SlideShare une entreprise Scribd logo
1  sur  22
Early generation selection in a recurrent selection 
breeding program within a synthetic population 
– 
Using genomewide markers to speed-up the process 
Seminar on genomic selection 17/10/2014 
Tuong-Vi Cao, UMR AGAP, CIRAD-BIOS
Genomic selection based on genome-wide genotype-phenotype 
relations is a promising approach for 
breeding : 
1. to access more selection candidates (higher 
intensity of selection) and 
2. to reduce the duration of selection cycles (maximize 
genetic gain/unit time) 
This is even more interesting since molecular 
information is becoming more accessible while 
phenotypic information is becoming limiting, in terms of 
resources allocation.
The upland rice breeding program of CIAT initiated this 
approach and first results based on cross-validation within 
calibration population data) showed that it is possible to 
use such an approach but the accuracy is rather low 
globally. Some reasons are already stressed (only one 
year*location evaluation, only additive effects modelled).
My present contribution is about : 
1. the way phenotypic predictor may be defined and 
modelled to take into account dominance and 
epistatic interactions, and 
2. the way to integrate markers to reduce further the 
duration of selection cycles.
What has been done and what is the question ? 
[Ms Ms] 
1/4 
EEP 2010 
Seed increase 
through SSD 
[Ms ms] 
1/2 
[ms ms] 
1/4 
392 S1:2 progenies segregating 
for ms gene 
EEP 2010 
S0:1 progenies segregating : 
¼ [Ms Ms] + ½ [Ms ms] + ¼ [ms ms] 
pl4 
pl2 pl3 pl1 
S1:2 
DNA extraction of 8 S1:2 
plants and genotyping 
for ms locus 
EEP 2011 A 
EELL 2008 
Four synthetic populations 
segregating for ms gene : 
½ [ms ms] + ½ [ms Ms] 
MS MF 
PCT-4A PCT-4C PCT-11 
MS MF 
PCT-4B 
S0:1 
Extraction of 100 S0:1 
progenies per population 
on MF plants
What has been done and what is the question ? 
[Ms Ms] 
1/4 
EEP 2010 
Seed increase 
through SSD 
[Ms ms] 
1/2 
[ms ms] 
1/4 
392 S1:progenies segregating 
for ms gene 
EEP 2010 
S0:1 progenies segregating : 
¼ [Ms Ms] + ½ [Ms ms] + ¼ [ms ms] 
pl4 
pl2 pl3 pl1 
S1:2 
DNA extraction of 8 S1:2 
plants and genotyping 
for ms locus 
EEP 2011 A 
EELL 2008 
Four synthetic populations 
segregating for ms gene : 
½ [ms ms] + ½ [ms Ms] 
MS MF 
PCT-4A PCT-4C PCT-11 
MS MF 
PCT-4B 
S0:1 
Extraction of 100 S0:1 
progenies per population 
on MF plants 
2
What has been done and what is the question ? 
[Ms Ms] 
1/4 
[Ms ms] 
1/2 
[ms ms] 
1/4 
392 S1:2 progenies segregating 
for ms genes 
S2:3 
S2:3 
Phenotyping S2:4 
Bulk seed 
increase 
S2:3 
S2:3 
DNA extraction of 15 S2:3 
plants per progeny 
Choice of one [Ms Ms] plant 
per S1:2 progeny to constitute 
the calibration population. 
GBS genotyping to infer the genotype of 
S2 plants 
Phenotyping of S2:4 progenies to 
calibrate the model 
Bulk seed 
increase
What has been done and what is the question ? 
• The S2 population as the base population structure for 
calibration is an option because a partially fixed material: 
– is more homogenous and easier to phenotype (minimum intra-progeny 
variation and maximum between progeny variation) 
– minimizes the bias due to dominance effects. 
• However, it is time and resources consuming : 
– to produce material to calibrate the prediction model (S2 
population to be sampled, S2:3 bulks to be genotyped, S2:4 
progenies to be phenotyped) 
– to produce the breeding material until S2 generation before 
being predicted in each cycle. 
• Hence, is it possible to save time & resources through : 
– Early phenotyping for calibrating the model ? 
– Early prediction of breeding candidates ?
Genetic model 
• For simplicity, let us suppose two biallelic loci M and N, 
• Let M N 
i k 
be a genotype in S0 generation, 
M N 
j l 
• The genotypic value is 
 
A 
A 
G S  0 
     
 
D 
  
 
 
 
A 
AA 
AA 
D 
    
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AD 
DD 
ijkl 
jkl 
AD 
AD 
ikl 
AD 
ijl 
ijk 
jk 
AA 
il 
jl 
AA 
ik 
kl 
ij 
l 
k 
j 
A 
i 
ijkl 
Additive effects associated with alleles i or j of M 
locus and alleles k or l of N locus 
Dominance effects associated with M and N loci 
respectively 
Additive*additive epistasis associated with one 
allele of M locus and one allele of N locus 
Additive*dominance epistasis associated with 2 
alleles of first locus and 1 allele of second locus 
Dominance*dominance epistasis associated 
with all alleles
Genetic model 
• At meiosis, the genotype produces four gametes with 
frequencies depending on the recombination rate r, 
• If selfed, the genotype produces ten genotypes in the S1 
generation … 
Gametes and their respective frequencies 
k iNM 
1 r  l iNM 
2 
r M j Nk 
2 
r M j Nl 
2 
1 r  
2 
Gametes and their 
respective 
frequencies 
MiNk 
1  r Giikk Giikl Gijkk Gijkl 
2 
MiNl 
r 
2 
Giikl Giill Gijkl Gijll 
M j Nk 
r 
2 
Gijkk Gijkl Gjjkk Gjjkl 
M j Nl 
1  r 
2 
Gijkl Gijll Gjjkl Gjjll 
Genotypic value / Genotype
Genetic model 
• With respective frequencies shown below : 
Genotype Frequency 
Giikk ¼ (1-r)² 
Gjjll ¼ (1-r)² 
Giill ¼ r² 
Gjjkk ¼ r² 
Gijkl ½ (1-r)² 
Gijkl ½ r² 
Giikl ½ r (1-r) 
Gijkk ½ r (1-r) 
Gijll ½ r (1-r) 
Gjjkl ½ r (1-r) 
Non recombinant double homozygote genotypes 
Recombinant double homozygote genotypes 
Non recombinant double heterozygote genotype 
Recombinant double heterozygote genotype 
Partially recombinant genotypes, homozygote for 
one locus and heterozygote for the other locus
Genetic components of generation means 
• The frequencies form a vector, V1, associated with the S1 
generation : 
Genotype Frequency 
Giikk ¼ (1-r)² 
Gjjll ¼ (1-r)² 
Giill ¼ r² 
Gjjkk ¼ r² 
Gijkl V1= 
½ (1-r)² 
Gijkl ½ r² 
Giikl ½ r (1-r) 
Gijkk ½ r (1-r) 
Gijll ½ r (1-r) 
Gjjkl ½ r (1-r) 
If V2 is the vector of frequencies of the 
S2 generation, then one can find the 
relationship between V1 and V2 …
Genetic components of generation means 
• This relation is V2 = M*V1 
• It holds for any couple of 
successive generations 
(Vn+1=M*Vn). 
• M matrix is used to 
estimate genotypic 
values and genetic 
covariances between 
successive generations. 
r r 
1 0 0 0 (1 )² ² 0 0 
1 
1 
r r 
 
0 1 0 0 (1  
)² ² 0 0 
r r 
0 0 1 0 ² (1  
)² 0 0 
r r 
0 0 0 1 ² (1  
)² 0 0 
r r 
0 0 0 0 (1  
)² ² 0 0 0 0 
r r 
0 0 0 0 ² (1  
)² 0 0 0 0 
r r r r 
0 0 0 0 (1  ) (1  
) 0 0 0 
r r r r 
0 0 0 0 (1  ) (1  
) 0 0 0 
r r r r 
0 0 0 0 (1 ) (1 ) 0 0 0 
1 
2 
1 
1 
1 
1 
1 
1 
  
1 
r r r r 
2 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
2 
2 
2 
1 
1 
1 
2 
2 
2 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
2 
1 
1 
1 
2 
2 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
0 0 0 0 (1 ) (1 ) 0 0 0 
M 
  
 
Ongoing questions : 
• Is it possible to relate the frequencies of any generation (including RILs) to the 
ones of first generation directly (i.e. S0 plant or F1 cross)? 
• If yes, it is also possible to relate any generation mean and genetic covariance 
the ones of unselfed S0 plant or F1 cross ?
Genetic components of generation means 
• Thus if r = ½ (for simplicity), the genotypic mean value of S1 
M N 
progeny of a S0 plant/cross is : 
  AA 
  AA 
 
1 
     
 
 
 
 
 
 
 
 
1 
i k 
M N 
     
D 
D 
D 
1 
     
 
DD 
AD 
DD 
AD 
DD 
1 
    
 
 
 
 
1 
   
 
 
A 
A 
     
A 
1 
  AD 
   
 
DD 
DD 
AD 
D 
1 
    
 
 
D 
 
AD 
DD 
AD 
1 
• If successive generations are allowed to segregate and 
AD 
recombine until complete fixation (i.e. neither selection nor 
drift), the expected mean value of the RILs will be : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ijkl 
jjkl 
DD 
ijll 
ijkk 
iikl 
jjkk 
DD 
iill 
jjll 
DD 
iikk 
jkl 
AD 
ikl 
ijl 
ijk 
jkk 
AD 
jjk 
AD 
ill 
iil 
jll 
AD 
jjl 
AD 
ikk 
iik 
jk 
AA 
il 
jl 
AA 
ik 
ll 
kk 
jj 
D 
ii 
kl 
ij 
l 
k 
j 
A 
i 
G S 
ijkl 
4 
8 
16 
2 
4 
4 
4 
2 
1  
 
 
G S 
 
1 
     
D 
D 
D 
2 
1 
     
 
DD 
AD 
DD 
AD 
1 
    
 
 
 
  AA 
  AA 
 
1 
     
 
 
 
 
 
 
 
 
 
 
 
  
A 
A 
     
G S 
 
jjkk 
DD 
iill 
jjll 
DD 
iikk 
jkk 
AD 
jkk 
AD 
AD 
ill 
AD 
iil 
jll 
AD 
jjl 
AD 
ikk 
iik 
jk 
AA 
il 
jl 
AA 
ik 
ll 
kk 
jj 
D 
ii 
A 
l 
k 
j 
A 
i 
ijkl 
4 
2 
2 
 
ijkl 
j l
Line value concept : definition and prediction 
• Line value (LV) is the mean value of all RILs that a plant or a 
cross can produce through successive selfings (or haplo-diploïdisation). 
• LV may be predicted by any couple of successive generations : 
G 
G 
Sn Sn  
1 
• If a F1 and its F2 self are both phenotyped, then [2*GF2-GF1] 
predicts the mean value of RILs derivable from the cross. The 
genetic components may be written as follows : 
1 
G  G    A  A  A  A  D  D  D  D  AA  AA  AA  
AA 
F F i j k l ii jj kk ll ik jl il jk 
1 
AD AD AD AD AD AD AD AD 
        
1 
1 
1 
• This predictor equals the expected LV (S∞ 
1 
Gijkl) except for the DD 
terms. 
ijkl 
ijkl 
2* 
      
    
iik ikk jjl jll iil ill jkk jkk 
 DD DD      iikk jjll DD iill DD jjkk DD DD iikl ijkk DD ijll DD jjkl DD 
ijkl 
2 
4 
8 
2 
2 
2 
2 * 2 1 
        
Line value concept : definition and prediction 
• The difference in DD terms between the expected line 
value (S∞ 
Gijkl) and its prediction (2*GF2-GF1) : 
1 
–The prediction includes the quantity DD= 
which is associated with heterozygote structures. 
1 
–While the line value includes the quantity DD’= 
associated with homozygote structures. 
This means that if DD=DD’=0, then the prediction of LV 
obtained from early generations will be exactly equal to 
the expected LV (S∞ 
Gijkl). 
 iikl ijkk ijll jjkl   ijkl  DD DD DD DD DD 
2 
4 
    
1 
 DD  DD  DD  DD 
 iikk jjll iill jjkk 8
Applying LV concept to RS breeding scheme : 
advantages & specifics aspects 
• Efficient & early prediction of the potential of plants or 
crosses to produce performant inbred lines, even for traits 
with dominance and epistatic interactions. 
• In the context of the CIAT rice breeding scheme, unique S0 
plants can not be phenotyped properly, so successive 
selves can be used to construct the predictor of interest, 
which is [2 * S2Gijkl - S1Gijkl] or [2 * S3Gijkl - S2Gijkl], 
depending on the quantity of seeds needed for 
phenotyping (i.e. monolocal versus multilocal 
experimentation).
Applying LV concept to RS breeding scheme : 
advantages & specifics aspects 
• Advantages of LV predictor compared with S2:4 predictor : 
– Gain in the duration of the calibration process (1 or 2 generations) 
– Gain in the duration of a selection cycle (prediction of S0:2 
progenies instead of S2:4 progenies) 
– No bias due to dominance (as in single generation phenotyping) 
• Specific aspects to focus on : 
– Bulk multiplication of seeds is mandatory (to maintain allelic 
frequencies to be able to develop the equations) 
– The ms locus controlling male sterility is difficult to manage if 
genotyping for the locus is not available to differentiate S0 plants 
– Number of progenies to be phenotyped is halved if equal 
resources is considered (as two generations needed to be 
phenotyped)
Accelerating further the process 
using genomewide markers 
• Line value may be used as phenotype in a genomic model 
instead of single selfed progeny value. The procedure 
consists in: 
– GBS Genotyping of S0 plants, 
– Phenotyping of S1 and S2 (or S2 and S3) progenies, 
• Gain at two levels compared with S2 genotyping and S2:4 
phenotyping: 
– Calibration takes 2 generations (S1 and S2) or 3 generations (S2 
and S3) instead of 4 generations 
– Prediction takes place on S0 plants directly without multiplying 
until S2 generation
Accelerating further the process 
using genomewide markers 
Procedure when genotyping of ms locus is available : 
– Genotyping of S0 plants for ms locus 
– GBS genotyping of S0 plants that cary [Ms Ms] genotype at ms 
locus only 
– Seed increase of [Ms Ms] S0 plants until S2 or S3 generations 
– Phenotyping of S1 + S2 (or S2 + S3)
Conclusion 
This procedure optimises the GS scheme for some aspects : 
• Calibration of the model based on very early generations 
• Early prediction of the breeding population (S0). This 
maximizes the genetic gain par unit time. 
• Line value predictor are less unbiased by complex effects even 
if these may be important in early generations, in particular 
dominance
Thank you !

Contenu connexe

Tendances

Genomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingGenomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingCIMMYT
 
Beyond GWAS QTL Identification and Strategies to Increase Yield
Beyond GWAS QTL Identification and Strategies to Increase YieldBeyond GWAS QTL Identification and Strategies to Increase Yield
Beyond GWAS QTL Identification and Strategies to Increase YieldKate Barlow
 
Gutell 024.jme.1992.35.0318
Gutell 024.jme.1992.35.0318Gutell 024.jme.1992.35.0318
Gutell 024.jme.1992.35.0318Robin Gutell
 
Marker-assisted Selection (MAS) in fruit crops
Marker-assisted Selection (MAS) in fruit cropsMarker-assisted Selection (MAS) in fruit crops
Marker-assisted Selection (MAS) in fruit crops_mk_ saini
 
Alien introgression in Crop Improvement-New insights
Alien introgression in Crop Improvement-New insightsAlien introgression in Crop Improvement-New insights
Alien introgression in Crop Improvement-New insightsasmat ara
 
Breeding for nitrogen use efficiency in cereals
Breeding for nitrogen use efficiency in cerealsBreeding for nitrogen use efficiency in cereals
Breeding for nitrogen use efficiency in cerealsSachin kumar H M
 
Biparental mating design
Biparental mating designBiparental mating design
Biparental mating designLokesh Gour
 

Tendances (9)

Genomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingGenomic Selection & Precision Phenotyping
Genomic Selection & Precision Phenotyping
 
Beyond GWAS QTL Identification and Strategies to Increase Yield
Beyond GWAS QTL Identification and Strategies to Increase YieldBeyond GWAS QTL Identification and Strategies to Increase Yield
Beyond GWAS QTL Identification and Strategies to Increase Yield
 
My paper
My paperMy paper
My paper
 
Gutell 024.jme.1992.35.0318
Gutell 024.jme.1992.35.0318Gutell 024.jme.1992.35.0318
Gutell 024.jme.1992.35.0318
 
Marker-assisted Selection (MAS) in fruit crops
Marker-assisted Selection (MAS) in fruit cropsMarker-assisted Selection (MAS) in fruit crops
Marker-assisted Selection (MAS) in fruit crops
 
Antibody Structure
Antibody StructureAntibody Structure
Antibody Structure
 
Alien introgression in Crop Improvement-New insights
Alien introgression in Crop Improvement-New insightsAlien introgression in Crop Improvement-New insights
Alien introgression in Crop Improvement-New insights
 
Breeding for nitrogen use efficiency in cereals
Breeding for nitrogen use efficiency in cerealsBreeding for nitrogen use efficiency in cereals
Breeding for nitrogen use efficiency in cereals
 
Biparental mating design
Biparental mating designBiparental mating design
Biparental mating design
 

Similaire à Early generation selection in an intra population recurrent selection breeding program within a synthetic population

Genomic selection in Livestock
Genomic  selection in LivestockGenomic  selection in Livestock
Genomic selection in LivestockILRI
 
Association mapping, GWAS, Mapping, natural population mapping
Association mapping, GWAS, Mapping, natural population mappingAssociation mapping, GWAS, Mapping, natural population mapping
Association mapping, GWAS, Mapping, natural population mappingMahesh Biradar
 
Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...Jamie Oaks
 
Quantitative trait loci (QTL) analysis and its applications in plant breeding
Quantitative trait loci (QTL) analysis and its applications in plant breedingQuantitative trait loci (QTL) analysis and its applications in plant breeding
Quantitative trait loci (QTL) analysis and its applications in plant breedingPGS
 
Association mapping
Association mapping Association mapping
Association mapping Preeti Kapoor
 
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013Prof. Wim Van Criekinge
 
QTL lecture for Bio4025
QTL lecture for Bio4025QTL lecture for Bio4025
QTL lecture for Bio4025DanChitwood
 
Combining co-expression and co-location for gene network inference in porcine...
Combining co-expression and co-location for gene network inference in porcine...Combining co-expression and co-location for gene network inference in porcine...
Combining co-expression and co-location for gene network inference in porcine...tuxette
 
4 factors affeting & repeatability 4.ppt
4 factors affeting & repeatability 4.ppt4 factors affeting & repeatability 4.ppt
4 factors affeting & repeatability 4.pptImran Ullah Gondal
 
Thomas Lenormand - Génétique des populations
Thomas Lenormand - Génétique des populationsThomas Lenormand - Génétique des populations
Thomas Lenormand - Génétique des populationsSeminaire MEE
 
Jiankang Wang. Principle of QTL mapping and inclusive composite interval mapp...
Jiankang Wang. Principle of QTL mapping and inclusive composite interval mapp...Jiankang Wang. Principle of QTL mapping and inclusive composite interval mapp...
Jiankang Wang. Principle of QTL mapping and inclusive composite interval mapp...FOODCROPS
 
Stability parameters for comparing varieties (eberhart and russell 1966)
Stability parameters for comparing varieties (eberhart and russell 1966)Stability parameters for comparing varieties (eberhart and russell 1966)
Stability parameters for comparing varieties (eberhart and russell 1966)Dhanuja Kumar
 

Similaire à Early generation selection in an intra population recurrent selection breeding program within a synthetic population (20)

Roslin qtl mapping
Roslin qtl mappingRoslin qtl mapping
Roslin qtl mapping
 
Genomic selection in Livestock
Genomic  selection in LivestockGenomic  selection in Livestock
Genomic selection in Livestock
 
QTL mapping for crop improvement
QTL mapping for crop improvementQTL mapping for crop improvement
QTL mapping for crop improvement
 
Association mapping, GWAS, Mapping, natural population mapping
Association mapping, GWAS, Mapping, natural population mappingAssociation mapping, GWAS, Mapping, natural population mapping
Association mapping, GWAS, Mapping, natural population mapping
 
QTL mapping.pdf
QTL mapping.pdfQTL mapping.pdf
QTL mapping.pdf
 
Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...
 
Quantitative trait loci (QTL) analysis and its applications in plant breeding
Quantitative trait loci (QTL) analysis and its applications in plant breedingQuantitative trait loci (QTL) analysis and its applications in plant breeding
Quantitative trait loci (QTL) analysis and its applications in plant breeding
 
phd-defense41
phd-defense41phd-defense41
phd-defense41
 
Association mapping
Association mapping Association mapping
Association mapping
 
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
Bioinformatica t3-scoring matrices-wim_vancriekinge_v2013
 
QTL lecture for Bio4025
QTL lecture for Bio4025QTL lecture for Bio4025
QTL lecture for Bio4025
 
Combining co-expression and co-location for gene network inference in porcine...
Combining co-expression and co-location for gene network inference in porcine...Combining co-expression and co-location for gene network inference in porcine...
Combining co-expression and co-location for gene network inference in porcine...
 
4 factors affeting & repeatability 4.ppt
4 factors affeting & repeatability 4.ppt4 factors affeting & repeatability 4.ppt
4 factors affeting & repeatability 4.ppt
 
PING
PINGPING
PING
 
Thomas Lenormand - Génétique des populations
Thomas Lenormand - Génétique des populationsThomas Lenormand - Génétique des populations
Thomas Lenormand - Génétique des populations
 
Two dependent samples (matched pairs)
Two dependent samples (matched pairs) Two dependent samples (matched pairs)
Two dependent samples (matched pairs)
 
Bioinformatics life sciences_v2015
Bioinformatics life sciences_v2015Bioinformatics life sciences_v2015
Bioinformatics life sciences_v2015
 
Jiankang Wang. Principle of QTL mapping and inclusive composite interval mapp...
Jiankang Wang. Principle of QTL mapping and inclusive composite interval mapp...Jiankang Wang. Principle of QTL mapping and inclusive composite interval mapp...
Jiankang Wang. Principle of QTL mapping and inclusive composite interval mapp...
 
Stability parameters for comparing varieties (eberhart and russell 1966)
Stability parameters for comparing varieties (eberhart and russell 1966)Stability parameters for comparing varieties (eberhart and russell 1966)
Stability parameters for comparing varieties (eberhart and russell 1966)
 
Dadad
DadadDadad
Dadad
 

Plus de CIAT

Agricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoAgricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoCIAT
 
Resumen mesas trabajo
Resumen mesas trabajoResumen mesas trabajo
Resumen mesas trabajoCIAT
 
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...CIAT
 
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...CIAT
 
El rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarEl rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarCIAT
 
Scaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeScaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeCIAT
 
Impacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaImpacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaCIAT
 
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...CIAT
 
Investigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoInvestigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoCIAT
 
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...CIAT
 
Tackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkTackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkCIAT
 
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...CIAT
 
Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...CIAT
 
Contenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoContenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoCIAT
 
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasTécnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasCIAT
 
Cacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCIAT
 
Aportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoAportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoCIAT
 
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCIAT
 
Investigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoInvestigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoCIAT
 
Avances de investigación en cd en cacao
Avances de investigación en cd en cacaoAvances de investigación en cd en cacao
Avances de investigación en cd en cacaoCIAT
 

Plus de CIAT (20)

Agricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoAgricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio Climático
 
Resumen mesas trabajo
Resumen mesas trabajoResumen mesas trabajo
Resumen mesas trabajo
 
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
 
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
 
El rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarEl rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogar
 
Scaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeScaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate change
 
Impacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaImpacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República Dominicana
 
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
 
Investigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoInvestigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao Colombiano
 
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
 
Tackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkTackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to fork
 
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
 
Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...
 
Contenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoContenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacao
 
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasTécnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
 
Cacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn State
 
Aportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoAportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacao
 
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
 
Investigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoInvestigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao Colombiano
 
Avances de investigación en cd en cacao
Avances de investigación en cd en cacaoAvances de investigación en cd en cacao
Avances de investigación en cd en cacao
 

Dernier

Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》rnrncn29
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx023NiWayanAnggiSriWa
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)itwameryclare
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptJoemSTuliba
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 

Dernier (20)

Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.ppt
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 

Early generation selection in an intra population recurrent selection breeding program within a synthetic population

  • 1. Early generation selection in a recurrent selection breeding program within a synthetic population – Using genomewide markers to speed-up the process Seminar on genomic selection 17/10/2014 Tuong-Vi Cao, UMR AGAP, CIRAD-BIOS
  • 2. Genomic selection based on genome-wide genotype-phenotype relations is a promising approach for breeding : 1. to access more selection candidates (higher intensity of selection) and 2. to reduce the duration of selection cycles (maximize genetic gain/unit time) This is even more interesting since molecular information is becoming more accessible while phenotypic information is becoming limiting, in terms of resources allocation.
  • 3. The upland rice breeding program of CIAT initiated this approach and first results based on cross-validation within calibration population data) showed that it is possible to use such an approach but the accuracy is rather low globally. Some reasons are already stressed (only one year*location evaluation, only additive effects modelled).
  • 4. My present contribution is about : 1. the way phenotypic predictor may be defined and modelled to take into account dominance and epistatic interactions, and 2. the way to integrate markers to reduce further the duration of selection cycles.
  • 5. What has been done and what is the question ? [Ms Ms] 1/4 EEP 2010 Seed increase through SSD [Ms ms] 1/2 [ms ms] 1/4 392 S1:2 progenies segregating for ms gene EEP 2010 S0:1 progenies segregating : ¼ [Ms Ms] + ½ [Ms ms] + ¼ [ms ms] pl4 pl2 pl3 pl1 S1:2 DNA extraction of 8 S1:2 plants and genotyping for ms locus EEP 2011 A EELL 2008 Four synthetic populations segregating for ms gene : ½ [ms ms] + ½ [ms Ms] MS MF PCT-4A PCT-4C PCT-11 MS MF PCT-4B S0:1 Extraction of 100 S0:1 progenies per population on MF plants
  • 6. What has been done and what is the question ? [Ms Ms] 1/4 EEP 2010 Seed increase through SSD [Ms ms] 1/2 [ms ms] 1/4 392 S1:progenies segregating for ms gene EEP 2010 S0:1 progenies segregating : ¼ [Ms Ms] + ½ [Ms ms] + ¼ [ms ms] pl4 pl2 pl3 pl1 S1:2 DNA extraction of 8 S1:2 plants and genotyping for ms locus EEP 2011 A EELL 2008 Four synthetic populations segregating for ms gene : ½ [ms ms] + ½ [ms Ms] MS MF PCT-4A PCT-4C PCT-11 MS MF PCT-4B S0:1 Extraction of 100 S0:1 progenies per population on MF plants 2
  • 7. What has been done and what is the question ? [Ms Ms] 1/4 [Ms ms] 1/2 [ms ms] 1/4 392 S1:2 progenies segregating for ms genes S2:3 S2:3 Phenotyping S2:4 Bulk seed increase S2:3 S2:3 DNA extraction of 15 S2:3 plants per progeny Choice of one [Ms Ms] plant per S1:2 progeny to constitute the calibration population. GBS genotyping to infer the genotype of S2 plants Phenotyping of S2:4 progenies to calibrate the model Bulk seed increase
  • 8. What has been done and what is the question ? • The S2 population as the base population structure for calibration is an option because a partially fixed material: – is more homogenous and easier to phenotype (minimum intra-progeny variation and maximum between progeny variation) – minimizes the bias due to dominance effects. • However, it is time and resources consuming : – to produce material to calibrate the prediction model (S2 population to be sampled, S2:3 bulks to be genotyped, S2:4 progenies to be phenotyped) – to produce the breeding material until S2 generation before being predicted in each cycle. • Hence, is it possible to save time & resources through : – Early phenotyping for calibrating the model ? – Early prediction of breeding candidates ?
  • 9. Genetic model • For simplicity, let us suppose two biallelic loci M and N, • Let M N i k be a genotype in S0 generation, M N j l • The genotypic value is  A A G S  0       D      A AA AA D                         AD DD ijkl jkl AD AD ikl AD ijl ijk jk AA il jl AA ik kl ij l k j A i ijkl Additive effects associated with alleles i or j of M locus and alleles k or l of N locus Dominance effects associated with M and N loci respectively Additive*additive epistasis associated with one allele of M locus and one allele of N locus Additive*dominance epistasis associated with 2 alleles of first locus and 1 allele of second locus Dominance*dominance epistasis associated with all alleles
  • 10. Genetic model • At meiosis, the genotype produces four gametes with frequencies depending on the recombination rate r, • If selfed, the genotype produces ten genotypes in the S1 generation … Gametes and their respective frequencies k iNM 1 r  l iNM 2 r M j Nk 2 r M j Nl 2 1 r  2 Gametes and their respective frequencies MiNk 1  r Giikk Giikl Gijkk Gijkl 2 MiNl r 2 Giikl Giill Gijkl Gijll M j Nk r 2 Gijkk Gijkl Gjjkk Gjjkl M j Nl 1  r 2 Gijkl Gijll Gjjkl Gjjll Genotypic value / Genotype
  • 11. Genetic model • With respective frequencies shown below : Genotype Frequency Giikk ¼ (1-r)² Gjjll ¼ (1-r)² Giill ¼ r² Gjjkk ¼ r² Gijkl ½ (1-r)² Gijkl ½ r² Giikl ½ r (1-r) Gijkk ½ r (1-r) Gijll ½ r (1-r) Gjjkl ½ r (1-r) Non recombinant double homozygote genotypes Recombinant double homozygote genotypes Non recombinant double heterozygote genotype Recombinant double heterozygote genotype Partially recombinant genotypes, homozygote for one locus and heterozygote for the other locus
  • 12. Genetic components of generation means • The frequencies form a vector, V1, associated with the S1 generation : Genotype Frequency Giikk ¼ (1-r)² Gjjll ¼ (1-r)² Giill ¼ r² Gjjkk ¼ r² Gijkl V1= ½ (1-r)² Gijkl ½ r² Giikl ½ r (1-r) Gijkk ½ r (1-r) Gijll ½ r (1-r) Gjjkl ½ r (1-r) If V2 is the vector of frequencies of the S2 generation, then one can find the relationship between V1 and V2 …
  • 13. Genetic components of generation means • This relation is V2 = M*V1 • It holds for any couple of successive generations (Vn+1=M*Vn). • M matrix is used to estimate genotypic values and genetic covariances between successive generations. r r 1 0 0 0 (1 )² ² 0 0 1 1 r r  0 1 0 0 (1  )² ² 0 0 r r 0 0 1 0 ² (1  )² 0 0 r r 0 0 0 1 ² (1  )² 0 0 r r 0 0 0 0 (1  )² ² 0 0 0 0 r r 0 0 0 0 ² (1  )² 0 0 0 0 r r r r 0 0 0 0 (1  ) (1  ) 0 0 0 r r r r 0 0 0 0 (1  ) (1  ) 0 0 0 r r r r 0 0 0 0 (1 ) (1 ) 0 0 0 1 2 1 1 1 1 1 1   1 r r r r 2 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 1 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 (1 ) (1 ) 0 0 0 M    Ongoing questions : • Is it possible to relate the frequencies of any generation (including RILs) to the ones of first generation directly (i.e. S0 plant or F1 cross)? • If yes, it is also possible to relate any generation mean and genetic covariance the ones of unselfed S0 plant or F1 cross ?
  • 14. Genetic components of generation means • Thus if r = ½ (for simplicity), the genotypic mean value of S1 M N progeny of a S0 plant/cross is :   AA   AA  1              1 i k M N      D D D 1       DD AD DD AD DD 1         1      A A      A 1   AD     DD DD AD D 1       D  AD DD AD 1 • If successive generations are allowed to segregate and AD recombine until complete fixation (i.e. neither selection nor drift), the expected mean value of the RILs will be :                 ijkl jjkl DD ijll ijkk iikl jjkk DD iill jjll DD iikk jkl AD ikl ijl ijk jkk AD jjk AD ill iil jll AD jjl AD ikk iik jk AA il jl AA ik ll kk jj D ii kl ij l k j A i G S ijkl 4 8 16 2 4 4 4 2 1    G S  1      D D D 2 1       DD AD DD AD 1          AA   AA  1                   A A      G S  jjkk DD iill jjll DD iikk jkk AD jkk AD AD ill AD iil jll AD jjl AD ikk iik jk AA il jl AA ik ll kk jj D ii A l k j A i ijkl 4 2 2  ijkl j l
  • 15. Line value concept : definition and prediction • Line value (LV) is the mean value of all RILs that a plant or a cross can produce through successive selfings (or haplo-diploïdisation). • LV may be predicted by any couple of successive generations : G G Sn Sn  1 • If a F1 and its F2 self are both phenotyped, then [2*GF2-GF1] predicts the mean value of RILs derivable from the cross. The genetic components may be written as follows : 1 G  G    A  A  A  A  D  D  D  D  AA  AA  AA  AA F F i j k l ii jj kk ll ik jl il jk 1 AD AD AD AD AD AD AD AD         1 1 1 • This predictor equals the expected LV (S∞ 1 Gijkl) except for the DD terms. ijkl ijkl 2*           iik ikk jjl jll iil ill jkk jkk  DD DD      iikk jjll DD iill DD jjkk DD DD iikl ijkk DD ijll DD jjkl DD ijkl 2 4 8 2 2 2 2 * 2 1         
  • 16. Line value concept : definition and prediction • The difference in DD terms between the expected line value (S∞ Gijkl) and its prediction (2*GF2-GF1) : 1 –The prediction includes the quantity DD= which is associated with heterozygote structures. 1 –While the line value includes the quantity DD’= associated with homozygote structures. This means that if DD=DD’=0, then the prediction of LV obtained from early generations will be exactly equal to the expected LV (S∞ Gijkl).  iikl ijkk ijll jjkl   ijkl  DD DD DD DD DD 2 4     1  DD  DD  DD  DD  iikk jjll iill jjkk 8
  • 17. Applying LV concept to RS breeding scheme : advantages & specifics aspects • Efficient & early prediction of the potential of plants or crosses to produce performant inbred lines, even for traits with dominance and epistatic interactions. • In the context of the CIAT rice breeding scheme, unique S0 plants can not be phenotyped properly, so successive selves can be used to construct the predictor of interest, which is [2 * S2Gijkl - S1Gijkl] or [2 * S3Gijkl - S2Gijkl], depending on the quantity of seeds needed for phenotyping (i.e. monolocal versus multilocal experimentation).
  • 18. Applying LV concept to RS breeding scheme : advantages & specifics aspects • Advantages of LV predictor compared with S2:4 predictor : – Gain in the duration of the calibration process (1 or 2 generations) – Gain in the duration of a selection cycle (prediction of S0:2 progenies instead of S2:4 progenies) – No bias due to dominance (as in single generation phenotyping) • Specific aspects to focus on : – Bulk multiplication of seeds is mandatory (to maintain allelic frequencies to be able to develop the equations) – The ms locus controlling male sterility is difficult to manage if genotyping for the locus is not available to differentiate S0 plants – Number of progenies to be phenotyped is halved if equal resources is considered (as two generations needed to be phenotyped)
  • 19. Accelerating further the process using genomewide markers • Line value may be used as phenotype in a genomic model instead of single selfed progeny value. The procedure consists in: – GBS Genotyping of S0 plants, – Phenotyping of S1 and S2 (or S2 and S3) progenies, • Gain at two levels compared with S2 genotyping and S2:4 phenotyping: – Calibration takes 2 generations (S1 and S2) or 3 generations (S2 and S3) instead of 4 generations – Prediction takes place on S0 plants directly without multiplying until S2 generation
  • 20. Accelerating further the process using genomewide markers Procedure when genotyping of ms locus is available : – Genotyping of S0 plants for ms locus – GBS genotyping of S0 plants that cary [Ms Ms] genotype at ms locus only – Seed increase of [Ms Ms] S0 plants until S2 or S3 generations – Phenotyping of S1 + S2 (or S2 + S3)
  • 21. Conclusion This procedure optimises the GS scheme for some aspects : • Calibration of the model based on very early generations • Early prediction of the breeding population (S0). This maximizes the genetic gain par unit time. • Line value predictor are less unbiased by complex effects even if these may be important in early generations, in particular dominance

Notes de l'éditeur

  1. My presentation is about reflexions and questions based on the experience of genomic selection conducted on upland rice in CIAT To begin with, I remind what has been done and try to identify some aspects that can be optimised ?