SlideShare une entreprise Scribd logo
1  sur  101
Characterisation of the properties use of paper by topographical analysis of its surface  Gérard Baudin et Jean-Francis Bloch - LGP2 - PAGORA Contact: mercier.christophe1@googlemail.com Christophe Mercier – September 2004
Outline    Introduction    Presentation of topics    Pertinence and interpretation of topographical parameter s    Application    Conclusion and perspectives
Paper surface  / PhD 23 May 2010 PhD defense " Paper is really not a perfect substrate for printing. A number of optical and physical imperfections, such as local variations in colour ,  optical density and  surface topography , degrade the image each in their own manner . "  Gustavson S. , 1995 "   Although print gloss has been used as a quality factor for many years, the relation between the visual apparence of a printed paper and its  surface roughness  is not well understood   "  Bélan M.C., 2001 "   It is mainly the surface properties like  roughness  and distribution of flocs that determine the quality of print. "   Johansson J.O., 2002 Printing Gloss Profile model
Acquisition technique 23 May 2010 PhD defense
Measured surface 23 May 2010 PhD defense
Outline    Introduction    Presentation of topics    Pertinence and interpretation of topographical parameters    Applications    Conclusion and perspectives
Objectives 23 May 2010 PhD defense I nterpretation of  parameters Calend e ring Offset printing   Acquisition  Treatments
Measurement methods 23 May 2010 PhD defense    Determination of spacing and acquisition length in order to obtain a statistically  representative  surface.    Raw data treatment before exploitation.
Calendering 23 May 2010 PhD defense Objectives:    Characterisation of surface variations due to successive passages in calendaring nip with : * 3D parameters, *  ray-tracing.
Offset printing 23 May 2010 PhD defense    Determination of the repartition of ink at the surface. Objectives:  Determination of surface modifications due to printing.
Pertinence and interpretation 23 May 2010 PhD defense    Discriminate different surfaces or profiles, with standard parameters . Objectives:    For quality control, detect the variations of paper surface.
Outline    Introduction    Presentation of topics    Pertinence and interpretation of topographical parameter s      Application    Conclusion and perspectives
Outline  / param e t er  interpr e tation 23 May 2010 PhD defense    Introduction   of 1 D  and 2 D   param e t er s    Interpr e tations  of  1 D et   2 D   param e t er s Conventions :  1D for profile z = f(x) 2D for surface z = f(x,y)
Characterisation techniques 23 May 2010 PhD defense [Stout et al]  1993
Functional Characterisation 1D 23 May 2010 PhD defense Notations:  P : Raw profile R: Roughness profile W: waviness profile Standard: NF EN ISO 4287, Dec 1998 Form Form +  waviness Form +  waviness  + r oughness Y X
Functional Characterisation 1D 23 May 2010 PhD defense mean line Xs i Z p Z v Z t dz(x) dx Height distribution X   Abbott curve Z i
Functional Characterisation 1D 23 May 2010 PhD defense
Characterisation techniques 23 May 2010 PhD defense [Stout et al]
Illustration of  Fourier  Transform 23 May 2010 PhD defense T1 = N/9;  T2 = N/16;  T3 = N/33;  Industrial application: wire marks N : number of points
Fourier: limitation 23 May 2010 PhD defense
Fourier limitation :  L # N.  23 May 2010 PhD defense T1 = 323 (15); T2 = 212(24); T3 = 145(34);
Power  Densit y   S pectr um 23 May 2010 PhD defense Ajouter la définition Ind e pendance  / acquisition length T1 = 323 (15) T2 = 212   (24)  T3 = 145   (34)
A utocorrelation  fu nction 23 May 2010 PhD defense Is c orrelation  l ength  a  c h aract e risti c scale for paper ? l c
2D classi cal   ch aract e risation 23 May 2010 PhD defense Me thod s   are similar to those used for p rofil e s : –   Fourier  T ransform –  Areal A utocorrelation  function  (AACF)
Fourier:  spectrum 23 May 2010 PhD defense Original surface Frequency spectrum Std
Areal A utocorrelation  function (AACF) 23 May 2010 PhD defense Normalisation: Maximum = 1
Areal A utocorrelation  function (AACF) 23 May 2010 PhD defense Simulated s urface AACF  of the simulated  surface AACF  characteristic parameter
Areal A utocorrelation  function (AACF) 23 May 2010 PhD defense Parameters:  Sal and Str Representation of central lobe
2 D Recommandation s 23 May 2010 PhD defense Five  famil ies of  param e t er s: * amplitude : 4 * spaci al   (Sal, Str,….) : 4 * hybrid : 3 *  Functional   (Bearing Area)  : 3 * Functional   (Volumes) : 3 :17 Five  famil ies of  param e t er s: * amplitude : 4 * spaci al   (Sal, Str,….) : 4 * hybrid : 3 *  Functional   (Bearing Area)  : 3 * Functional   (Volumes) : 3 :17
A mplitude  p aram e t ers 23 May 2010 PhD defense
S pa tial p aram e t er s 23 May 2010 PhD defense
H ybrid  p aram e t er s 23 May 2010 PhD defense
Outline  / param e t er  interpr e tation 23 May 2010 PhD defense    Introduction   of 1 D  and 2 D   param e t er s    Interpr e tation  of 1 D  and   2 D   param e t er s
Inter p r e tation  of 1 D param e t er s 23 May 2010 PhD defense I nfluence  of the  n u mb er   of  param e t er s  in order to  c h aract e ris e a surface  B ijectivit y   profiles  /   param e t er s Objecti ve :   P rofil e models :      three fixed  param e t er s        four   fixed  param e t er s        five   fixed  param e t er s        five   fixed  param e t er s   + Abbott  curve
Studied  (me a sure d )  p rofil e 23 May 2010 PhD defense Abbott curve
T hree  param e t er s: mod el 23 May 2010 PhD defense Lm Psm h X Z X Principle  Three  targeted parameters : Pa, Psk, PSm Overhead
Three  param e t ers : r e sults 23 May 2010 PhD defense
Four  param e t er s: mod el 23 May 2010 PhD defense L1 L4 L3 L2 Psm hv hp Z X Remar k : Sku  is  constant F our  targeted parameters :  Pq, Psk, PSm , PDq
Four  param e t er s: r e sults 23 May 2010 PhD defense
Five  param e t er s: mod e l 23 May 2010 PhD defense Five targeted parameters :  Pq, Psk, PSm, PDq,  Pku d d p 1 p 3 p 2 V 2 V 1 V 3
Five  param eters : r e sult s 23 May 2010 PhD defense Altitude d istribution
Five  param e t er s + Abbott: mod e l 23 May 2010 PhD defense Five targeted parameters :  Pq, Psk, Pku, PSm, PDq   + Abbott curve C onstant  height , variable ellipticit y
Five  param e t er s + Abbott: r e sult s 23 May 2010 PhD defense Measured profile Virtual profile
Conclusion  / profile 23 May 2010 PhD defense    Models of profiles : non-bijectivity (discrimination /  Fourier  T ransform  or  autocorr e lation   f u nction …)
Outline  / param e t er  interpr e tation 23 May 2010 PhD defense    Introduction   of 1 D  and 2 D   param e t er s    Interpr e tation  of  1 D  and   2 D   param e t er s
2D param e t er s  i nterpr e tation 23 May 2010 PhD defense S urface  m od e l s :   *  either with  rectangular  or curved e l e ments  /  fibres *  or with  sinuso idal functions Study  bijectivit y  surfaces param eters Objecti ve s:
Texture n°1: m e thod 23 May 2010 PhD defense rectangular  or curved e l e ments   +  random noise
Texture n°1: r e sults 23 May 2010 PhD defense 12 parameters are similar Overhead
Texture n°1: r es ults 23 May 2010 PhD defense Measured s urface Virtual s urface
Texture n°1bis: m e thod 23 May 2010 PhD defense
Texture n°1bis: r e sults 23 May 2010 PhD defense
Texture n°1bis: r e sults 23 May 2010 PhD defense Measured s urface  Simulated s urface 12 parameters and Abbott curve are similar !
Second method   23 May 2010 PhD defense Condition : S tructura l e l e ment  of the model surface:  fibre. Question:  Other s tructura l e l e ment s ? Surface mod e l Measured  Surface
Texture n°2: m e thod 23 May 2010 PhD defense µm µm A mplitude  d istribution  Orientation Noise
Texture n°2: r e sults 23 May 2010 PhD defense Param e t er s A mplitude  d istribution Measured s urface S imul ated   s urface
Texture n°2: r e sults 23 May 2010 PhD defense 12 parameters and Abbott curve are similar !
Texture n°2: limitations 23 May 2010 PhD defense Areal A utocorrelation  function S imul ated s urface Measured s urface
Conclusion  / surface 23 May 2010 PhD defense  Non  bijectivity parameters / surfaces      Visu al  perception
Outline    Introduction    Presentation of topics    Pertinence and interpretation of topographical parameter s    Application    calandering    offset printing    Conclusion and perspectives
Photogoniometer 23 May 2010 PhD defense Sample Source Sensor
Measured indicatrix of diffusion 23 May 2010 PhD defense
Light re fle ction 23 May 2010 PhD defense Objecti ve :    Simulation  of 1 D  and   2 D   indicatrix of diffusion Measured indicatrix of diffusion S urface   topography
Surface light reflection 23 May 2010 PhD defense Normal lobe Specular reflection  Incident ray Forescatter lobe Net reflexion 2µm Backscatter lobe
BRDF :  Bidirectionnal Reflectance Distribution Function 23 May 2010 PhD defense  3  2  1 d  i d  r X N Y ds
Reflection models 23 May 2010 PhD defense Re fle ct ion  m od e l E mpiri cal a ppro a ch Ge om e tri cal a ppro a ch P hysi cal a ppro a ch Th e or y pertubati on Th e or y  Kirchhoff Mod e l  Lamberti a n Mod e l Phong Mod e l  Ward Mod e l Torrance-Sparrow Mod el Cook  and  Torrance Mod e l Nayar Mod e l  Beckmann  and  Spizzichino
Cook and Torrance 23 May 2010 PhD defense D: surface model    Length of correlation      root mean square of altitudes
RMS + Length of correlation 23 May 2010 PhD defense Profils measure Filering Calculation rms and lc plot Measure of indicatrix /
RMS + Length of correlation 23 May 2010 PhD defense / Profils measure Filering Calculation rms and lc plot Measure of indicatrix
Ray tracing - profiles - principle 23 May 2010 PhD defense Source Mean plan  of surface
Ray tracing - profiles - simulation 23 May 2010 PhD defense Simulation of profiles  (RMS and L c ) Control of RMS and L c Trace of curve Ray-tracing / Trace of curve RMS constant
Ray tracing - profiles - simulation 23 May 2010 PhD defense L c  constant
Ray tracing – measured profiles  23 May 2010 PhD defense
Ray tracing - measured profiles  23 May 2010 PhD defense
Ray tracing - measured profiles 23 May 2010 PhD defense Examples : Measured  indicatrix of diffusion Simulated  indicatrix of reflection sb 0 sb 1*60 sb2*60 sb 3*60
Conclusion   ray tracing 23 May 2010 PhD defense    Ray-tracing: qualitative effect of calandering   RMS and correlation length  #  paper profile
Solid printing (1) 23 May 2010 PhD defense Objective:  Spatial non- uniformit y   ch aract e risation  of ink distribution ,  mean ink thickness , … Only one crater considered : Contact angle controled
Solid printing(2) 23 May 2010 PhD defense Application:
Solid printing(3) 23 May 2010 PhD defense Results: 0,5 µm 1 µm 1,5 µm
Conclusion  / Solid printing  23 May 2010 PhD defense  This model is useful to study industrial problems linked to non- homogeneous repartition of ink
Halftone printing (1) 23 May 2010 PhD defense Objective:  Determination of ink distribution in surface thanks to modification  of amplitude distribution before/after printing. % surface
Halftone printing(2) 23 May 2010 PhD defense Method:  determination of mean and RMS ink thickness repartition
Halftone printing(3) 23 May 2010 PhD defense Results:
Conclusion  / Halftone printing  23 May 2010 PhD defense  From a paper surface measurement, we obtain a number of points and a thickness of deposed ink in order to superpose the amplitude distribution of both measured and simulated printed surface.
Outline    Introduction    Presentation of topics    Pertinence and interpretation of topographical parameter s    Application    Conclusion and perspectives
Conclusion 23 May 2010 PhD defense  From a paper surface measurement, we obtain a number of points and a thickness of deposed ink in order to superpose the amplitude distribution of both measured and simulated printed surface.  Printing model are useful to study industrial problems linked to non- homogeneous repartition of ink    Ray-tracing: qualitative effect of calandering , RMS and correlation length  #  paper profile
Perspectives 23 May 2010 PhD defense  Spatial repartition of ink  Ray-tracing taking account spectral reflection    Surface models / virtual materials
Thanks 23 May 2010 PhD defense
Thanks
Questions Questions
Paramètres de volumes 23 May 2010 PhD defense
Paramètres fonctionnels 23 May 2010 PhD defense
Fourier: spectres 23 May 2010 PhD defense Surface simulée TF de la surface simulée
Classical characterisation 2D 23 May 2010 PhD defense Spectral analysis  : periodic components of the profile are pointed out using Fourier transform, due periodogramme and power spectrum density Spatial analysis  : des correlations entre une réalisation à une position x  t  et les positions précédentes sont recherchées. La fonction d’autocorrélation est utilisée l’analyse temps/fréquence  : elle a pour vocation de mettre en évidence des inhomogénéités présentes dans le profil. (/O ndelettes)
Ray tracing - surfaces - principe 23 May 2010 PhD defense
Ray tracing - surfaces - cas réels 23 May 2010 PhD defense Papier Alpastar Gloss Semi-mat Mat
Ray tracing - surfaces - cas réels 23 May 2010 PhD defense Papier Hello Gloss Semi-mat Mat
Ray tracing - surfaces - cas réels 23 May 2010 PhD defense Papier Alpanova Gloss Semi-mat Mat
Ray tracing - surfaces - cas réels 23 May 2010 PhD defense Papier Econova Gloss Semi-mat Mat
BRDF :  Bidirectionnal Reflectance Distribution Function 23 May 2010 PhD defense  3  2  1 d  i d  r X N Y
Cook and Torrance 23 May 2010 PhD defense D: surface model    Length of correlation      root mean square of altitudes
Correlation length vs Length of statistical stability 23 May 2010 PhD defense C:arteauorel_calandreiltre_5mmb3f100_5mm.pro Measured profile Correlation length Length of statistical stability

Contenu connexe

Similaire à Characterisation of the properties use of paper by topographical analysis of its surface

Something newIT-16021 and IT-16026 .pptx
Something newIT-16021 and IT-16026 .pptxSomething newIT-16021 and IT-16026 .pptx
Something newIT-16021 and IT-16026 .pptxGaziMdNoorHossain1
 
Diploma Thesis of Jagannath Nandi
Diploma Thesis of Jagannath NandiDiploma Thesis of Jagannath Nandi
Diploma Thesis of Jagannath NandiJagannath Nandi
 
Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...
Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...
Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...TELKOMNIKA JOURNAL
 
FusIon - On-Field Security and Privacy Preservation for IoT Edge Devices: Con...
FusIon - On-Field Security and Privacy Preservation for IoT Edge Devices: Con...FusIon - On-Field Security and Privacy Preservation for IoT Edge Devices: Con...
FusIon - On-Field Security and Privacy Preservation for IoT Edge Devices: Con...jamesinniss
 
Global Bilateral Symmetry Detection Using Multiscale Mirror Histograms
Global Bilateral Symmetry Detection Using Multiscale Mirror HistogramsGlobal Bilateral Symmetry Detection Using Multiscale Mirror Histograms
Global Bilateral Symmetry Detection Using Multiscale Mirror HistogramsMohamed Elawady
 
Design & simulation of dual band t shaped slot micro strip antenna for c-...
Design & simulation of dual band t shaped slot micro strip antenna for c-...Design & simulation of dual band t shaped slot micro strip antenna for c-...
Design & simulation of dual band t shaped slot micro strip antenna for c-...eSAT Journals
 
Image processing techniques applied for pitting corrosion analysis
Image processing techniques applied for pitting corrosion analysisImage processing techniques applied for pitting corrosion analysis
Image processing techniques applied for pitting corrosion analysiseSAT Journals
 
Terahertz Microstrip Patch Antenna Design for detection of Plastic Explosive ...
Terahertz Microstrip Patch Antenna Design for detection of Plastic Explosive ...Terahertz Microstrip Patch Antenna Design for detection of Plastic Explosive ...
Terahertz Microstrip Patch Antenna Design for detection of Plastic Explosive ...IRJET Journal
 
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaAdvances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaJulio Banks
 
Statistical Modelling of ft to Process Parameters in 30 NM Gate Length Finfets
Statistical Modelling of ft to Process Parameters in 30 NM Gate Length FinfetsStatistical Modelling of ft to Process Parameters in 30 NM Gate Length Finfets
Statistical Modelling of ft to Process Parameters in 30 NM Gate Length FinfetsVLSICS Design
 
Dynamic Analysis with Examples – Seismic Analysis
Dynamic Analysis with Examples – Seismic AnalysisDynamic Analysis with Examples – Seismic Analysis
Dynamic Analysis with Examples – Seismic Analysisopenseesdays
 
Final Presentation_25 May
Final Presentation_25 MayFinal Presentation_25 May
Final Presentation_25 MayKallol Barua
 
MS Thesis Presentation
MS Thesis PresentationMS Thesis Presentation
MS Thesis PresentationAli Raza
 
Field Strength Predicting Outdoor Models
Field Strength Predicting Outdoor ModelsField Strength Predicting Outdoor Models
Field Strength Predicting Outdoor ModelsIRJET Journal
 
Uniform geometrical theory of diffraction (User body shadowing)
Uniform geometrical theory of diffraction (User body shadowing)Uniform geometrical theory of diffraction (User body shadowing)
Uniform geometrical theory of diffraction (User body shadowing)Seoul National Univ in South Korea
 
An Evolutionary Method for Kinetic Energy Ammunition Optimization
An Evolutionary Method for Kinetic Energy Ammunition OptimizationAn Evolutionary Method for Kinetic Energy Ammunition Optimization
An Evolutionary Method for Kinetic Energy Ammunition OptimizationIJERA Editor
 
Modal Analysis of a Square Plate with Different Shape Cut Out
Modal Analysis of a Square Plate with Different Shape Cut OutModal Analysis of a Square Plate with Different Shape Cut Out
Modal Analysis of a Square Plate with Different Shape Cut Outijtsrd
 
Image processing techniques applied for pitting
Image processing techniques applied for pittingImage processing techniques applied for pitting
Image processing techniques applied for pittingeSAT Publishing House
 

Similaire à Characterisation of the properties use of paper by topographical analysis of its surface (20)

Api009
Api009Api009
Api009
 
Something newIT-16021 and IT-16026 .pptx
Something newIT-16021 and IT-16026 .pptxSomething newIT-16021 and IT-16026 .pptx
Something newIT-16021 and IT-16026 .pptx
 
Diploma Thesis of Jagannath Nandi
Diploma Thesis of Jagannath NandiDiploma Thesis of Jagannath Nandi
Diploma Thesis of Jagannath Nandi
 
Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...
Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...
Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sen...
 
FusIon - On-Field Security and Privacy Preservation for IoT Edge Devices: Con...
FusIon - On-Field Security and Privacy Preservation for IoT Edge Devices: Con...FusIon - On-Field Security and Privacy Preservation for IoT Edge Devices: Con...
FusIon - On-Field Security and Privacy Preservation for IoT Edge Devices: Con...
 
Global Bilateral Symmetry Detection Using Multiscale Mirror Histograms
Global Bilateral Symmetry Detection Using Multiscale Mirror HistogramsGlobal Bilateral Symmetry Detection Using Multiscale Mirror Histograms
Global Bilateral Symmetry Detection Using Multiscale Mirror Histograms
 
Design & simulation of dual band t shaped slot micro strip antenna for c-...
Design & simulation of dual band t shaped slot micro strip antenna for c-...Design & simulation of dual band t shaped slot micro strip antenna for c-...
Design & simulation of dual band t shaped slot micro strip antenna for c-...
 
Image processing techniques applied for pitting corrosion analysis
Image processing techniques applied for pitting corrosion analysisImage processing techniques applied for pitting corrosion analysis
Image processing techniques applied for pitting corrosion analysis
 
Terahertz Microstrip Patch Antenna Design for detection of Plastic Explosive ...
Terahertz Microstrip Patch Antenna Design for detection of Plastic Explosive ...Terahertz Microstrip Patch Antenna Design for detection of Plastic Explosive ...
Terahertz Microstrip Patch Antenna Design for detection of Plastic Explosive ...
 
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaAdvances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
 
Statistical Modelling of ft to Process Parameters in 30 NM Gate Length Finfets
Statistical Modelling of ft to Process Parameters in 30 NM Gate Length FinfetsStatistical Modelling of ft to Process Parameters in 30 NM Gate Length Finfets
Statistical Modelling of ft to Process Parameters in 30 NM Gate Length Finfets
 
Dynamic Analysis with Examples – Seismic Analysis
Dynamic Analysis with Examples – Seismic AnalysisDynamic Analysis with Examples – Seismic Analysis
Dynamic Analysis with Examples – Seismic Analysis
 
Final Presentation_25 May
Final Presentation_25 MayFinal Presentation_25 May
Final Presentation_25 May
 
Ct25566571
Ct25566571Ct25566571
Ct25566571
 
MS Thesis Presentation
MS Thesis PresentationMS Thesis Presentation
MS Thesis Presentation
 
Field Strength Predicting Outdoor Models
Field Strength Predicting Outdoor ModelsField Strength Predicting Outdoor Models
Field Strength Predicting Outdoor Models
 
Uniform geometrical theory of diffraction (User body shadowing)
Uniform geometrical theory of diffraction (User body shadowing)Uniform geometrical theory of diffraction (User body shadowing)
Uniform geometrical theory of diffraction (User body shadowing)
 
An Evolutionary Method for Kinetic Energy Ammunition Optimization
An Evolutionary Method for Kinetic Energy Ammunition OptimizationAn Evolutionary Method for Kinetic Energy Ammunition Optimization
An Evolutionary Method for Kinetic Energy Ammunition Optimization
 
Modal Analysis of a Square Plate with Different Shape Cut Out
Modal Analysis of a Square Plate with Different Shape Cut OutModal Analysis of a Square Plate with Different Shape Cut Out
Modal Analysis of a Square Plate with Different Shape Cut Out
 
Image processing techniques applied for pitting
Image processing techniques applied for pittingImage processing techniques applied for pitting
Image processing techniques applied for pitting
 

Plus de Christophe Mercier

Open source print quality software
Open source print quality softwareOpen source print quality software
Open source print quality softwareChristophe Mercier
 
Are 3D surface standard parameters discriminant for paper ?
Are 3D surface standard parameters discriminant for paper ?Are 3D surface standard parameters discriminant for paper ?
Are 3D surface standard parameters discriminant for paper ?Christophe Mercier
 
Generalised description of the three-dimensional structure of paper
Generalised description of the three-dimensional structure of paperGeneralised description of the three-dimensional structure of paper
Generalised description of the three-dimensional structure of paperChristophe Mercier
 

Plus de Christophe Mercier (7)

Open source print quality software
Open source print quality softwareOpen source print quality software
Open source print quality software
 
These mercier christophe
These mercier christopheThese mercier christophe
These mercier christophe
 
Nip 25 mercier_ch
Nip 25 mercier_chNip 25 mercier_ch
Nip 25 mercier_ch
 
MindMapping Skills
MindMapping SkillsMindMapping Skills
MindMapping Skills
 
Virtual Printingl
Virtual PrintinglVirtual Printingl
Virtual Printingl
 
Are 3D surface standard parameters discriminant for paper ?
Are 3D surface standard parameters discriminant for paper ?Are 3D surface standard parameters discriminant for paper ?
Are 3D surface standard parameters discriminant for paper ?
 
Generalised description of the three-dimensional structure of paper
Generalised description of the three-dimensional structure of paperGeneralised description of the three-dimensional structure of paper
Generalised description of the three-dimensional structure of paper
 

Characterisation of the properties use of paper by topographical analysis of its surface

  • 1. Characterisation of the properties use of paper by topographical analysis of its surface Gérard Baudin et Jean-Francis Bloch - LGP2 - PAGORA Contact: mercier.christophe1@googlemail.com Christophe Mercier – September 2004
  • 2. Outline  Introduction  Presentation of topics  Pertinence and interpretation of topographical parameter s  Application  Conclusion and perspectives
  • 3. Paper surface / PhD 23 May 2010 PhD defense " Paper is really not a perfect substrate for printing. A number of optical and physical imperfections, such as local variations in colour , optical density and surface topography , degrade the image each in their own manner . " Gustavson S. , 1995 " Although print gloss has been used as a quality factor for many years, the relation between the visual apparence of a printed paper and its surface roughness is not well understood " Bélan M.C., 2001 " It is mainly the surface properties like roughness and distribution of flocs that determine the quality of print. " Johansson J.O., 2002 Printing Gloss Profile model
  • 4. Acquisition technique 23 May 2010 PhD defense
  • 5. Measured surface 23 May 2010 PhD defense
  • 6. Outline  Introduction  Presentation of topics  Pertinence and interpretation of topographical parameters  Applications  Conclusion and perspectives
  • 7. Objectives 23 May 2010 PhD defense I nterpretation of parameters Calend e ring Offset printing Acquisition Treatments
  • 8. Measurement methods 23 May 2010 PhD defense  Determination of spacing and acquisition length in order to obtain a statistically representative surface.  Raw data treatment before exploitation.
  • 9. Calendering 23 May 2010 PhD defense Objectives:  Characterisation of surface variations due to successive passages in calendaring nip with : * 3D parameters, * ray-tracing.
  • 10. Offset printing 23 May 2010 PhD defense  Determination of the repartition of ink at the surface. Objectives:  Determination of surface modifications due to printing.
  • 11. Pertinence and interpretation 23 May 2010 PhD defense  Discriminate different surfaces or profiles, with standard parameters . Objectives:  For quality control, detect the variations of paper surface.
  • 12. Outline  Introduction  Presentation of topics  Pertinence and interpretation of topographical parameter s  Application  Conclusion and perspectives
  • 13. Outline / param e t er interpr e tation 23 May 2010 PhD defense  Introduction of 1 D and 2 D param e t er s  Interpr e tations of 1 D et 2 D param e t er s Conventions : 1D for profile z = f(x) 2D for surface z = f(x,y)
  • 14. Characterisation techniques 23 May 2010 PhD defense [Stout et al] 1993
  • 15. Functional Characterisation 1D 23 May 2010 PhD defense Notations: P : Raw profile R: Roughness profile W: waviness profile Standard: NF EN ISO 4287, Dec 1998 Form Form + waviness Form + waviness + r oughness Y X
  • 16. Functional Characterisation 1D 23 May 2010 PhD defense mean line Xs i Z p Z v Z t dz(x) dx Height distribution X   Abbott curve Z i
  • 17. Functional Characterisation 1D 23 May 2010 PhD defense
  • 18. Characterisation techniques 23 May 2010 PhD defense [Stout et al]
  • 19. Illustration of Fourier Transform 23 May 2010 PhD defense T1 = N/9; T2 = N/16; T3 = N/33; Industrial application: wire marks N : number of points
  • 20. Fourier: limitation 23 May 2010 PhD defense
  • 21. Fourier limitation : L # N.  23 May 2010 PhD defense T1 = 323 (15); T2 = 212(24); T3 = 145(34);
  • 22. Power Densit y S pectr um 23 May 2010 PhD defense Ajouter la définition Ind e pendance / acquisition length T1 = 323 (15) T2 = 212 (24) T3 = 145 (34)
  • 23. A utocorrelation fu nction 23 May 2010 PhD defense Is c orrelation l ength a c h aract e risti c scale for paper ? l c
  • 24. 2D classi cal ch aract e risation 23 May 2010 PhD defense Me thod s are similar to those used for p rofil e s : – Fourier T ransform – Areal A utocorrelation function (AACF)
  • 25. Fourier: spectrum 23 May 2010 PhD defense Original surface Frequency spectrum Std
  • 26. Areal A utocorrelation function (AACF) 23 May 2010 PhD defense Normalisation: Maximum = 1
  • 27. Areal A utocorrelation function (AACF) 23 May 2010 PhD defense Simulated s urface AACF of the simulated surface AACF characteristic parameter
  • 28. Areal A utocorrelation function (AACF) 23 May 2010 PhD defense Parameters: Sal and Str Representation of central lobe
  • 29. 2 D Recommandation s 23 May 2010 PhD defense Five famil ies of param e t er s: * amplitude : 4 * spaci al (Sal, Str,….) : 4 * hybrid : 3 * Functional (Bearing Area) : 3 * Functional (Volumes) : 3 :17 Five famil ies of param e t er s: * amplitude : 4 * spaci al (Sal, Str,….) : 4 * hybrid : 3 * Functional (Bearing Area) : 3 * Functional (Volumes) : 3 :17
  • 30. A mplitude p aram e t ers 23 May 2010 PhD defense
  • 31. S pa tial p aram e t er s 23 May 2010 PhD defense
  • 32. H ybrid p aram e t er s 23 May 2010 PhD defense
  • 33. Outline / param e t er interpr e tation 23 May 2010 PhD defense  Introduction of 1 D and 2 D param e t er s  Interpr e tation of 1 D and 2 D param e t er s
  • 34. Inter p r e tation of 1 D param e t er s 23 May 2010 PhD defense I nfluence of the n u mb er of param e t er s in order to c h aract e ris e a surface B ijectivit y profiles / param e t er s Objecti ve : P rofil e models :  three fixed param e t er s  four fixed param e t er s  five fixed param e t er s  five fixed param e t er s + Abbott curve
  • 35. Studied (me a sure d ) p rofil e 23 May 2010 PhD defense Abbott curve
  • 36. T hree param e t er s: mod el 23 May 2010 PhD defense Lm Psm h X Z X Principle Three targeted parameters : Pa, Psk, PSm Overhead
  • 37. Three param e t ers : r e sults 23 May 2010 PhD defense
  • 38. Four param e t er s: mod el 23 May 2010 PhD defense L1 L4 L3 L2 Psm hv hp Z X Remar k : Sku is constant F our targeted parameters : Pq, Psk, PSm , PDq
  • 39. Four param e t er s: r e sults 23 May 2010 PhD defense
  • 40. Five param e t er s: mod e l 23 May 2010 PhD defense Five targeted parameters : Pq, Psk, PSm, PDq, Pku d d p 1 p 3 p 2 V 2 V 1 V 3
  • 41. Five param eters : r e sult s 23 May 2010 PhD defense Altitude d istribution
  • 42. Five param e t er s + Abbott: mod e l 23 May 2010 PhD defense Five targeted parameters : Pq, Psk, Pku, PSm, PDq + Abbott curve C onstant height , variable ellipticit y
  • 43. Five param e t er s + Abbott: r e sult s 23 May 2010 PhD defense Measured profile Virtual profile
  • 44. Conclusion / profile 23 May 2010 PhD defense  Models of profiles : non-bijectivity (discrimination / Fourier T ransform or autocorr e lation f u nction …)
  • 45. Outline / param e t er interpr e tation 23 May 2010 PhD defense  Introduction of 1 D and 2 D param e t er s  Interpr e tation of 1 D and 2 D param e t er s
  • 46. 2D param e t er s i nterpr e tation 23 May 2010 PhD defense S urface m od e l s : * either with rectangular or curved e l e ments / fibres * or with sinuso idal functions Study bijectivit y surfaces param eters Objecti ve s:
  • 47. Texture n°1: m e thod 23 May 2010 PhD defense rectangular or curved e l e ments + random noise
  • 48. Texture n°1: r e sults 23 May 2010 PhD defense 12 parameters are similar Overhead
  • 49. Texture n°1: r es ults 23 May 2010 PhD defense Measured s urface Virtual s urface
  • 50. Texture n°1bis: m e thod 23 May 2010 PhD defense
  • 51. Texture n°1bis: r e sults 23 May 2010 PhD defense
  • 52. Texture n°1bis: r e sults 23 May 2010 PhD defense Measured s urface Simulated s urface 12 parameters and Abbott curve are similar !
  • 53. Second method 23 May 2010 PhD defense Condition : S tructura l e l e ment of the model surface: fibre. Question: Other s tructura l e l e ment s ? Surface mod e l Measured Surface
  • 54. Texture n°2: m e thod 23 May 2010 PhD defense µm µm A mplitude d istribution Orientation Noise
  • 55. Texture n°2: r e sults 23 May 2010 PhD defense Param e t er s A mplitude d istribution Measured s urface S imul ated s urface
  • 56. Texture n°2: r e sults 23 May 2010 PhD defense 12 parameters and Abbott curve are similar !
  • 57. Texture n°2: limitations 23 May 2010 PhD defense Areal A utocorrelation function S imul ated s urface Measured s urface
  • 58. Conclusion / surface 23 May 2010 PhD defense  Non bijectivity parameters / surfaces  Visu al perception
  • 59. Outline  Introduction  Presentation of topics  Pertinence and interpretation of topographical parameter s  Application  calandering  offset printing  Conclusion and perspectives
  • 60. Photogoniometer 23 May 2010 PhD defense Sample Source Sensor
  • 61. Measured indicatrix of diffusion 23 May 2010 PhD defense
  • 62. Light re fle ction 23 May 2010 PhD defense Objecti ve :  Simulation of 1 D and 2 D indicatrix of diffusion Measured indicatrix of diffusion S urface topography
  • 63. Surface light reflection 23 May 2010 PhD defense Normal lobe Specular reflection Incident ray Forescatter lobe Net reflexion 2µm Backscatter lobe
  • 64. BRDF : Bidirectionnal Reflectance Distribution Function 23 May 2010 PhD defense  3  2  1 d  i d  r X N Y ds
  • 65. Reflection models 23 May 2010 PhD defense Re fle ct ion m od e l E mpiri cal a ppro a ch Ge om e tri cal a ppro a ch P hysi cal a ppro a ch Th e or y pertubati on Th e or y Kirchhoff Mod e l Lamberti a n Mod e l Phong Mod e l Ward Mod e l Torrance-Sparrow Mod el Cook and Torrance Mod e l Nayar Mod e l Beckmann and Spizzichino
  • 66. Cook and Torrance 23 May 2010 PhD defense D: surface model  Length of correlation  root mean square of altitudes
  • 67. RMS + Length of correlation 23 May 2010 PhD defense Profils measure Filering Calculation rms and lc plot Measure of indicatrix /
  • 68. RMS + Length of correlation 23 May 2010 PhD defense / Profils measure Filering Calculation rms and lc plot Measure of indicatrix
  • 69. Ray tracing - profiles - principle 23 May 2010 PhD defense Source Mean plan of surface
  • 70. Ray tracing - profiles - simulation 23 May 2010 PhD defense Simulation of profiles (RMS and L c ) Control of RMS and L c Trace of curve Ray-tracing / Trace of curve RMS constant
  • 71. Ray tracing - profiles - simulation 23 May 2010 PhD defense L c constant
  • 72. Ray tracing – measured profiles 23 May 2010 PhD defense
  • 73. Ray tracing - measured profiles 23 May 2010 PhD defense
  • 74. Ray tracing - measured profiles 23 May 2010 PhD defense Examples : Measured indicatrix of diffusion Simulated indicatrix of reflection sb 0 sb 1*60 sb2*60 sb 3*60
  • 75. Conclusion ray tracing 23 May 2010 PhD defense  Ray-tracing: qualitative effect of calandering  RMS and correlation length # paper profile
  • 76. Solid printing (1) 23 May 2010 PhD defense Objective: Spatial non- uniformit y ch aract e risation of ink distribution , mean ink thickness , … Only one crater considered : Contact angle controled
  • 77. Solid printing(2) 23 May 2010 PhD defense Application:
  • 78. Solid printing(3) 23 May 2010 PhD defense Results: 0,5 µm 1 µm 1,5 µm
  • 79. Conclusion / Solid printing 23 May 2010 PhD defense  This model is useful to study industrial problems linked to non- homogeneous repartition of ink
  • 80. Halftone printing (1) 23 May 2010 PhD defense Objective: Determination of ink distribution in surface thanks to modification of amplitude distribution before/after printing. % surface
  • 81. Halftone printing(2) 23 May 2010 PhD defense Method: determination of mean and RMS ink thickness repartition
  • 82. Halftone printing(3) 23 May 2010 PhD defense Results:
  • 83. Conclusion / Halftone printing 23 May 2010 PhD defense  From a paper surface measurement, we obtain a number of points and a thickness of deposed ink in order to superpose the amplitude distribution of both measured and simulated printed surface.
  • 84. Outline  Introduction  Presentation of topics  Pertinence and interpretation of topographical parameter s  Application  Conclusion and perspectives
  • 85. Conclusion 23 May 2010 PhD defense  From a paper surface measurement, we obtain a number of points and a thickness of deposed ink in order to superpose the amplitude distribution of both measured and simulated printed surface.  Printing model are useful to study industrial problems linked to non- homogeneous repartition of ink  Ray-tracing: qualitative effect of calandering , RMS and correlation length # paper profile
  • 86. Perspectives 23 May 2010 PhD defense  Spatial repartition of ink  Ray-tracing taking account spectral reflection  Surface models / virtual materials
  • 87. Thanks 23 May 2010 PhD defense
  • 90. Paramètres de volumes 23 May 2010 PhD defense
  • 91. Paramètres fonctionnels 23 May 2010 PhD defense
  • 92. Fourier: spectres 23 May 2010 PhD defense Surface simulée TF de la surface simulée
  • 93. Classical characterisation 2D 23 May 2010 PhD defense Spectral analysis : periodic components of the profile are pointed out using Fourier transform, due periodogramme and power spectrum density Spatial analysis : des correlations entre une réalisation à une position x t et les positions précédentes sont recherchées. La fonction d’autocorrélation est utilisée l’analyse temps/fréquence : elle a pour vocation de mettre en évidence des inhomogénéités présentes dans le profil. (/O ndelettes)
  • 94. Ray tracing - surfaces - principe 23 May 2010 PhD defense
  • 95. Ray tracing - surfaces - cas réels 23 May 2010 PhD defense Papier Alpastar Gloss Semi-mat Mat
  • 96. Ray tracing - surfaces - cas réels 23 May 2010 PhD defense Papier Hello Gloss Semi-mat Mat
  • 97. Ray tracing - surfaces - cas réels 23 May 2010 PhD defense Papier Alpanova Gloss Semi-mat Mat
  • 98. Ray tracing - surfaces - cas réels 23 May 2010 PhD defense Papier Econova Gloss Semi-mat Mat
  • 99. BRDF : Bidirectionnal Reflectance Distribution Function 23 May 2010 PhD defense  3  2  1 d  i d  r X N Y
  • 100. Cook and Torrance 23 May 2010 PhD defense D: surface model  Length of correlation  root mean square of altitudes
  • 101. Correlation length vs Length of statistical stability 23 May 2010 PhD defense C:arteauorel_calandreiltre_5mmb3f100_5mm.pro Measured profile Correlation length Length of statistical stability

Notes de l'éditeur

  1. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  2. Nous nous sommes dotées d’un système d’acquisition, comprenant un capteur point à point basée sur la principe de l’aberaation chromatique, qui permet de décrire la surface par une matrice de point espacé du distance appelé pas
  3. Déterminer le choix
  4. Situé entre la présentation des outils et leur utilisation au chapitre 6, un chapitre est consacré à leur connaissance
  5. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  6. Ne sont présentés …
  7. Par rapport au cas précédent, nous introduisons le paramètre Pku, traduisant l’aplatissement de la distribution des amplitudes Remarque: la méthode plus simple consisterait à faire des marches sur trois niveaux. Nous passons au niveaux des fibres.
  8. Par rapport au cas précédent, nous ajoutons la courbe d’Abbott Nous jouons sur l’ellipticité de la fibre
  9. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  10. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  11. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  12. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  13. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  14. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  15. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  16. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  17. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?
  18. Quel est le problème en question? Qu’est-ce qui a été fait dans le passé pour régler ce problème? Qu’est-ce que VOUS faites pour régler le problème? Quelle est la valeur ajoutée de votre approche? Que devons-nous faire maintenant?