.A., Roque, R., and Ruth, B.R. Mechanisms of Surface-Initiated Longitudinal Wheel Path Cracks in High-Type Bituminous Pavements. Journal for the Association of Asphalt Paving Technologists. Vol. 67. 1998 pp 401-432.
  2. Historically, fatigue cracking has been considered to start at the bottom of the HMA layer. Fatigue cracks are initiated when the tensile strength of the asphalt concrete is exceeded as the pavement deflects under repeated traffic loads. These cracks continue to grow with increasing numbers of loads. When the cracks are visible on the surface of the pavement, the crack extends the full depth of the HMA layer. Once about 10% of the wheel path exhibits fatigue cracking, it will only be short time before the cracking increases to 45% in the wheel paths.
  3. (Ref: Myers, L.A., Roque, R., and Ruth, B.R. Mechanisms of Surface-Initiated Longitudinal Wheel Path Cracks in High-Type Bituminous Pavements. Journal for the Association of Asphalt Paving Technologists. Vol. 67. 1998 pp 401-432.) This type of fatigue cracking is characterized by longitudinal cracks on one or both sides of the wheel paths. The increase in the use of radial tires (from 80% in 1985 to 98% in 1996) and a corresponding increase in tire pressures of about 20 psi represent a significant change in the surface loading conditions (Florida data). It is these changes in surface conditions that appear to be responsible for increase transverse surface tensions needed to initiate tensile cracking at the tire-pavement interface. This type of fatigue cracking is relatively independent of the type of pavement structure. This indicates that a material’s solution is needed to mitigate this type of cracking.
  4. The most common fatigue test uses a simply supported beam. Dynamic loading is applied to achieve either a constant bending stress or constant bending strain over a number of loading cycles. A cantilevered trapezoidal beam has been used extensively in testing by the University of Nottingham. Similar methods of loading and analysis are used for this testing. Diametral loading can also be used to evaluate fatigue testing since this type of failure is related to the tensile properties of the HMA. However, this method is considered to be less sensitive to mixture variables than beam testing. A notched beam concept has been used with in order to fix the location of the sample failure.
  5. Any of these types of fatigue tests have been used with either dynamic loading or repeated loading methods. The most commonly used is the repeated load.
  6. For controlled-stress testing, failure is defined as the numbers of cycles needed to visibly crack the beam. Failure for the constant strain mode of testing is defined as a 50% loss of initial stiffness. Stiffness at any given cycle is computed from the tensile stress and strain at that specific cycle. The loss of stiffness with numbers of cycles is usually presented as the stiffness ratio (initial stiffness divided by the stiffness at a given cycle). When the ratio is plotted for the test results, it is easy to see when the sample fails (next slide).
  7. The first sample failed after 10,000 loading cycles while the second sample is still above the 50% reduction in stiffness limit at 100,000 cycles.
  8. The Australian fatigue unit is a small, table top device that can test beams using either dynamic or repeated loading. The picture shows a beam loaded in the frame. The clamps at either end hold the beam but are on pivot points that allow the beam to deflect. The two center clamps apply the load and are used to provide a constant moment region in the bottom of the beam (i.e., tensile stress region).
  9. Materials behave differently between constant stress and constant strain loading conditions. When constant stress is used, a stiff asphalt binder will deform very little while a softer asphalt binder will show a much greater deformation (i.e., strain). As conceptually shown in this figure, the strain induced in the softer asphalt binder mix may be very close to the failure strain and would therefore fail faster than the stiffer HMA that is being tested as strains well below failure. This would lead to the conclusion that softer asphalt binders fatigue more quickly.
  10. However, when the same test is conducted with constant strain, the stiffer asphalt binder will be tested at much higher stresses, in some cases close to the failure stress. At the same time the softer asphalt binder mixes have significantly lower stresses at the same strain level. Under these testing conditions, the softer asphalt binder mixes would appear to be the best choice to resist fatigue cracking.
  11. The selection of either constant stress or constant strain should be based on the pavement structure in which the mix will be used. When the HMA layer is less than about 100 mm (4 inches), the mode of failure will be controlled by the large strains at the bottom of the asphalt binder layer. This thickness is typical of low volume roads. When the HMA layer is more than about 150 mm (6 inches) thick, then stress will control the occurrence of fatigue cracking. This thickness is typical of high volume roadways or older pavements that are being overlayed.
  12. Beam and trapezoid beam fatigue testing are similar in many ways. Both simulate flexural stresses seen in pavements but apply uniaxial rather than triaxial stresses. Both reverse stresses (tension-compression) and neither permits the accumulation of permanent deformation with increasing numbers of loading cycles. The only reason for choosing trapezoid rather than beam fatigue testing is the researcher’s preference or local customs. Beam fatigue is typically used in the United States while trapezoid fatigue is popular in the United Kingdom.
  13. This test is simple to perform and uses typical cylindrical specimens. The state of stresses induced in the sample during testing are complex, however, the critical stresses and strains can be calculated assuming linear elastic behavior. A biaxial state of stress is present along the vertical axis with the tensile stress being reasonably constant with significantly more variability in the compressive stress. The main differences between the diametral and beam fatigue tests are that permanent deformation occurs and stress reversal is not practical in diametral testing. Diametral fatigue testing also consistently underestimates the fatigue life relative to other fatigue tests.
  14. This figure gives the student a feel for how the results from each of the fatigue tests compare for the same mix and test method variables.
  15. Laboratory determination of HMA fatigue characteristics takes a considerable amount of time before results can be obtained. Typical testing time for flexural beam fatigue for a set of three samples at each of only two stress (or strain) levels take as long as 3 weeks. In order to obtain estimates of fatigue characteristics quickly, a number of researchers have developed prediction equations for estimating the fatigue life. This section briefly presents some of these predictive equations.
  16. While used on a limited basis for some fatigue studies, researchers at the University of California, Berkeley found that the fracture mechanics approach was excessively complex and difficult. This test, while initially included in the original SHRP research, was eliminated from further study for this reason.
  17. Some of the early research indicated that there may be a unique relationship between the numbers of cycles to failure and the cumulative dissipated energy to failure. That is, the results might be independent of mix variables. Later work indicated that the results were dependent upon mix properties but independent of test methods (two- and three-point bending), temperature (10 to 40 o C [50 to 104 o F]), modes of loading (controlled stress or controlled strain), and the frequency 10 to 50 Hz) (UC Berkeley, 1994).
  18. Conclusions of the testing during the original SHRP program indicated that results were not, as previously thought, independent of the testing variables. Dissipated energy is influenced by the choice of test temperature and the mode of loading. It was found that dissipated energy is highly correlated with incremental decreases in stiffness during fatigue testing which helps explain the effects of mode of loading on mix behavior.
  19. Because of the extensive time required to obtain fatigue results, a number of researchers have developed mathematical models for predicting fatigue from more easily obtainable (in most cases) mix information. This section presents several of the more commonly used equations. The SHRP research resulted in the formulation of an equation for predicting fatigue for actual pavements. The equation constants were calibrated using both field and laboratory data. An evaluation of the SHRP model with a range of mixes indicated that fatigue life, in constant strain, was dependent on aggregate properties such as percent crushing and surface texture. Results indicated that information on the binder alone was not sufficient for predicting actual fatigue life of a pavement. The accumulation of damage is calculated in increments by month. This allows for differences in fatigue cracking due to changing combinations of temperature and traffic loadings.
  20. An evaluation of the SHRP model with a range of mixes indicated that fatigue life, in constant strain, was dependent on aggregate properties such as percent crushing and surface texture. Results indicated that information on the binder alone was not sufficient for predicting actual fatigue life of a pavement.