SlideShare une entreprise Scribd logo
1  sur  48
Jet Engine Ideal Analysis
Engine Efficiency
• Propulsive Efficiency
• Thermal Efficiency
• Overall Efficiency
Propulsive Efficiency
• The propulsive efficiency compares how much
work is done on the aircraft, by supplying
kinetic energy to the air.
Propulsive Efficiency
Va
m=100kg/s

Compressor
=10

Exhaust

Combustor
Turbine
=10
Combustor

m=100kg/s

VJ
Thermal Efficiency
• The thermal efficiency of an engine is the
efficiency of the conversion of the heat energy
released by the fuel into kinetic energy in the
jet stream.
Overall Efficiency
• The overall Efficiency compares the work done
on the aircraft to the energy given by the fuel.
Arrangement of Engine
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K

Compressor
=10

Combustor
Turbine
=10

Exhaust

Combustor

Turbine Entry Temperature

1112°K

Compressor compression ratio
= Turbine expansion ratio.

10

Specific Heat Capacity of Air at
constant Pressure (Cp)
Ratio of Specific Heat
Capacities for air ( )
Universal Gas Constant (R)

1 kJ/kg °K
1.4
287 kJ/kg °K

Inlet Air Temperature

288°K

Outside air pressure

101 kPa

Mass flow of air

100kg/s

Calorific value of fuel is

43,000 kJ/kg
Compressor
T1=288 K
P1=101kPa

m=100kg/s

T2=556 K
P2=1010kPa

Compressor
=10

T3=1112 K

Combustor
Turbine
=10
Combustor

Exhaust
Compressor
T1=288 K
P1=101kPa

m=100kg/s

T2=556 K
P2=1010kPa

Compressor
=10

T3=1112 K

Combustor
Turbine
=10
Combustor

Wc

Exhaust
Turbine
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2=556 K
P2=1010kPa

Compressor
=10

T4=576 K
P4=101kA

Combustor
Turbine
=10
Combustor

Exhaust
Turbine
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2=556 K
P2=1010kPa

Compressor
=10

T4=576 K
P4=101kA

Combustor
Turbine
=10
Exhaust

Combustor

WT
Useful Work
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2=556 K
P2=1010kPa

Compressor
=10

T4=576 K
P4=101kA

Combustor
Turbine
=10

26,800kJ

Combustor
Exhaust
Subtract the Work done by the compressor (WC)from the work done on the turbine (WT)
to determine the useful work done by the engine on the aircraft.

Useful Work = WT – WC.
Useful Work = (53,600-26,800)=26,800 kJ
Combustor
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2=556 K
P2=1010kPa

Compressor
=10

T4=576 K
P4=101kA

Combustor
Turbine
=10
Combustor

Q

Exhaust
Fuel
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2=556 K
P2=1010kPa

Compressor
=10

T4=576 K
P4=101kA

Combustor
Turbine
=10
Combustor

Q

Exhaust
Efficiency
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
P2=1010kPa

Compressor
=10

T4’=576 K
P4=101kA

Combustor
Turbine
=10
Combustor

Q

Exhaust
Part 2
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
P2=1010kPa

Compressor
=10

T4’=576 K
P4=101kA

Combustor
Turbine
=10
Combustor

Q
Repeat the analysis but with the compressor and turbine
efficiencies at 85%.

Exhaust
Compressor
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T4’=576 K
P4=101kA

Combustor
Turbine
=10
Combustor

Q

Exhaust
Compressor
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T4’=576 K
P4=101kA

Combustor
Turbine
=10
Combustor

Q

Exhaust
Turbine
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T4’=576 K
T4 = 656 K
P4=101kA

Combustor
Turbine
=10
Combustor

Q

Exhaust
Turbine
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T4’=576 K
T4 = 656 K
P4=101kA

Combustor
Turbine
=10
Combustor

Q

Exhaust
Turbine
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T4’=576 K
T4 = 656 K
P4=101kA

Combustor
Turbine
=10

14,100kJ

Combustor
Exhaust
Q
Subtract the Work done by the compressor (WC)from the work done on the
turbine (WT) to determine the useful work done by the engine on the aircraft.
Useful Work = WT – WC.

Useful Work = (45,600-31,500)=14,100 kJ
Combustor
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T4’=576 K
T4 = 656 K
P4=101kA

Combustor
Turbine
=10

14,100kJ

Combustor
Exhaust
Q=50900kJ
Combustor
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T4’=576 K
T4 = 656 K
P4=101kA

Combustor
Turbine
=10

14,100kJ

Combustor
Exhaust
Q=50900kJ
Efficiency
T1=288 K
P1=101kPa

m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

Combustor

Turbine
=10

T4’=576 K
T4 = 656 K
P4=101kA

14,100kJ

Combustor
Exhaust
Q=50900kJ
T1=288 K
P1=101kPa

m=100kg/s

Part 3 T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

Combustor

Turbine
=10

T4’=576 K
T4 = ? K
P4=?kA

14,100kJ

Combustor

Q=50900kJ
Therefore the work
done by the turbine is
also 31,500kJ
T1=288 K
P1=101kPa

m=100kg/s

Part 3 T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

Combustor
Combustor

Q=50900kJ

Turbine
=10

T4’=576 K
T4 = 797 K
P4=?kA

Nozzle
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor
Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=?kA

Nozzle
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor
Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kPa

Nozzle
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor
Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kA

Nozzle

P5
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kA

Nozzle

Combustor
P5=129kPa

As P5 is > P1 the nozzle is choked.
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kA

Nozzle

Combustor
P5=129kPa
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kA

Nozzle

Combustor
P5=129kPa
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kA

Nozzle

Combustor
P5=129kPa
T5=664K
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kA

Nozzle

Combustor
P5=129kPa
T5=664K
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kA

Nozzle

Combustor
P5=129kPa
T5=664K
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kA

Nozzle

Combustor
P5=129kPa
T5=664K
Calculate the Specific Fuel Consumption of the engine.

The burning of the fuel heats the air from T2 to T3
Heat Energy required is: Q=m.cp(T3- T2 )
Q = 100 (1)(1112-603) = 50871kJ
T1=288 K
P1=101kPa

m=100kg/s

Part 3

T3=1112 K
T2’=556 K
P3=1010kPa
T2=603 K
P2=1010kPa Q=50900kJ
Compressor
=10

Combustor

Turbine
=10

T4’=741 K
T4 = 797 K
P4=244kPa

Nozzle

Combustor
P5=129kPa
T5=664K
What happens when we install an
afterburner?
T1=288 K
P1=101kPa

m=100kg/s

Afterburner
T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

Combustor

T4’=576 K
T4 = 797 K
P4=244kPa

Turbine
=10

T5 = ? K
P5=?

Afterburner

Combustor

Q=50900kJ
The exhaust gas is reheated to 2000K. the calculations are the
same as that the dry turbojet, but now the nozzle inlet
temperature is 2000K.

Nozzle
m=100kg/s

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T3=1112 K
P3=1010kPa
Q=50900kJ
Combustor
Combustor

Turbine
=10

T4’=576 K
T4 = 797 K
P4=244kPa

T5 = ? K
P5=129kPa

Afterburner

Nozzle

T1=288 K
P1=101kPa

Afterburner
m=100kg/s

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T3=1112 K
P3=1010kPa
Q=50900kJ
Combustor
Combustor

Turbine
=10

T4’=576 K
T4 = 797 K
P4=244kPa

T5 = 1667 K
P5=129kPa

Afterburner

Nozzle

T1=288 K
P1=101kPa

Afterburner
m=100kg/s

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T3=1112 K
P3=1010kPa
Q=50900kJ
Combustor

T4’=576 K
T4 = 797 K
P4=244kPa

Turbine
=10

Combustor

At the throat of the nozzle, the air is travelling at the
speed of sound. Determine the velocity of the jet.

T5 = 1667 K
P5=129kPa

Afterburner

Nozzle

T1=288 K
P1=101kPa

Afterburner
m=100kg/s

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T3=1112 K
P3=1010kPa
Q=50900kJ
Combustor
Combustor

Turbine
=10

T4’=576 K
T4 = 797 K
P4=244kPa

T5 = 1667 K
P5=129kPa

Afterburner

Nozzle

T1=288 K
P1=101kPa

Afterburner
m=100kg/s

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T3=1112 K
P3=1010kPa
Q=50900kJ
Combustor
Combustor

Turbine
=10

T4’=576 K
T4 = 797 K
P4=244kPa

T5 = 1667 K
P5=129kPa

Afterburner

Nozzle

T1=288 K
P1=101kPa

Afterburner
m=100kg/s

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T3=1112 K
P3=1010kPa
Q=50900kJ
Combustor
Combustor

Turbine
=10

T4’=576 K
T4 = 797 K
P4=244kPa

T5 = 1667 K
P5=129kPa

Afterburner

Nozzle

T1=288 K
P1=101kPa

Afterburner
m=100kg/s

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

T3=1112 K
P3=1010kPa
Q=50900kJ
Combustor
Combustor

Turbine
=10

T4’=576 K
T4 = 797 K
P4=244kPa

T5 = 1667 K
P5=129kPa

Afterburner

Nozzle

T1=288 K
P1=101kPa

Afterburner
m=100kg/s

T3=1112 K
P3=1010kPa

T2’=556 K
T2=603 K
P2=1010kPa
Compressor
=10

Combustor

Turbine
=10

T4’=576 K
T4 = 797 K
P4=244kPa

T5 = 1667 K
P5=129kPa

Afterburner

Combustor
Q=50900kJ
m=1.18kg

Q=120300kJ
M=2.797kg

Nozzle

T1=288 K
P1=101kPa

Afterburner
Comparison between Afterburner and
Jet Engine
With only the Engine

Contenu connexe

Tendances

Aircraft Interiors and Cabin Modifications. Eric Duvivier, Chief Project Mana...
Aircraft Interiors and Cabin Modifications. Eric Duvivier, Chief Project Mana...Aircraft Interiors and Cabin Modifications. Eric Duvivier, Chief Project Mana...
Aircraft Interiors and Cabin Modifications. Eric Duvivier, Chief Project Mana...
ATOEvents
 
Aircraft instrumentsystems
Aircraft instrumentsystemsAircraft instrumentsystems
Aircraft instrumentsystems
Mahnil
 
Aircraft navigation system
Aircraft navigation systemAircraft navigation system
Aircraft navigation system
Krishikesh Singh
 
Lesson 2 basic aerodynamics
Lesson 2 basic aerodynamicsLesson 2 basic aerodynamics
Lesson 2 basic aerodynamics
Heather Howley
 

Tendances (20)

EFIS on Airbus A320 / A330
EFIS on Airbus A320 / A330EFIS on Airbus A320 / A330
EFIS on Airbus A320 / A330
 
Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (1)
Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (1)Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (1)
Aerospace Propulsion Study For Shenyang Aerospace University by Lale420 (1)
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
Aircraft Interiors and Cabin Modifications. Eric Duvivier, Chief Project Mana...
Aircraft Interiors and Cabin Modifications. Eric Duvivier, Chief Project Mana...Aircraft Interiors and Cabin Modifications. Eric Duvivier, Chief Project Mana...
Aircraft Interiors and Cabin Modifications. Eric Duvivier, Chief Project Mana...
 
FIA16: Leonardo Aircraft Division: M-346 programme - the dual role concept
FIA16: Leonardo Aircraft Division: M-346 programme - the dual role conceptFIA16: Leonardo Aircraft Division: M-346 programme - the dual role concept
FIA16: Leonardo Aircraft Division: M-346 programme - the dual role concept
 
Fire protection
Fire protectionFire protection
Fire protection
 
Aircraft instrumentsystems
Aircraft instrumentsystemsAircraft instrumentsystems
Aircraft instrumentsystems
 
Aircraft navigation system
Aircraft navigation systemAircraft navigation system
Aircraft navigation system
 
A320 auto flight
A320  auto flightA320  auto flight
A320 auto flight
 
EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)
EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)
EASA part 66 module exam Module - 5 EFIS(Electronic Flight instrument system)
 
Aircraft inspections
Aircraft inspectionsAircraft inspections
Aircraft inspections
 
High Speed Aerodynamics
High Speed AerodynamicsHigh Speed Aerodynamics
High Speed Aerodynamics
 
B737 NG APU
B737 NG APUB737 NG APU
B737 NG APU
 
B737 NG Engines
B737 NG EnginesB737 NG Engines
B737 NG Engines
 
Airspeeds | Q & A | Question Analysis | Flight Mechanics | GATE Aerospace
Airspeeds | Q & A | Question Analysis | Flight Mechanics | GATE AerospaceAirspeeds | Q & A | Question Analysis | Flight Mechanics | GATE Aerospace
Airspeeds | Q & A | Question Analysis | Flight Mechanics | GATE Aerospace
 
ASW-22DB (Eta Biter) Evolution
ASW-22DB (Eta Biter) EvolutionASW-22DB (Eta Biter) Evolution
ASW-22DB (Eta Biter) Evolution
 
Aircraft control systems
Aircraft control systemsAircraft control systems
Aircraft control systems
 
第9章 航天器姿态控制系统.ppt
第9章 航天器姿态控制系统.ppt第9章 航天器姿态控制系统.ppt
第9章 航天器姿态控制系统.ppt
 
Aerodynamics
Aerodynamics Aerodynamics
Aerodynamics
 
Lesson 2 basic aerodynamics
Lesson 2 basic aerodynamicsLesson 2 basic aerodynamics
Lesson 2 basic aerodynamics
 

En vedette

Turbine manufacturing process
Turbine manufacturing processTurbine manufacturing process
Turbine manufacturing process
physics101
 
0 to 2,500 Customers with No Cold Calls
0 to 2,500 Customers with No Cold Calls0 to 2,500 Customers with No Cold Calls
0 to 2,500 Customers with No Cold Calls
HubSpot
 
Labor Market and Salary Survey in Russia
Labor Market and Salary Survey in RussiaLabor Market and Salary Survey in Russia
Labor Market and Salary Survey in Russia
Awara Direct Search
 
Lineadeltiempodelacomputacion Iiuac
Lineadeltiempodelacomputacion IiuacLineadeltiempodelacomputacion Iiuac
Lineadeltiempodelacomputacion Iiuac
Oscorp
 
Clase 4 Plan De Mercado Y Promociones Febrero
Clase 4 Plan De Mercado Y Promociones  FebreroClase 4 Plan De Mercado Y Promociones  Febrero
Clase 4 Plan De Mercado Y Promociones Febrero
deisy torrico
 
INTRODUCCION A LA INGENIERIA
INTRODUCCION A LA INGENIERIAINTRODUCCION A LA INGENIERIA
INTRODUCCION A LA INGENIERIA
Oscorp
 

En vedette (20)

How Gas Turbines Work
How Gas Turbines WorkHow Gas Turbines Work
How Gas Turbines Work
 
Frontline Waste's Detailed Concept Presentation April 2017
Frontline Waste's Detailed Concept Presentation  April 2017Frontline Waste's Detailed Concept Presentation  April 2017
Frontline Waste's Detailed Concept Presentation April 2017
 
148336910 106154-gt-combustor-final-report-v final
148336910 106154-gt-combustor-final-report-v final148336910 106154-gt-combustor-final-report-v final
148336910 106154-gt-combustor-final-report-v final
 
Acs Lng Chemistry
Acs Lng ChemistryAcs Lng Chemistry
Acs Lng Chemistry
 
ENERGICO: A Revolutionary Software Design Tool for Gas Turbine Combustor and ...
ENERGICO: A Revolutionary Software Design Tool for Gas Turbine Combustor and ...ENERGICO: A Revolutionary Software Design Tool for Gas Turbine Combustor and ...
ENERGICO: A Revolutionary Software Design Tool for Gas Turbine Combustor and ...
 
cfd analysis of combustor
cfd analysis of combustorcfd analysis of combustor
cfd analysis of combustor
 
Combustion chamber of Gas turbine power plant cycle
Combustion chamber of Gas turbine power plant cycleCombustion chamber of Gas turbine power plant cycle
Combustion chamber of Gas turbine power plant cycle
 
Types of jet propulsion engine
Types of jet propulsion engineTypes of jet propulsion engine
Types of jet propulsion engine
 
Turbine manufacturing process
Turbine manufacturing processTurbine manufacturing process
Turbine manufacturing process
 
Trent
TrentTrent
Trent
 
0 to 2,500 Customers with No Cold Calls
0 to 2,500 Customers with No Cold Calls0 to 2,500 Customers with No Cold Calls
0 to 2,500 Customers with No Cold Calls
 
Development Applications 2008 05 26
Development Applications 2008 05 26Development Applications 2008 05 26
Development Applications 2008 05 26
 
Labor Market and Salary Survey in Russia
Labor Market and Salary Survey in RussiaLabor Market and Salary Survey in Russia
Labor Market and Salary Survey in Russia
 
Option Strategies
Option StrategiesOption Strategies
Option Strategies
 
Lineadeltiempodelacomputacion Iiuac
Lineadeltiempodelacomputacion IiuacLineadeltiempodelacomputacion Iiuac
Lineadeltiempodelacomputacion Iiuac
 
2500 years of learning theory: The good, the bad & the ugly - Donald Clark
2500 years of learning theory: The good, the bad & the ugly - Donald Clark2500 years of learning theory: The good, the bad & the ugly - Donald Clark
2500 years of learning theory: The good, the bad & the ugly - Donald Clark
 
Atelier (re)Commencez votre plan média
Atelier (re)Commencez votre plan média Atelier (re)Commencez votre plan média
Atelier (re)Commencez votre plan média
 
Clase 4 Plan De Mercado Y Promociones Febrero
Clase 4 Plan De Mercado Y Promociones  FebreroClase 4 Plan De Mercado Y Promociones  Febrero
Clase 4 Plan De Mercado Y Promociones Febrero
 
Schaarheftafels van Gruse
Schaarheftafels van GruseSchaarheftafels van Gruse
Schaarheftafels van Gruse
 
INTRODUCCION A LA INGENIERIA
INTRODUCCION A LA INGENIERIAINTRODUCCION A LA INGENIERIA
INTRODUCCION A LA INGENIERIA
 

Similaire à Jet engine ideal analysis

GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
ssuser5a6db81
 
Calculation of Turbine Efficiency
Calculation of Turbine EfficiencyCalculation of Turbine Efficiency
Calculation of Turbine Efficiency
Jahanzeb Khan
 

Similaire à Jet engine ideal analysis (20)

Electric power generation excercises
Electric power generation excercisesElectric power generation excercises
Electric power generation excercises
 
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptGas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.ppt
 
UNIT-2_Part3_RANKINE CYCLE.pdf
UNIT-2_Part3_RANKINE CYCLE.pdfUNIT-2_Part3_RANKINE CYCLE.pdf
UNIT-2_Part3_RANKINE CYCLE.pdf
 
integrated brayton and rankine cycle
integrated brayton and rankine cycle integrated brayton and rankine cycle
integrated brayton and rankine cycle
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
 
Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solution
 
Process Calculation - simple distillation
Process Calculation - simple distillationProcess Calculation - simple distillation
Process Calculation - simple distillation
 
Calculation of Turbine Efficiency
Calculation of Turbine EfficiencyCalculation of Turbine Efficiency
Calculation of Turbine Efficiency
 
Thermo problem set no. 2
Thermo problem set no. 2Thermo problem set no. 2
Thermo problem set no. 2
 
Thermodynamic assignment 2
Thermodynamic assignment 2Thermodynamic assignment 2
Thermodynamic assignment 2
 
Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
 
Unit 6-refrigeration-part-1
Unit 6-refrigeration-part-1Unit 6-refrigeration-part-1
Unit 6-refrigeration-part-1
 
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar ThermalLecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
 
DJA3032 CHAPTER 2
DJA3032   CHAPTER 2DJA3032   CHAPTER 2
DJA3032 CHAPTER 2
 
Board exam on druyers
Board exam on druyersBoard exam on druyers
Board exam on druyers
 
Heat engine numerical data
Heat engine numerical dataHeat engine numerical data
Heat engine numerical data
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysis
 
2 gas turbinepp
2 gas turbinepp2 gas turbinepp
2 gas turbinepp
 

Dernier

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Dernier (20)

HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 

Jet engine ideal analysis