SlideShare une entreprise Scribd logo
1  sur  17
Télécharger pour lire hors ligne
INTEGRATION BY SUBSTITUTION
Section 5.5
November 25, 2013
LAST TIME
By the FTC (Part I): If f is continuous on [a, b] and
F(x) =
x
a
f(t) dt =⇒ F (x) = f(x)
F(x) =
a
x
f(t) dt =⇒ F (x) = − f(x)
F(x) =
g(x)
a
f(t) dt =⇒ F (x) = f(g(x)) · g (x)
SUBSTITUTION
Substitution is a notational trick to make it easier to determine
indefinite integrals.
It uses something called a differential.
Definition
Let u = f(x) for some function f. The differential of u, denoted
du, is given by
du = f (x) dx.
For example,
u = 7x2
+ 1 =⇒ du = 14x dx
u = 24x
=⇒ du = 4 ln(2)24x
dx
For us, this is purely notational.
SUBSTITUTION
Determine (3x2
− 5)4
2x dx.
Let u = 3x2
− 5.
Then du = 6x dx =⇒ dx =
du
6x
Rewriting the above indefinite integral using u and du we get
(3x2
− 5)4
2x dx = u4
2x
du
6x
=
1
3
u4
du
This indefinite integral is easier to determine:
1
3
u4
du =
1
3
u4
du =
1
3
1
5
u5
+ C =
1
15
u5
+ C
Since u = 3x2
− 5, substituting back we get:
1
15
(3x2
− 5)5
+ C
SUBSTITUTION
What did we do?
(1) We chose a u and determined du.
(2) We rewrote our integral using u and du.
(3) Found the indefinite integral.
(4) Substitute back for u.
Question: How do we choose our u?
No foolproof way, but in general, choose:
the term under a root or raised to a power,
the exponent of an exponential function,
the logarithm,
the term in the denominator,
the term inside a trig function.
EXAMPLES
Determine x 1 − x2 dx.
u = 1 − x2
du = − 2x dx (dx = −du/2x)
Rewriting the above indefinite integral using u and du we get
x 1 − x2 dx = x
√
u
−1
2x
du = −
1
2
√
u du
This indefinite integral is easier to determine:
−
1
2
u1/2
du = −
1
2
1
1
2 + 1
u
1
2
+1
+ C = −
1
3
u3/2
+ C
Since u = 1 − x2, we get: −
1
3
(1 − x2
)3/2
+ C
EXAMPLES
Determine 3t2
e2t3
dt.
u = 2t3
du = 6t2 dt (dt = du/6t2)
Rewriting the above indefinite integral using u and du we get
3t2
e2t3
dt = 3t2
eu 1
6t2
du =
1
2
eu
du
This indefinite integral is easier to determine:
1
2
eu
du =
1
2
eu
+ C
Since u = 2t3, we get:
1
2
e2t3
+ C
EXAMPLES
Determine
1
x ln(x)
dx.
u = ln(x)
du =
1
x
dx (dx = xdu)
Rewriting the above indefinite integral using u and du we get
1
x ln(x)
dx =
1
xu
xdu =
1
u
du
This indefinite integral is easier to determine:
1
u
du = ln |u| + C
Since u = ln(x), we get: ln | ln(x)| + C
EXAMPLES
Determine
y2
2y3 + 1
dy.
u = 2y3 + 1
du = 6y2 dy (dy = du/6y2)
Rewriting the above indefinite integral using u and du we get
y2
2y3 + 1
dy =
y2
u
·
1
6y2
du =
1
6
1
u
du
This indefinite integral is easier to determine:
1
6
1
u
du =
1
6
ln |u| + C
Since u = 2y3 + 1, we get:
1
6
ln |2y3
+ 1| + C
EXAMPLES
Determine t sin(2t2
) dt.
u = 2t2
du = 4t dt (dt = du/4t)
Rewriting the above indefinite integral using u and du we get
t sin(2t2
) dt = t sin(u)
1
4t
du =
1
4
sin(u) du
This indefinite integral is easier to determine:
1
4
sin(u) du = −
1
4
cos(u) + C
Since u = 2t2, we get: −
1
4
cos(2t2
) + C
PRACTICE PROBLEMS
Use substitution to determine the following indefinite integrals:
(1) z(4z2
− 5)4
dz
(2) (1 − t)e2t−t2
dt
(3)
r
r2 + 2
dr
(4) θ2
sec2
(5θ3
+ 10) dθ
PRACTICE PROBLEMS
(1) z(4z2
− 5)4
dz.
u = 4z2 − 5
du = 8z dz (dz = du/8z)
Rewriting the above indefinite integral using u and du we get
z(4z2
− 5)4
dz = zu4 1
8z
du =
1
8
u4
du
This indefinite integral is easier to determine:
1
8
u4
du =
1
40
u5
+ C
Since u = 4z2 − 5, we get:
1
40
(4z2
− 5)5
+ C
PRACTICE PROBLEMS
(2) (1 − t)e2t−t2
dt.
u = 2t − t2
du = (2 − 2t) dt (dt = du/(2 − 2t))
Rewriting the above indefinite integral using u and du we get
(1 − t)e2t−t2
dt = (1 − t)eu 1
2 − 2t
du =
1
2
eu
du
This indefinite integral is easier to determine:
1
2
eu
du =
1
2
eu
+ C
Since u = 2t − t2, we get:
1
2
e2t−t2
+ C
PRACTICE PROBLEMS
(3)
r
r2 + 2
dr.
u = r2 + 2
du = 2r dr (dr = du/2r)
Rewriting the above indefinite integral using u and du we get
r
r2 + 2
dr =
r
u
1
2r
du =
1
2
·
1
u
du
This indefinite integral is easier to determine:
1
2
1
u
du =
1
2
ln |u| + C
Since u = r2 + 2, we get:
1
2
ln |r2
+ 2| + C
PRACTICE PROBLEMS
(4) θ2
sec2
(5θ3
+ 10) dθ.
u = 5θ3 + 10
du = 15θ2 dθ (dθ = du/15θ2)
Rewriting the above indefinite integral using u and du we get
θ2
sec2
(5θ3
+ 10) dθ = θ2
sec2
(u)
1
15θ2
du =
1
15
sec2
(u) du
This indefinite integral is easier to determine:
1
15
sec2
(u) du =
1
15
tan(u) + C
Since u = 5θ3 + 10, we get:
1
15
tan(5θ3
+ 10) + C
SUBSTITUTION
It may be the case that after substituting for u and du the original
variable remains in the integrand.
Determine x(5x − 1)2/3
dx
u = 5x − 1
du = 5 dx (dx = du/5)
x(5x − 1)2/3
dx =
1
5
xu2/3
du
What do we do about the x? Try to rewrite it in terms of u,
u = 5x − 1 ⇒ x = (u + 1)/5.
1
5
xu2/3
du =
1
25
(u + 1)u2/3
du =
1
25
u5/3
+ u2/3
du
3
200
u8/3
+
3
125
u5/3
+ C =
3
200
(5x − 1)8/3
+
3
125
(5x − 1)5/3
+ C
EXAMPLE
Determine p3
(p2
+ 1)5
dp.
u = p2 + 1
du = 2p dp (dp = du/2p)
Rewriting the above indefinite integral using u and du we get
p3
2p
u5
du =
1
2
p2
u5
du
Since u = p2 + 1, we know p2 = u − 1
1
2
p2
u5
du =
1
2
(u − 1)u5
du =
1
2
u6
− u5
du =
1
14
u7
−
1
12
u6
+ C
Since u = p2 + 1, we get:
1
14
(p2
+ 1)7
−
1
12
(p2
+ 1)6
+ C

Contenu connexe

Tendances

20 the chain rule
20 the chain rule20 the chain rule
20 the chain rule
math267
 
23 general double integrals
23 general double integrals23 general double integrals
23 general double integrals
math267
 
Differential Equation Tutorial 1
Differential Equation Tutorial 1Differential Equation Tutorial 1
Differential Equation Tutorial 1
Yong Sheng
 
22 double integrals
22 double integrals22 double integrals
22 double integrals
math267
 
Differentiation
DifferentiationDifferentiation
Differentiation
timschmitz
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
akabaka12
 

Tendances (20)

19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-x
 
Integrals by Trigonometric Substitution
Integrals by Trigonometric SubstitutionIntegrals by Trigonometric Substitution
Integrals by Trigonometric Substitution
 
Chain Rule
Chain RuleChain Rule
Chain Rule
 
The Chain Rule Powerpoint Lesson
The Chain Rule Powerpoint LessonThe Chain Rule Powerpoint Lesson
The Chain Rule Powerpoint Lesson
 
Derivatives
DerivativesDerivatives
Derivatives
 
4.1 the chain rule
4.1 the chain rule4.1 the chain rule
4.1 the chain rule
 
Maxima and minima
Maxima and minimaMaxima and minima
Maxima and minima
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
20 the chain rule
20 the chain rule20 the chain rule
20 the chain rule
 
23 general double integrals
23 general double integrals23 general double integrals
23 general double integrals
 
Differential Equation Tutorial 1
Differential Equation Tutorial 1Differential Equation Tutorial 1
Differential Equation Tutorial 1
 
3.1 methods of division t
3.1 methods of division t3.1 methods of division t
3.1 methods of division t
 
22 double integrals
22 double integrals22 double integrals
22 double integrals
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulations
 
Differentiation
DifferentiationDifferentiation
Differentiation
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
Higher Derivatives & Partial Differentiation
Higher Derivatives & Partial DifferentiationHigher Derivatives & Partial Differentiation
Higher Derivatives & Partial Differentiation
 

En vedette (11)

05 calculo ii imp
05 calculo ii imp05 calculo ii imp
05 calculo ii imp
 
Integral Substituicao Trigonometrica
Integral Substituicao TrigonometricaIntegral Substituicao Trigonometrica
Integral Substituicao Trigonometrica
 
Calculo lista integrais 2012 1
Calculo lista integrais 2012 1Calculo lista integrais 2012 1
Calculo lista integrais 2012 1
 
Mat integrais
Mat integraisMat integrais
Mat integrais
 
Lista integrais
Lista integraisLista integrais
Lista integrais
 
Tecnica de integracao resumo
Tecnica de integracao   resumoTecnica de integracao   resumo
Tecnica de integracao resumo
 
Resolucao dos exercicios_integrais
Resolucao dos exercicios_integraisResolucao dos exercicios_integrais
Resolucao dos exercicios_integrais
 
Aula4 derivadas integrais
Aula4 derivadas integraisAula4 derivadas integrais
Aula4 derivadas integrais
 
Integrais multiplas
Integrais multiplasIntegrais multiplas
Integrais multiplas
 
Apostila trigonometria exercícios resolvidos
Apostila trigonometria exercícios resolvidosApostila trigonometria exercícios resolvidos
Apostila trigonometria exercícios resolvidos
 
Calculo vetorial
Calculo vetorialCalculo vetorial
Calculo vetorial
 

Similaire à Exercicios de integrais

Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
tutulk
 
2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf
RajuSingh806014
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf
RajuSingh806014
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
JelaiAujero
 

Similaire à Exercicios de integrais (20)

11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
final19
final19final19
final19
 
Section 7.3
Section 7.3Section 7.3
Section 7.3
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ
 
Section 7.1
Section 7.1Section 7.1
Section 7.1
 
Ece3075 a 8
Ece3075 a 8Ece3075 a 8
Ece3075 a 8
 
Calculo Diferencial
Calculo DiferencialCalculo Diferencial
Calculo Diferencial
 
Section 7.2
Section 7.2 Section 7.2
Section 7.2
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
VECTOR CALCULUS
VECTOR CALCULUS VECTOR CALCULUS
VECTOR CALCULUS
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 

Dernier

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 

Dernier (20)

SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 

Exercicios de integrais

  • 1. INTEGRATION BY SUBSTITUTION Section 5.5 November 25, 2013
  • 2. LAST TIME By the FTC (Part I): If f is continuous on [a, b] and F(x) = x a f(t) dt =⇒ F (x) = f(x) F(x) = a x f(t) dt =⇒ F (x) = − f(x) F(x) = g(x) a f(t) dt =⇒ F (x) = f(g(x)) · g (x)
  • 3. SUBSTITUTION Substitution is a notational trick to make it easier to determine indefinite integrals. It uses something called a differential. Definition Let u = f(x) for some function f. The differential of u, denoted du, is given by du = f (x) dx. For example, u = 7x2 + 1 =⇒ du = 14x dx u = 24x =⇒ du = 4 ln(2)24x dx For us, this is purely notational.
  • 4. SUBSTITUTION Determine (3x2 − 5)4 2x dx. Let u = 3x2 − 5. Then du = 6x dx =⇒ dx = du 6x Rewriting the above indefinite integral using u and du we get (3x2 − 5)4 2x dx = u4 2x du 6x = 1 3 u4 du This indefinite integral is easier to determine: 1 3 u4 du = 1 3 u4 du = 1 3 1 5 u5 + C = 1 15 u5 + C Since u = 3x2 − 5, substituting back we get: 1 15 (3x2 − 5)5 + C
  • 5. SUBSTITUTION What did we do? (1) We chose a u and determined du. (2) We rewrote our integral using u and du. (3) Found the indefinite integral. (4) Substitute back for u. Question: How do we choose our u? No foolproof way, but in general, choose: the term under a root or raised to a power, the exponent of an exponential function, the logarithm, the term in the denominator, the term inside a trig function.
  • 6. EXAMPLES Determine x 1 − x2 dx. u = 1 − x2 du = − 2x dx (dx = −du/2x) Rewriting the above indefinite integral using u and du we get x 1 − x2 dx = x √ u −1 2x du = − 1 2 √ u du This indefinite integral is easier to determine: − 1 2 u1/2 du = − 1 2 1 1 2 + 1 u 1 2 +1 + C = − 1 3 u3/2 + C Since u = 1 − x2, we get: − 1 3 (1 − x2 )3/2 + C
  • 7. EXAMPLES Determine 3t2 e2t3 dt. u = 2t3 du = 6t2 dt (dt = du/6t2) Rewriting the above indefinite integral using u and du we get 3t2 e2t3 dt = 3t2 eu 1 6t2 du = 1 2 eu du This indefinite integral is easier to determine: 1 2 eu du = 1 2 eu + C Since u = 2t3, we get: 1 2 e2t3 + C
  • 8. EXAMPLES Determine 1 x ln(x) dx. u = ln(x) du = 1 x dx (dx = xdu) Rewriting the above indefinite integral using u and du we get 1 x ln(x) dx = 1 xu xdu = 1 u du This indefinite integral is easier to determine: 1 u du = ln |u| + C Since u = ln(x), we get: ln | ln(x)| + C
  • 9. EXAMPLES Determine y2 2y3 + 1 dy. u = 2y3 + 1 du = 6y2 dy (dy = du/6y2) Rewriting the above indefinite integral using u and du we get y2 2y3 + 1 dy = y2 u · 1 6y2 du = 1 6 1 u du This indefinite integral is easier to determine: 1 6 1 u du = 1 6 ln |u| + C Since u = 2y3 + 1, we get: 1 6 ln |2y3 + 1| + C
  • 10. EXAMPLES Determine t sin(2t2 ) dt. u = 2t2 du = 4t dt (dt = du/4t) Rewriting the above indefinite integral using u and du we get t sin(2t2 ) dt = t sin(u) 1 4t du = 1 4 sin(u) du This indefinite integral is easier to determine: 1 4 sin(u) du = − 1 4 cos(u) + C Since u = 2t2, we get: − 1 4 cos(2t2 ) + C
  • 11. PRACTICE PROBLEMS Use substitution to determine the following indefinite integrals: (1) z(4z2 − 5)4 dz (2) (1 − t)e2t−t2 dt (3) r r2 + 2 dr (4) θ2 sec2 (5θ3 + 10) dθ
  • 12. PRACTICE PROBLEMS (1) z(4z2 − 5)4 dz. u = 4z2 − 5 du = 8z dz (dz = du/8z) Rewriting the above indefinite integral using u and du we get z(4z2 − 5)4 dz = zu4 1 8z du = 1 8 u4 du This indefinite integral is easier to determine: 1 8 u4 du = 1 40 u5 + C Since u = 4z2 − 5, we get: 1 40 (4z2 − 5)5 + C
  • 13. PRACTICE PROBLEMS (2) (1 − t)e2t−t2 dt. u = 2t − t2 du = (2 − 2t) dt (dt = du/(2 − 2t)) Rewriting the above indefinite integral using u and du we get (1 − t)e2t−t2 dt = (1 − t)eu 1 2 − 2t du = 1 2 eu du This indefinite integral is easier to determine: 1 2 eu du = 1 2 eu + C Since u = 2t − t2, we get: 1 2 e2t−t2 + C
  • 14. PRACTICE PROBLEMS (3) r r2 + 2 dr. u = r2 + 2 du = 2r dr (dr = du/2r) Rewriting the above indefinite integral using u and du we get r r2 + 2 dr = r u 1 2r du = 1 2 · 1 u du This indefinite integral is easier to determine: 1 2 1 u du = 1 2 ln |u| + C Since u = r2 + 2, we get: 1 2 ln |r2 + 2| + C
  • 15. PRACTICE PROBLEMS (4) θ2 sec2 (5θ3 + 10) dθ. u = 5θ3 + 10 du = 15θ2 dθ (dθ = du/15θ2) Rewriting the above indefinite integral using u and du we get θ2 sec2 (5θ3 + 10) dθ = θ2 sec2 (u) 1 15θ2 du = 1 15 sec2 (u) du This indefinite integral is easier to determine: 1 15 sec2 (u) du = 1 15 tan(u) + C Since u = 5θ3 + 10, we get: 1 15 tan(5θ3 + 10) + C
  • 16. SUBSTITUTION It may be the case that after substituting for u and du the original variable remains in the integrand. Determine x(5x − 1)2/3 dx u = 5x − 1 du = 5 dx (dx = du/5) x(5x − 1)2/3 dx = 1 5 xu2/3 du What do we do about the x? Try to rewrite it in terms of u, u = 5x − 1 ⇒ x = (u + 1)/5. 1 5 xu2/3 du = 1 25 (u + 1)u2/3 du = 1 25 u5/3 + u2/3 du 3 200 u8/3 + 3 125 u5/3 + C = 3 200 (5x − 1)8/3 + 3 125 (5x − 1)5/3 + C
  • 17. EXAMPLE Determine p3 (p2 + 1)5 dp. u = p2 + 1 du = 2p dp (dp = du/2p) Rewriting the above indefinite integral using u and du we get p3 2p u5 du = 1 2 p2 u5 du Since u = p2 + 1, we know p2 = u − 1 1 2 p2 u5 du = 1 2 (u − 1)u5 du = 1 2 u6 − u5 du = 1 14 u7 − 1 12 u6 + C Since u = p2 + 1, we get: 1 14 (p2 + 1)7 − 1 12 (p2 + 1)6 + C