SlideShare une entreprise Scribd logo
1  sur  7
Fluid Mechanics and Thermodynamics<br />Weekly Assessed Tutorial Sheets <br />Tutor Sheets: WATS 6.<br />The WATS form a collection of weekly homework type problems in the form of out-of-class tutorial sheets. <br />Each WATS typically comprises of a couple of main questions of which each has around four/five linked supplementary questions. They were developed as part of an LTSN Engineering Mini-Project, funded at the University of Hertfordshire which aimed to develop a set of 'student unique' tutorial sheets to actively encourage and improve student participation within a first year first ‘fluid mechanics and thermodynamics’ module. Please see the accompanying Mini-Project Report “Improving student success and retention through greater participation and tackling student-unique tutorial sheets” for more information.<br />The WATS cover core Fluid Mechanics and Thermodynamics topics at first year undergraduate level. 11 tutorial sheets and their worked solutions are provided here for you to utilise in your teaching. The variables within each question can be altered so that each student answers the same question but will need to produce a unique solution.<br />FURTHER INFORMATION<br />Please see http://tinyurl.com/2wf2lfh to access the WATS Random Factor Generating Wizard. <br />There are also explanatory videos on how to use the Wizard and how to implement WATS available at http://www.youtube.com/user/MBRBLU#p/u/7/0wgC4wy1cV0 and http://www.youtube.com/user/MBRBLU#p/u/6/MGpueiPHpqk.<br />For more information on WATS, its use and impact on students please contact Mark Russell, School of Aerospace, Automotive and Design Engineering at University of Hertfordshire.<br /> <br />Fluid Mechanics and Thermodynamics<br />Weekly Assessed Tutorial Sheet 6 (WATS 6)<br />TUTOR SHEET – Data used in the Worked Solution<br />Q1. Consider the pipe and tank layout shown in figure 1. Assuming a fluid with a relative density of 1.06 flows through a 68 mm diameter pipe from the large tank to the small tank - calculate - <br />i)the velocity of the fluid flowing through the pipe (m/s) (3 marks)<br />ii)the Reynolds Number of the flow (1 mark).<br />iii)the likely nature of the flow regime i.e. laminar, transitional or turbulent(1 mark).<br />iv)the mass flow rate of fluid flowing through the pipe system (kg/s) (1 mark)<br />v)the volume flow rate of fluid flowing through the pipe system (m3/s) (1 mark).<br />Assume now that the velocity for part i) has been calculated to be 2.960 m/s calculate <br />vi)the head loss associated with the pipe line only (m) (1 mark)<br />vii)the pressure loss associated with the pipe line only (Pa) (1 mark)<br />viii)the head loss due to all the minor losses (m) (2 mark)<br />ix)the pressure loss due to all the minor losses (Pa) (1 mark)<br />x)the loss coefficient of the valve and (2 mark)<br />xi)the ratio, as a percentage, of the minor to the pipe losses.(%) (1 mark)<br />You may assume the following :<br />The friction factor associated with the interaction of the fluid and the pipe surface is 0.00600.<br />The fluids kinematic viscosity is 1.13 x 10-6 m2/s<br />The loss coefficients associated with the fluid as it leaves and enters the tanks are 0.78 and 1.02 respectively. <br />Figure 1. Drawing for Q1.<br />14.20 mPipe length 229 m1.70 mValve.Pressure loss = 33 Pa <br /> WATS 6 <br />Worked solution<br />This sheet is solved using the TUTOR data set. <br />Q1 i)the velocity of the fluid flowing through the pipe <br />The actual total head loss must equal the available head. For this case the available head is 14.2 – 1.7m = 12.5m. It is assumed that the flow of water somehow does not drain the large tank nor does it change the height of the fluid of the low tank. <br />For the system shown the actual total head loss is the sum of the head losses due to –<br />a)The exit from the large tank in-to the pipe line.<br />b)The pipe itself.<br />c)The valve and <br />d)The inlet from the pipeline into the small tank.<br />For fittings, the head loss is usually calculated via <br /> (m) <br />Where-as for straight pipe the head loss is usually calculated via<br /> (m)  <br />Collecting all the terms together allows us to write<br />Since the pressure loss of the valve is given we need to re-write this as a head loss. i.e. <br />     Writing this for the valve and collecting the student specific data gives.<br /> which is <br />  Hence <br /> = 1.72 m/s<br />ii)the Reynolds Number of the flow.<br />    In this case you are given kinematic viscosity () and not dynamic viscosity () hence <br />  because  <br />Application of student specific data gives. <br />   = 103504<br />iii)the likely nature of the flow regime i.e. laminar, transitional or turbulent.<br />For flow in pipes turbulence is likely when Re > 4000. In this case, therefore, the flow is likely to be turbulent. Note we do not say the fluid is turbulent but the flow is turbulent.<br />iv)the mass flow rate of fluid flowing through the pipe system<br />  and   therefore    i.e.  for this case <br /> = 6.62 kg/s<br />v)the volume flow rate of fluid flowing through the pipe system<br />Volume flow rate   therefore for this case<br /> = 0.00625 m3/s<br />vi)the head loss associated with the pipe line only<br /> <br /> = 36.09 m<br />vii) Pressure loss associated with the pipe only <br /> = 374931 Pa<br />viii) Head losses due to all the minor losses.<br />In this case the minor losses are derived from the exit from the tank into the pipe, the valve and the exit from the pipe into the small tank. Remembering <br />For tank to pipe and pipe to tank losses.<br /> = 0.804m<br />For the valve<br />=  0.0032m<br />Therefore total minor losses = 0.804 + 0.003 = 0.807 m<br />ix) Pressure losses due to all the minor losses.<br /> therefore <br /> = 8344 Pa<br />x)the loss coefficient of the valve.<br />Recall the minor head losses, (i.e. fittings etc), are found via - <br /> or in terms of pressure loss is <br /> writing for the loss coefficient () gives <br />   Which, using the data, gives, <br />  = 0.0071<br />xi)The ratio, as a percentage, of the minor to the pipe losses.<br />The minor losses = 8344 Pa<br />The pipe losses = 374931Pa<br />Hence the minor losses to the pipe losses =  = 0.0225 which is 2.25 %<br />Hope this helps.<br />If you see any errors or can offer any suggestions for improvements then please <br />e-mail me at                 m.b.russell@herts.ac.uk<br />Credits<br />This resource was created by the University of Hertfordshire and released as an open educational resource through the Open Engineering Resources project of the HE Academy Engineering Subject Centre. The Open Engineering Resources project was funded by HEFCE and part of the JISC/HE Academy UKOER programme.<br />© University of Hertfordshire 2009<br />This work is licensed under a Creative Commons Attribution 2.0 License. <br />The name of the University of Hertfordshire, UH and the UH logo are the name and registered marks of the University of Hertfordshire. To the fullest extent permitted by law the University of Hertfordshire reserves all its rights in its name and marks which may not be used except with its written permission.<br />The JISC logo is licensed under the terms of the Creative Commons Attribution-Non-Commercial-No Derivative Works 2.0 UK: England & Wales Licence.  All reproductions must comply with the terms of that licence.<br />The HEA logo is owned by the Higher Education Academy Limited may be freely distributed and copied for educational purposes only, provided that appropriate acknowledgement is given to the Higher Education Academy as the copyright holder and original publisher.<br />
WATS 6 Fluid Mechanics and Thermodynamics- Master And Solution
WATS 6 Fluid Mechanics and Thermodynamics- Master And Solution
WATS 6 Fluid Mechanics and Thermodynamics- Master And Solution
WATS 6 Fluid Mechanics and Thermodynamics- Master And Solution
WATS 6 Fluid Mechanics and Thermodynamics- Master And Solution
WATS 6 Fluid Mechanics and Thermodynamics- Master And Solution

Contenu connexe

En vedette

Professional Development: Distance Learning Opportunities (Museums, Science C...
Professional Development: Distance Learning Opportunities (Museums, Science C...Professional Development: Distance Learning Opportunities (Museums, Science C...
Professional Development: Distance Learning Opportunities (Museums, Science C...Sheena Nyros M.A.
 
WATS 8 (1-50) Fluid Mechanics and Thermodynamics
WATS 8 (1-50) Fluid Mechanics and ThermodynamicsWATS 8 (1-50) Fluid Mechanics and Thermodynamics
WATS 8 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
Uu no 43_th_2007 perpustakaan
Uu no 43_th_2007 perpustakaanUu no 43_th_2007 perpustakaan
Uu no 43_th_2007 perpustakaanAgus Sukyanto
 
SUperMe forum pa
SUperMe forum paSUperMe forum pa
SUperMe forum paDavide Zara
 
Sosyal Oyun Eğitimi-Social Media Academy
Sosyal Oyun Eğitimi-Social Media AcademySosyal Oyun Eğitimi-Social Media Academy
Sosyal Oyun Eğitimi-Social Media AcademyGamester
 
WATS 4 (1-50) Fluid Mechanics and Thermodynamics
WATS 4 (1-50) Fluid Mechanics and ThermodynamicsWATS 4 (1-50) Fluid Mechanics and Thermodynamics
WATS 4 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
Mary Kate And Ashley Olsen Powerpoint
Mary Kate And Ashley Olsen PowerpointMary Kate And Ashley Olsen Powerpoint
Mary Kate And Ashley Olsen Powerpointbelene333
 
Presentation1
Presentation1Presentation1
Presentation1jhommes5
 
Code: The Hidden Language of Computer Hardware and Software
Code: The Hidden Language of Computer Hardware and SoftwareCode: The Hidden Language of Computer Hardware and Software
Code: The Hidden Language of Computer Hardware and Softwareguestc4ec09
 

En vedette (18)

Risultati sapienza
Risultati sapienzaRisultati sapienza
Risultati sapienza
 
Professional Development: Distance Learning Opportunities (Museums, Science C...
Professional Development: Distance Learning Opportunities (Museums, Science C...Professional Development: Distance Learning Opportunities (Museums, Science C...
Professional Development: Distance Learning Opportunities (Museums, Science C...
 
Portfolio Pp
Portfolio PpPortfolio Pp
Portfolio Pp
 
WATS 8 (1-50) Fluid Mechanics and Thermodynamics
WATS 8 (1-50) Fluid Mechanics and ThermodynamicsWATS 8 (1-50) Fluid Mechanics and Thermodynamics
WATS 8 (1-50) Fluid Mechanics and Thermodynamics
 
fotos
fotosfotos
fotos
 
Uu no 43_th_2007 perpustakaan
Uu no 43_th_2007 perpustakaanUu no 43_th_2007 perpustakaan
Uu no 43_th_2007 perpustakaan
 
SUperMe forum pa
SUperMe forum paSUperMe forum pa
SUperMe forum pa
 
Nino
NinoNino
Nino
 
Scholarship Links
Scholarship LinksScholarship Links
Scholarship Links
 
Sosyal Oyun Eğitimi-Social Media Academy
Sosyal Oyun Eğitimi-Social Media AcademySosyal Oyun Eğitimi-Social Media Academy
Sosyal Oyun Eğitimi-Social Media Academy
 
Natal
NatalNatal
Natal
 
Nino
NinoNino
Nino
 
WATS 4 (1-50) Fluid Mechanics and Thermodynamics
WATS 4 (1-50) Fluid Mechanics and ThermodynamicsWATS 4 (1-50) Fluid Mechanics and Thermodynamics
WATS 4 (1-50) Fluid Mechanics and Thermodynamics
 
Mary Kate And Ashley Olsen Powerpoint
Mary Kate And Ashley Olsen PowerpointMary Kate And Ashley Olsen Powerpoint
Mary Kate And Ashley Olsen Powerpoint
 
Presentation1
Presentation1Presentation1
Presentation1
 
Culture Of Contact
Culture Of ContactCulture Of Contact
Culture Of Contact
 
FF3300 issue #3
FF3300 issue #3FF3300 issue #3
FF3300 issue #3
 
Code: The Hidden Language of Computer Hardware and Software
Code: The Hidden Language of Computer Hardware and SoftwareCode: The Hidden Language of Computer Hardware and Software
Code: The Hidden Language of Computer Hardware and Software
 

Plus de Mark Russell

Iblc10 making an existing assessment more efficient
Iblc10   making an existing assessment more efficientIblc10   making an existing assessment more efficient
Iblc10 making an existing assessment more efficientMark Russell
 
Two-Dimension Steady-State Conduction
Two-Dimension Steady-State ConductionTwo-Dimension Steady-State Conduction
Two-Dimension Steady-State ConductionMark Russell
 
WATS 9 (1-50) Fluid Mechanics and Thermodynamics
WATS 9 (1-50) Fluid Mechanics and ThermodynamicsWATS 9 (1-50) Fluid Mechanics and Thermodynamics
WATS 9 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
WATS 10 (1-50) Fluid Mechanics and Thermodynamics
WATS 10 (1-50) Fluid Mechanics and ThermodynamicsWATS 10 (1-50) Fluid Mechanics and Thermodynamics
WATS 10 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
WATS 7 (1-50) Fluid Mechanics and Thermodynamics
WATS 7 (1-50) Fluid Mechanics and ThermodynamicsWATS 7 (1-50) Fluid Mechanics and Thermodynamics
WATS 7 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
WATS 6 (1-50) Fluid Mechanics and Thermodynamics
WATS 6 (1-50) Fluid Mechanics and ThermodynamicsWATS 6 (1-50) Fluid Mechanics and Thermodynamics
WATS 6 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
WATS 5 (1-50) Fluid Mechanics and Thermodynamics
WATS 5 (1-50) Fluid Mechanics and ThermodynamicsWATS 5 (1-50) Fluid Mechanics and Thermodynamics
WATS 5 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
WATS 1 (1-50) Fluid Mechanics and Thermodynamics
WATS 1 (1-50) Fluid Mechanics and ThermodynamicsWATS 1 (1-50) Fluid Mechanics and Thermodynamics
WATS 1 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
WATS 3 (1-50) Fluid Mechanics and Thermodynamics
WATS 3 (1-50) Fluid Mechanics and ThermodynamicsWATS 3 (1-50) Fluid Mechanics and Thermodynamics
WATS 3 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 
WATS 11 (1-50) Fluid Mechanics and Thermodynamics
WATS 11 (1-50)  Fluid Mechanics and ThermodynamicsWATS 11 (1-50)  Fluid Mechanics and Thermodynamics
WATS 11 (1-50) Fluid Mechanics and ThermodynamicsMark Russell
 

Plus de Mark Russell (10)

Iblc10 making an existing assessment more efficient
Iblc10   making an existing assessment more efficientIblc10   making an existing assessment more efficient
Iblc10 making an existing assessment more efficient
 
Two-Dimension Steady-State Conduction
Two-Dimension Steady-State ConductionTwo-Dimension Steady-State Conduction
Two-Dimension Steady-State Conduction
 
WATS 9 (1-50) Fluid Mechanics and Thermodynamics
WATS 9 (1-50) Fluid Mechanics and ThermodynamicsWATS 9 (1-50) Fluid Mechanics and Thermodynamics
WATS 9 (1-50) Fluid Mechanics and Thermodynamics
 
WATS 10 (1-50) Fluid Mechanics and Thermodynamics
WATS 10 (1-50) Fluid Mechanics and ThermodynamicsWATS 10 (1-50) Fluid Mechanics and Thermodynamics
WATS 10 (1-50) Fluid Mechanics and Thermodynamics
 
WATS 7 (1-50) Fluid Mechanics and Thermodynamics
WATS 7 (1-50) Fluid Mechanics and ThermodynamicsWATS 7 (1-50) Fluid Mechanics and Thermodynamics
WATS 7 (1-50) Fluid Mechanics and Thermodynamics
 
WATS 6 (1-50) Fluid Mechanics and Thermodynamics
WATS 6 (1-50) Fluid Mechanics and ThermodynamicsWATS 6 (1-50) Fluid Mechanics and Thermodynamics
WATS 6 (1-50) Fluid Mechanics and Thermodynamics
 
WATS 5 (1-50) Fluid Mechanics and Thermodynamics
WATS 5 (1-50) Fluid Mechanics and ThermodynamicsWATS 5 (1-50) Fluid Mechanics and Thermodynamics
WATS 5 (1-50) Fluid Mechanics and Thermodynamics
 
WATS 1 (1-50) Fluid Mechanics and Thermodynamics
WATS 1 (1-50) Fluid Mechanics and ThermodynamicsWATS 1 (1-50) Fluid Mechanics and Thermodynamics
WATS 1 (1-50) Fluid Mechanics and Thermodynamics
 
WATS 3 (1-50) Fluid Mechanics and Thermodynamics
WATS 3 (1-50) Fluid Mechanics and ThermodynamicsWATS 3 (1-50) Fluid Mechanics and Thermodynamics
WATS 3 (1-50) Fluid Mechanics and Thermodynamics
 
WATS 11 (1-50) Fluid Mechanics and Thermodynamics
WATS 11 (1-50)  Fluid Mechanics and ThermodynamicsWATS 11 (1-50)  Fluid Mechanics and Thermodynamics
WATS 11 (1-50) Fluid Mechanics and Thermodynamics
 

Dernier

On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 

Dernier (20)

On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 

WATS 6 Fluid Mechanics and Thermodynamics- Master And Solution

  • 1. Fluid Mechanics and Thermodynamics<br />Weekly Assessed Tutorial Sheets <br />Tutor Sheets: WATS 6.<br />The WATS form a collection of weekly homework type problems in the form of out-of-class tutorial sheets. <br />Each WATS typically comprises of a couple of main questions of which each has around four/five linked supplementary questions. They were developed as part of an LTSN Engineering Mini-Project, funded at the University of Hertfordshire which aimed to develop a set of 'student unique' tutorial sheets to actively encourage and improve student participation within a first year first ‘fluid mechanics and thermodynamics’ module. Please see the accompanying Mini-Project Report “Improving student success and retention through greater participation and tackling student-unique tutorial sheets” for more information.<br />The WATS cover core Fluid Mechanics and Thermodynamics topics at first year undergraduate level. 11 tutorial sheets and their worked solutions are provided here for you to utilise in your teaching. The variables within each question can be altered so that each student answers the same question but will need to produce a unique solution.<br />FURTHER INFORMATION<br />Please see http://tinyurl.com/2wf2lfh to access the WATS Random Factor Generating Wizard. <br />There are also explanatory videos on how to use the Wizard and how to implement WATS available at http://www.youtube.com/user/MBRBLU#p/u/7/0wgC4wy1cV0 and http://www.youtube.com/user/MBRBLU#p/u/6/MGpueiPHpqk.<br />For more information on WATS, its use and impact on students please contact Mark Russell, School of Aerospace, Automotive and Design Engineering at University of Hertfordshire.<br /> <br />Fluid Mechanics and Thermodynamics<br />Weekly Assessed Tutorial Sheet 6 (WATS 6)<br />TUTOR SHEET – Data used in the Worked Solution<br />Q1. Consider the pipe and tank layout shown in figure 1. Assuming a fluid with a relative density of 1.06 flows through a 68 mm diameter pipe from the large tank to the small tank - calculate - <br />i)the velocity of the fluid flowing through the pipe (m/s) (3 marks)<br />ii)the Reynolds Number of the flow (1 mark).<br />iii)the likely nature of the flow regime i.e. laminar, transitional or turbulent(1 mark).<br />iv)the mass flow rate of fluid flowing through the pipe system (kg/s) (1 mark)<br />v)the volume flow rate of fluid flowing through the pipe system (m3/s) (1 mark).<br />Assume now that the velocity for part i) has been calculated to be 2.960 m/s calculate <br />vi)the head loss associated with the pipe line only (m) (1 mark)<br />vii)the pressure loss associated with the pipe line only (Pa) (1 mark)<br />viii)the head loss due to all the minor losses (m) (2 mark)<br />ix)the pressure loss due to all the minor losses (Pa) (1 mark)<br />x)the loss coefficient of the valve and (2 mark)<br />xi)the ratio, as a percentage, of the minor to the pipe losses.(%) (1 mark)<br />You may assume the following :<br />The friction factor associated with the interaction of the fluid and the pipe surface is 0.00600.<br />The fluids kinematic viscosity is 1.13 x 10-6 m2/s<br />The loss coefficients associated with the fluid as it leaves and enters the tanks are 0.78 and 1.02 respectively. <br />Figure 1. Drawing for Q1.<br />14.20 mPipe length 229 m1.70 mValve.Pressure loss = 33 Pa <br /> WATS 6 <br />Worked solution<br />This sheet is solved using the TUTOR data set. <br />Q1 i)the velocity of the fluid flowing through the pipe <br />The actual total head loss must equal the available head. For this case the available head is 14.2 – 1.7m = 12.5m. It is assumed that the flow of water somehow does not drain the large tank nor does it change the height of the fluid of the low tank. <br />For the system shown the actual total head loss is the sum of the head losses due to –<br />a)The exit from the large tank in-to the pipe line.<br />b)The pipe itself.<br />c)The valve and <br />d)The inlet from the pipeline into the small tank.<br />For fittings, the head loss is usually calculated via <br /> (m) <br />Where-as for straight pipe the head loss is usually calculated via<br /> (m) <br />Collecting all the terms together allows us to write<br />Since the pressure loss of the valve is given we need to re-write this as a head loss. i.e. <br /> Writing this for the valve and collecting the student specific data gives.<br /> which is <br /> Hence <br /> = 1.72 m/s<br />ii)the Reynolds Number of the flow.<br /> In this case you are given kinematic viscosity () and not dynamic viscosity () hence <br /> because <br />Application of student specific data gives. <br /> = 103504<br />iii)the likely nature of the flow regime i.e. laminar, transitional or turbulent.<br />For flow in pipes turbulence is likely when Re > 4000. In this case, therefore, the flow is likely to be turbulent. Note we do not say the fluid is turbulent but the flow is turbulent.<br />iv)the mass flow rate of fluid flowing through the pipe system<br /> and therefore i.e. for this case <br /> = 6.62 kg/s<br />v)the volume flow rate of fluid flowing through the pipe system<br />Volume flow rate therefore for this case<br /> = 0.00625 m3/s<br />vi)the head loss associated with the pipe line only<br /> <br /> = 36.09 m<br />vii) Pressure loss associated with the pipe only <br /> = 374931 Pa<br />viii) Head losses due to all the minor losses.<br />In this case the minor losses are derived from the exit from the tank into the pipe, the valve and the exit from the pipe into the small tank. Remembering <br />For tank to pipe and pipe to tank losses.<br /> = 0.804m<br />For the valve<br />= 0.0032m<br />Therefore total minor losses = 0.804 + 0.003 = 0.807 m<br />ix) Pressure losses due to all the minor losses.<br /> therefore <br /> = 8344 Pa<br />x)the loss coefficient of the valve.<br />Recall the minor head losses, (i.e. fittings etc), are found via - <br /> or in terms of pressure loss is <br /> writing for the loss coefficient () gives <br /> Which, using the data, gives, <br /> = 0.0071<br />xi)The ratio, as a percentage, of the minor to the pipe losses.<br />The minor losses = 8344 Pa<br />The pipe losses = 374931Pa<br />Hence the minor losses to the pipe losses = = 0.0225 which is 2.25 %<br />Hope this helps.<br />If you see any errors or can offer any suggestions for improvements then please <br />e-mail me at m.b.russell@herts.ac.uk<br />Credits<br />This resource was created by the University of Hertfordshire and released as an open educational resource through the Open Engineering Resources project of the HE Academy Engineering Subject Centre. The Open Engineering Resources project was funded by HEFCE and part of the JISC/HE Academy UKOER programme.<br />© University of Hertfordshire 2009<br />This work is licensed under a Creative Commons Attribution 2.0 License. <br />The name of the University of Hertfordshire, UH and the UH logo are the name and registered marks of the University of Hertfordshire. To the fullest extent permitted by law the University of Hertfordshire reserves all its rights in its name and marks which may not be used except with its written permission.<br />The JISC logo is licensed under the terms of the Creative Commons Attribution-Non-Commercial-No Derivative Works 2.0 UK: England & Wales Licence.  All reproductions must comply with the terms of that licence.<br />The HEA logo is owned by the Higher Education Academy Limited may be freely distributed and copied for educational purposes only, provided that appropriate acknowledgement is given to the Higher Education Academy as the copyright holder and original publisher.<br />