SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
Samir Rafla: Principles of Cardiology pages 62-86
                                   HEART FAILURE
Heart Failure means that the heart cannot pump sufficient blood for body needs.
Classification of heart failure:
A: 1. Left-sided heart failure.
2. Right-sided heart failure.
3. Combined left and right sided heart failure.
B: 1. Systolic heart failure.
2. Diastolic heart failure (heart failure with preserved systolic function.
C: 1. Forward failure (eg cardiogenic shock).
2. Backward failure (pulmonary congestion and pulmonary edema).
D: 1. Low output failure.
2. High output failure (eg in hyperthyroidism, anemia...)


                        The pathophysiology heart of heart failure
The causes of heart failure: The heart fails either because it is subjected to an
overwhelming load, or because the heart muscle is disordered:
   A volume load is imposed by disorders which demand that the ventricle expels
more blood per minute than is normal. Examples include thyrotoxicosis and anemia, in
which the total cardiac output is increased; and mitral regurgitation and aortic
regurgitation, in which the left ventricle has to expel not only the normal forward flow
into the aorta but also the large volume of regurgitated blood as well.
   A pressure load is imposed by disorders which increase resistance to outflow
from the ventricles (eg systemic hypertension and by aortic stenosis).
   Disorders of myocardial function result not only from diminished contractility but
also from loss of contractile tissue, as occurs in myocardial infarction. This is the
commonest cause of heart failure. An additional factor in this condition is a
paradoxical movement of infarcted muscle which further increases the work of the
remaining myocardium.

                                            62
Dilatation of the heart - increase in end-diastolic volume
In response to a volume load, the heart dilates, i.e. the ventricular volume is increased.
Up to a point, dilatation is a normal and efficient response.
Hypertrophy of the heart
When the ventricle has to face a chronic increase of pressure load, such as that
imposed by arterial hypertension, aortic stenosis or pulmonary hypertension, the
myocardium hypertrophies, i.e. it increases in weight as a result of an enlargement of
individual muscle fibres.
Cellular changes in heart failure: Changes include:
Abnormal calcium metabolism: Heart failure results in changes in excitation
contraction coupling.
• Changes in myocardial gene expression.
In some types of heart failure, a process of cell self-destruction may be initiated,
resulting in further loss of myocytes and progressive impairment of ventricular
function. The process of ‘programmed cell death’ is termed apoptosis.


Neuroendocrine response to heart failure
Cardiac failure activates several components of the neuroendocrine system, which
play an important intermediary role in its clinical manifestations:
   Sympathetic nervous system. Activation of the sympathetic nervous system results
in an increase in myocardial contractility, heart rate, and vasoconstriction of arteries
and veins. Although this may be beneficial in maintaining blood pressure, it is adverse
in so far as it increases preload, afterload, and myocardial oxygen requirement. There
is also an increased plasma noradrenaline (norepinephrine), but myocardial
catecholamines are reduced.
   Renin-angiotensin-aldosterone systems. Both the fall in cardiac output itself and
the increase in sympathetic tone reduce effective blood flow to the kidney and,
consequently, increase renin secretion. As a result, there is a rise in angiotensin II
levels, which leads directly to vasoconstriction and indirectly, by stimulating

                                           63
aldosterone secretion, to sodium retention and the expansion of blood volume. This is
advantageous in so far as increasing preload helps to maintain stroke volume by the
Starling mechanism, but it does so at the expense of circulatory congestion.




        Fig: some of the neuroendocrine and renal responses to cardiac failure


   Atrial natriuretic peptide (ANP). Distension of the atria leads to the release of this
peptide which has natriuretic and vasodilator properties. Levels of ANP are elevated in
patients with heart failure and correlate with functional class. In addition, ANP has
been suggested as a screening test to aid in the diagnosis of heart failure.
   Heart failure results in local vasoconstriction. This is partly a result of a reduced
responsiveness to local vasodilators (endothelial derived relaxing factor = nitric oxide)
and to increased levels of the local vasoconstrictor, endothelin. A role for endothelin
antagonists in the treatment of heart failure has been suggested.
Regional circulations in cardiac failure
There is a redistribution of blood flow to different organs and tissues in cardiac failure.
Salt and water retention




                                            64
An almost invariable feature of cardiac failure is the retention of sodium and water.
This leads to a substantial increase in extracellular and plasma volume and plays a
large part in the production of the clinical features of cardiac failure.


Raised venous pressure in cardiac failure
When the left ventricle fails the pulmonary venous pressure rises, and when the right
ventricle fails the pressure rises in the systemic veins. The increased blood volume
resulting from sodium and water retention contributes to the venous return and is thus
a factor in producing the raised venous pressure, as is venoconstriction.


The effect of Left ventricular failure on the Lungs
When the left ventricle fails, the diastolic pressure in the left ventricle rises and with it
the left atrial pressure. Since the pulmonary veins and capillaries are in continuity with
the left atrium, the pressures in these vessels rise concomitantly. As failure advances,
the left atrial pressure progressively increases from its normal level of 5—10 mmHg to
25—30 mmHg. The hydrostatic pressure in the capillaries may lead to an exudation of
fluid from the capillaries into the alveolar walls and alveoli. The pulmonary
congestion caused by the high pulmonary venous pressure and by the changes in the
alveolar walls makes the lung more rigid (less compliant). As a result of this, more
work must be done by the respiratory muscles to move a given volume of air.


Arrhythmias in heart failure
Patients with heart failure have a high incidence of sudden death. The majority of
deaths are thought to be due to ventricular tachycardia or ventricular fibrillation.
Arrhythmia prevention in patients with heart failure is a particular problem. The
efficacy of antiarrhythmic drugs is reduced and there is, moreover, an increased
incidence of proarrhythmic side-effects. In addition, most antiarrhythmic drugs have
negative inotropic effects.



                                             65
CLINICAL SYNDROMES OF HEART FAILURE
Left heart failure
Aetiology
The features of left heart failure develop when there is a major obstruction to outflow
from the left atrium (e.g. mitral stenosis) or when the left ventricle can no longer cope
with the demands upon it. The common causes of left ventricular failure are:
•   myocardial infarction
•   systemic hypertension
•   valvular heart disease
•   Cardiomyopathy.


Clinical features: The clinical features of left-sided cardiac failure are largely the
consequence of pulmonary congestion. The symptoms are:
•   dyspnoea on exertion
•   orthopnoea and paroxysmal nocturnal dyspnoea
•   acute pulmonary oedema.
The physical signs of left ventricular failure may include:
•   pulmonary crepitations
•   third heart sound
•   pleural effusion
•   pulsus alternans — alternate large and low volume indication of severe left
ventricular failure.


Investigations
•   The chest radiograph may show features of pulmonary venous congestion,
particularly of the upper lobe, interstitial oedema and alveolar oedema.
•   The electrocardiogram (ECG) may be of value although it does not provide direct
evidence of left heart failure. For example, it is unusual for hypertension or aortic
valve disease to lead to the symptoms of left heart failure without producing ECG

                                           66
evidence of left ventricular hypertrophy first. Again, it is unusual for coronary artery
disease to lead to left heart failure if the ECG is normal. This is not, however, true of
mitral regurgitation.
•   Echocardiography: To assess left ventricular end-diastolic and end-systolic
dimensions; systolic function (Ejection Fraction). Echocardiography is also
important in the exclusion of other potentially treatable causes of heart failure such as
aortic stenosis or mitral regurgitation.
   Atrial natriuretic peptide (ANP) levels and the closely related brain natriuretic
peptide (BNP) are elevated in patients with heart failure.


Differential diagnosis
The dyspnoea of left heart failure is more likely to be provoked by lying down flat.
Patients with dyspnoea due to pulmonary disease usually have a history of asthmatic
attacks or of chronic cough and sputum.
Paroxysmal nocturnal dyspnoea and acute pulmonary oedema may be difficult to
differentiate from acute respiratory attacks. The latter are commonly associated with
bronchospasm and purulent sputum. In contrast, the patient with acute pulmonary
oedema is usually free of pulmonary infection, has fine crepitations rather than
rhonchi and is liable to cough up pink frothy sputum. Furthermore, examination
usually reveals the signs of left-sided heart disease. Correct diagnosis is of great
importance because the therapy of the two conditions is different. For example,
morphine may be lethal in respiratory failure, but invaluable in acute pulmonary
oedema. The chest radiograph is also helpful in showing signs of oedema or infection.
In cases of doubt, estimation of the arterial CO2 tension is of value because this is
usually low in acute pulmonary oedema.


Right heart failure
Aetiology
-   left ventricular failure with its consequent effects upon the pulmonary circulation.

                                           67
-   right ventricular infarction .
-   pulmonary disease, particularly chronic bronchitis and emphysema pulmonary
    hypertension .
-   pulmonary valve disease
-   tricuspid regurgitation.
-   Right sided venous congestion can result from tricuspid stenosis.


Clinical features: The characteristic features of right heart failure are:
•   Elevated jugular venous pressure. In the normal individual, the venous pressure in
the internal jugular veins does not exceed 2 cm vertically above the sternal angle when
the patient is reclining at 45° In right heart failure this figure is exceeded. Even if
normal at rest, it rises on exercise.
•    Hepatomegaly. If chronic, this may result in cirrhosis.
•    Oedema. This is of the dependent type and usually most evident in the pretibial
and ankle regions.
•    Ascites. This may occasionally occur in patients with severe right heart failure.
•    Tricuspid regurgitation. This can occur in patients with severe or long-standing
right heart failure, when right ventricular dilatation results in a functional
incompetence of the tricuspid valve. A prominent V wave may be seen in venous
pulse and a pulsatile liver edge may be palpable.
Differential diagnosis: In patients presenting with isolated signs of right heart failure,
the possibility of pericardial constriction or tamponade should be considered as an
alternative diagnosis.


Other clinical features of cardiac failure
There are a number of common but less specific features of cardiac failure:
•   Fatigue is a frequent symptom which is difficult to evaluate.
•   The nutrition of patients with cardiac failure is often good in the early stages, but
cachexia sets in as disability increases.

                                            68
•   In the very advanced case, cerebral symptoms may develop with dulling of
consciousness, confusion or changes in personality.
•   Patients with cardiac failure are prone to develop venous thrombosis and
pulmonary emboli are common.
•   Mild jaundice, due to hepatic congestion or cirrhosis, is quite frequent in right-
sided heart failure.
• Proteinuria due to renal congestion is often present.


General management of cardiac failure
The principles of treating cardiac failure may be enumerated as follows:
• the correction or amelioration of the underlying disease
• the control of precipitating factors
• the reduction of demands on the heart by weight loss and the restriction of physical
activity
• pharmacological therapy to modify the heart failure state and, particularly, to
reverse the adverse consequences of neuroendocrine and renal responses to heart
failure.
The objectives of therapy are twofold: to alleviate the symptoms caused by heart
failure and to improve the prognosis.


The correction or amelioration of the underlying cause
When heart disease is due to such causes as thyrotoxicosis or hypertension, corrective
treatment can be started immediately. In congenital and rheumatic heart disease,
surgical management is usually required.
In the case of ischaemic heart disease, the cause of heart failure is generally previous
myocardial infarction rather than ongoing ischemia. Coronary revascularization
procedures may be considered.


The control of complicating factors

                                           69
Cardiac failure is often precipitated or exacerbated by factors superimposed on the
underlying heart disease. Amongst these are:
•   arrhythmias
•   infections
•   pulmonary embolism
•   anemia
•   excessive sodium intake
•   over-exertion.
The recognition of precipitating factors is of great management of heart failure,
because the correction of conditions will often result in the abolition of symptoms.
Exercise
Rest reduces the demands on the heart and leads to a fall in venous pressure and a
reduction in pulmonary congestion. It allows a relative increase in renal blood flow
and often leads to a diuresis. However, bed rest also encourages the development of
venous thrombosis and pulmonary embolism.
The degree of physical restriction necessary depends upon the severity of the cardiac
failure. When there is severe pulmonary congestion or peripheral oedema, a period of
complete rest may be required. Complete bed rest is seldom necessary for more than a
few days, after which a gradual increase in activity should be encouraged, depending
upon the response.
In patients with lesser degrees of heart failure, regular exercise should be encouraged.
Typical exercise would be to recommend 20 to 30 mm walking three times per week.
Management of salt and water retention
Low salt diets effectively counteract cardiac failure. However, with the availability of
potent diuretic drugs, no extreme limitation of sodium intake is usually necessary.


                        PHARMACOLOGICAL THERAPY
Diuretics: The loop diuretics: furosemide (frusemide), bumetanide



                                           70
These drugs prevent reabsorption at multiple sites including the proximal and distal
tubules and the ascending limb of the loop of Henle.
Thiazide diuretics
The main mechanism is the inhibition sodium reabsorption in the distal convoluted
tubule. These drugs sometimes cause hyperglycaemia and hyperuricaemia, and may
precipitate diabetes and clinical gout.
Potassium-sparing diuretics:
This group comprises two classes of agent:
•   Spironolactone. This drug is an aldosterone antagonist, providing a weak diuresis
with a potassium-sparing action.
•   Amiloride and triamterene. These drugs inhibit sodium—potassium exchange in
the distal tubule. They have a weak diuretic effect.
Recently, spironolactone has been shown to confer an additional mortality benefit of
approximately 30% in patients with severe heart failure.
Hyperkalaemia is a potential complication, particularly in patients with impaired renal
function. Particular caution is necessary when adding potassium retaining diuretics to
ACE inhibitor therapy. Spironolactone causes breast enlargement or pain in
approximately 10% of men taking the drug.


Inhibitors of the renin-angiotensin system
Two types of pharmacological agent can be used to block the renin—angiotensin
system:
• ACE inhibitors, which inhibit the conversion of angiotensin I to angiotensin II.
• Angiotensin II receptor blocking agents provide an alternative approach to
inhibition of the rennin-angiotensin system. They block the vasoconstrictor and other
actions of angiotensin II.
ACE inhibitors
ACE inhibitors are indicated both for the treatment of symptoms and to improve
prognosis in patients with heart failure. In view of these benefits, ACE inhibitors

                                           71
should be prescribed, unless contraindicated, in patients with symptomatic heart
failure and in all patients, irrespective of symptoms, with an ejection fraction of less
than 40%.
Following myocardial infarction, ACE inhibitors are of particular value. They are
indicated not only for the treatment of failure, but also for the prevention of adverse
remodeling.
ACE inhibitors are in general well tolerated. However, a number of problems may be
encountered, including hypotension, renal impairment and cough:
•   First-dose hypotension can be minimized by reducing the dose of the ACE
inhibitor on commencing therapy and omitting diuretics for 1—2 days beforehand.
•   ACE inhibitors occasionally cause deterioration of renal function. They are
contraindicated in patients with an initial creatinine level greater than 200 mmol/L (or
creatinine > 2.6 mg/dl). Renal function should be checked routinely 1—2 Weeks after
commencing therapy.
•   Cough is a potentially troublesome side-effect, occurring in up to 10% of patients.


Angiotensin II receptor blockers
In patients intolerant of ACE inhibitors there is evidence that angiotensin receptor
blocking drugs do improve prognosis.
Other vasodilators
The widespread applicability and indications for ACE inhibitors have reduced the
importance of other vasodilators in the management of heart failure.
Nitrate vasodilators remain of value in the management of acute left ventricular
failure. Sublingual glyceryl trinitrate can be administered in the acute phase and can
be followed by an intravenous infusion. Nitrates act predominantly as venodilators.
Hydralazine, by contrast, is predominantly an arterial dilator.


Beta-blockers



                                           72
Excessive sympathetic stimulation may contribute to progression of heart failure in a
number of ways, including additional energy requirements, ventricular hypertrophy
and arrhythmias. Beta-blockers result in a reduction in mortality, of the order of 30%.
The reduction in mortality relates substantially to a reduction in sudden deaths, but
beta-blockers also benefit symptoms and have been shown to reduce hospitalizations
for heart failure. Beta-blockers have been shown to benefit patients with class II and
III heart failure and to benefit selected patients with class IV heart failure. In general,
the more severe the degree of heart failure and the worse the prognosis of the patient,
the greater the benefit to be gained from beta-blockade.
•   Patient selection is crucial. Beta-blockers should not be given in new onset or
uncontrolled heart failure. Patients presenting with acute heart failure or with an
exacerbation of chronic heart failure should be stabilized with diuretics and ACE
inhibitors before initiating a beta-blocker. Bradycardia (heart rate < 60) and
hypotension (systolic blood pressure < 100) are relative contraindications and require
particularly careful monitoring on commencement of therapy.
•   Low dose initiation of therapy is crucial.
•   Slow upward dose titration with clinical monitoring. Titration should occur at
intervals of not less than 2 weeks. Dizziness, postural hypotension and worsening
heart failure are all relatively common and may require dose reduction or cessation of
beta-blocker therapy.
Inotropic agents
Digitalis glycosides
Mechanisms of action
The inotropic action of digitalis is mediated through the sodium/potassium ATPase
(sodium) pump, to which it binds. The inhibition of this pump leads to an
accumulation of intra-cellular sodium; because of the sodium— calcium exchange
system, this results in an increase in the amount of calcium available to activate
contraction. Digitalis also has sympathomimetic and parasympathetic (vagal) effects.
The latter is clinically important, in that it causes slowing of the sinus rate.

                                             73
Indications: Digoxin is particularly indicated in patients with heart failure and atrial
fibrillation, for its beneficial effects to reduce ventricular response rate. In this setting
it is an appropriate first line agent.


                VENTRICULAR RESYNCHRONIZATION THERAPY
There is growing evidence that some individuals with severe heart failure may be
improved by biventricular pacing to provide ventricular resynchronization.
In many patients with severe heart failure, left ventricular contraction becomes
incoordinate. Delay in the spread of the electrical impulse to different regions of the
ventricle results in a dispersion of the onset of contraction. As a consequence, the
regions of the ventricle activated earliest may be relaxing by the time later regions
have started to contract. This results in an additional inefficiency of pump function,
responsible for an additional deterioration in ejection fraction and cardiac output.
Ventricular resynchronization pacing aims at pacing the septum and lateral wall of the
left ventricle simultaneously, thereby improving the synchrony of contraction. One
electrode is placed in the right ventricle, as for conventional pacing, and the other at
the left free wall. Left ventricular pacing is achieved via the coronary sinus.
Simultaneous pacing at the two sites results in a narrowing of QRS width and an
improvement in cardiac output.


Criteria of selection of patients likely to benefit most from ventricular
resynchronization pacing include:
•   Severe heart failure, New York Heart Association class III or IV
•   Left bundle branch block
•   QRS width greater than 120 ms
•   Evidence of incoordinate left ventricular contraction on echocardiography.


                            ARRHYTHMIA MANAGEMENT



                                             74
About 50% of patients with heart failure die from progressive heart failure. The other
50% die suddenly as a result of ventricular arrhythmias.
Beta-blockade has been shown to dramatically reduce sudden deaths.
There is growing evidence to suggest a role for implantable defibrillators in this
patient population. Implantable defibrillators have been shown to significantly
reduce mortality in patients with an ejection fraction less than 30%.
As implantable defibrillators can be combined with ventricular resynchronization,
there is likely to be a growing role for device therapy in the management of patients
with severe heart failure.


                       ACUTE LEFT VENTRICULAR FAILURE
Acute pulmonary oedema is a life-threatening emergency. Characteristically, the
patient is extremely breathless and frightened. The patient is unable to lie flat and
prefers to sit bolt upright. In severe cases they may cough up blood tinged, pink
sputum.
Causes of acute left ventricular failure:
-   Acute myocardial infarction.
-   Atrial fibrillation and other tachyarrhythmias.
-   Severe hypertension.
-   Myocarditis
-   Infective endocarditis with acute valve damage (incompetence).
-   Chordal rupture.
-   Cardiac tamponade
-   Acute exacerbation of chronic heart failure (due to increased sodium intake, non-
compliance with medications (eg stopping digitalis), exacerbation of hypertension,
acute arrhythmias, infection and/or fever, pulmonary embolism, anemia and
hemorrhage, thyrotoxicosis, pregnancy and child birth, infective endocarditis with
valve damage, rheumatic fever, physical emotion and stress, and prolonged
tachycardia or bradycardia).

                                            75
Causes of non-cardiac pulmonary edema:
-     Adult respiratory distress syndrome.
-     Pulmonary embolism.
-     Toxic gases.
-     Gram negative septicemia (shock-lung).
-     Diffuse pulmonary infections.
-     Aspiration.
-     Narcotic overdose especially parentral heroin.
-     Lymphatic obstruction.
-     Following cardio-pulmonary bypass.
-     Hemorrhagic pancreatitis.
Clinical features
• The patient is tachypnoeic and distressed.
• Perspiring profusely.
• Systolic pressure is frequently elevated.
• A marked tachycardia is evident with a gallop rhythm on auscultation.
• Crackles and wheeze are heard throughout the chest.
Table: Differentiating Points Between Bronchial Asthma and Cardiac Asthma
                           Bronchial Asthma            Cardiac Asthma
History of allergy         usually present             usually absent
Age                        usually young               usually older
Cardiac lesion             absent                      present (causing left heart failure)
Cough                      associated with viscid      associated with frothy pinkish
                           sputum                      sputum
Chest examination          mainly wheezes              wheezes and crepitations
Eosinophilia               usually present             absent
Circulation time           normal or short             prolonged


Investigations


                                              76
•   Chest radiograph shows diffuse haziness due to alveolar fluid. Changes generally
bilateral (Bat-wing appearance) but occasionally may be unilateral.
•   Blood gases. Arterial p02 falls. Initially pCO2 also falls due to breathing, but in
the later stages pCO2 may rise due to impaired exchange.
Management: Management of acute LVF:
•   General. A venous line should be inserted and the patient should be monitored.
•   Oxygen. This should be administered in high concentrations (60%) unless the
patient has concomitant airways disease.
•   Diamorphine. The standard dose of diamorphine is 5 mg given intravenously.
•   Diuretics. The patient should be given intravenous furosemide (frusemide). The
usual dose would be 40 mg, but this may be increased in patients already on diuretic
therapy.
•   Nitrates. Administration of a sublingual tablet of glyceryl trinitrate has an
immediate effect of lowering pulmonary pressures and reducing pulmonary oedema.
This may be followed, if necessary, by an infusion of the drug.
•   Inotropic therapy. In cases of refractory pulmonary oedema, inotropic therapy
should be considered. Aminophylline 250 mg i.v. over 10 mm is frequently effective.
Alternatively, patients may be started on a dobutamine infusion, beginning at 5
µg/kg/min.


                              CARDIOGENIC SHOCK
The terms acute circulatory failure, low output state, and shock are used to describe a
syndrome comprising arterial hypotension, cold, moist and cyanosed extremities, a
rapid weak pulse, a low urine output and a diminished level of consciousness. This
pattern can arise as a result of impaired cardiac function, in which case, it is termed
cardiogenic shock.
This clinical pattern is common to a number of other disorders and cardiogenic shock
must be differentiated from other causes of shock, including:



                                           77
•   hypovolaemic shock, eg by haemorrhage and loss of fluid from burns, vomiting
and diarrhoea
•   septicaemic shock
•   anaphylactic shock
•   acute pancreatitis.
Shock is described as cardiogenic when it is clearly cardiac in origin. This may be due
to many different causes, including myocardial infarction, massive pulmonary
embolism, dissecting aneurysm, pericardial tamponade, rupture of a valve cusp, and
arrhythmias; also pulmonary embolism. In cardiogenic shock, the central venous
pressure is usually raised, in contrast to hypovolaemic shock, in which it is
characteristically low.
Clinical features
•   In the first stage of shock, there is a fall in cardiac output and blood pressure, due
to either a diminution in venous return or to an inability of the myocardium to expel an
adequate stroke volume.
•   As a consequence of the hypotension, there is a fall in renal blood flow, with
oliguria.
•   Reflex tachycardia occurs.
•   Compensatory reflex arteriolar vasoconstriction further reduces blood flow to the
kidneys, abdominal viscera, muscle and skin. Vasodilatation of the cerebral and
coronary vessels permits the maintenance of a relatively good blood flow in these
territories. If the vasoconstriction is sufficiently great, the blood pressure may be kept
at or close to normal levels but at the expense of producing tissue hypoxia with
consequent acidosis.
Management of cardiogenic shock
General management
If the patient is in severe pain or distress, opiates should be given intravenously
(provided there is no contraindication) and high-flow oxygen administered, preferably
by a tight-fitting face mask making use of the Venturi principle, or by mechanical

                                           78
ventilation. Unless there is pulmonary oedema, the patient should be laid flat, with the
legs slightly raised. A catheter should be introduced to measure urinary output.
Arterial blood gases and pH should be monitored. A Swan-Ganz balloon- tip catheter
should be used to obtain pulmonary artery and ‘pulmonary capillary wedge’ pressures
if a cardiac or pulmonary cause is known or suspected (recently this invasive
monitoring was considered not mandatory in some cases). As measurement of blood
pressure by a sphygmomanometer is unreliable in severe shock, direct arterial pressure
monitoring should be undertaken, when possible.


Correction of hypovolaemia
Although left ventricular filling pressures are most commonly elevated in patients with
cardiogenic shock, this is not always the case. Patients may have undergone a period
of prior diuretic therapy resulting in fluid depletion. Alternatively, in cases of right
ventricular infarction the left ventricle may be under filled. A Swan—Ganz catheter
enables pulmonary artery wedge pressure to be estimated to achieve an optimal
pressure of between 18 and 20 mmHg. If the pressure is below this level, saline should
be administered to increase the wedge pressure and optimize cardiac output
Inotropic agents
These drugs enhance myocardial contractility but at the expense of increased oxygen
consumption. Dopamine and dobutamine are most frequently used.
The effects of dopamine, a natural precursor of noradrenaline (norepinephrine),
depend upon the dose. Administered intravenously in a dosage of 2—5 µg/kg/min, it
causes dilatation of renal and mesenteric vessels; at doses of 5—10 µg/kg/min, it
increases myocardial contractility and cardiac output. At higher doses, it causes
vasoconstriction (it should not be infused directly into a peripheral vein as leakage
may cause local necrosis). Dopamine may induce nausea and vomiting, and can lead
to an excessive tachycardia and arrhythmias.




                                          79
Dobutamine is a synthetic sympathomimetic agent whose predominant action is one of
stimulating activity. It is less likely to cause vasoconstriction or tachycardia than
dopamine. It is given by intravenous infusion at a rate of 2.5—10 µg/kg/min.
Mechanical support
The intra-aortic balloon pump is of value in acute myocardial infarction if shock has
been caused by a surgically correctable lesion, such as a ventricular septal defect or
papillary muscle rupture.
                         REFRACTORY HEART FAILURE
Heart failure is termed refractory when it persists or deteriorates despite intensive
therapy. Causes:
-   Hyperthyroidism
-   Anemia
-   Recurrent pulmonary emboli
-   Atrial fibrillation and other arrhythmias
-   Multiple myocardial infarcts, multivessel coronary disease
-   Hypertension uncontrolled
-   Pneumonia, other infections, chronic obstructive pulmonary disease with
exacerbations.
-   Infective endocarditis
-   Rheumatic activity
-   Pregnancy
-   Constrictive pericarditis and endomyocardial fibrosis
-   Left ventricular aneurysm
-   The myocardium reached end stage with fibrosis, scars, and multiple infarcts.
Diagnosis and Treatment: according to cause.


    ACUTE EXACERBATION ON TOP OF CHRONIC HEART FAILURE
Cause, diagnosis and treatment: Review above page 69.



                                            80
INFECTIVE ENDOCARDITIS


Infective endocarditic can occur in two ways:
1.    When the heart valves and endocardium are damaged, organisms of low
pathogenicity (e.g. streptococcus viridans) can invade them and produce a slowly
progressive infection, i.e. subacute bacterial (or infective) endocarditis.
2.    Normal valves and endocardium can be invaded by organisms of high
pathogenicity (e.g. staphylococcus aureus, pneumococcus, gonococcus) in the course
of a fulminating septicemia originating in another organ. In these cases the course is
usually acute, i.e. acute bacterial (or infective) endocarditis.


SITE OF INVOLVEMENT:
-    Subacute infective endocarditis occur on top of a preexisting heart disease, e.g.
chronic rheumatic heart disease, congenital heart disease, etc. or on artificial
(prosthetic) valve.
-    It most commonly complicates mitral regurgitation, aortic stenosis, aortic
regurgitation, calcific or sclerotic aortic valve, ventricular septal defect, patent ductus
arteriosus, bicuspid aortic valve or artificial valves.
-    It is less common in cases of Fallot’s tetralogy and pure mitral stenosis. It is very
rare in cases of atrial septal defect. Endocarditis of the tricuspid valve occurs in
intravenous drug abusers who inject drugs under septic conditions.
-    It is more common in the left side of the heart than the right side.

                                             81
ORGANISM:
The most common causative organism is Streptococcus viridans. Less common are
Staphylococcus aureus and enterococcus. Fungal endocarditis is caused by candida or
aspergillus and it is common in patients receiving large doses of antibiotic, steroids or
cytotoxic drugs. It is also common in drug abusers and in infections of prosthetic
materials placed in the circulation e.g. indwelling catheters, prosthetic valves, etc.
SOURCE OF INFECTION:
Bacteremia, by dental extraction and other dental procedures, urinary catheterization,
labor, abortion, upper respiratory infection, etc. But often the source of infection is
unknown.


CLINICAL PICTURE:
1. Onset is usually insidious with fever, sweating, arthralgia, malaise, toxic anemic
look.
2. Persistent fever is usually of low grade but varies, with pallor and earthy “café au
lait” facies.
3. The heart may show the following:
a. There is always evidence of pre-existing heart disease.
b. Change or increase of existing murmurs or the development of new murmurs due
to destruction of heart valves by the infection.
c. In advanced cases heart failure results from toxic myocarditis and the effects of
valvular defects.
4. The spleen is moderately enlarged and tender in most cases.
5. Clubbing of the fingers occurs after 5-6 weeks.
6. Involvement of the kidney may result in
a. Hematuria, whether microscopic or macroscopic, and proteinuria occurs in most
cases.
b. A picture of immune complex acute glomerulonephritis.

                                            82
c. Renal failure may complicate advanced cases.
d. Renal infarction may cause pain in the loins and hematuria.
7. Embolism may involve any organ, e.g. spleen, kidney, limbs, brain, retina,
mesenteries. It produces variable signs and symptoms of infarction depending on the
site and size of the embolus and may cause mycotic aneurysm. Pulmonary embolism
may complicate endocarditis involving the right cardiac chambers. Retinal emboli or
immune complexes cause areas of hemorrhage with pale center (Roth spots).
8. Neurologic manifestations include:
a. Infective endocarditis sometimes presents as cerebral embolism. Septic infarction
may result in cerebral abscess.
b. Cerebral or subarachnoid hemorrhage may result from rupture of a mycotic
aneurysm.
c. A picture stimulating meningitis or encephalitis may occur.
9. Skin lesions include:
a. The commonest are petechial hemorrhages. They appear as crops of small brown
red spots that do not disappear on pressure. They are most commonly found in the
chest, neck, palate and conjunctiva.
b. Osler nodules are tender intracutaneous nodules usually found in the pulps of
finger and in the thenar and hypothenar eminence.
c. More rarely streaks of hemorrhage under the nails (splinter hemorrhage), or flat
erythematous macules in the palms and soles (Janeway lesions) may be seen.


DIAGNOSIS:
1.   Bacterial endocarditis must always be suspected in any patient with a murmur or
a known heart disease who develops an unexplained or prolonged fever.
2.   When bacterial endocarditis is suspected the diagnosis is confirmed by blood
culture. Culture must be done for aerobic and anaerobic bacteria and fungi and must
be incubated for up to 3 weeks to allow slow growing organisms to emerge. When an
organism is isolated its antibiotic sensitivity must be tested. Cultures may also be

                                         83
negative in fungal endocarditis and in infections by fastidious or slowly growing
organisms, but most commonly in those who recently received antibiotic therapy.
3. Echocardiography is essential and may show vegetations on the valves, an abscess
on the valve ring, and the underlying heart disease. Transesophageal echocardiography
is more sensitive than the transthoracic technique.
4. Urine examination commonly shows microscopic or macroscopic
5. Hematuria. Red cell casts and heavy proteinuria indicate the presence of immune
complex glomerulonephritis.
6. Blood examination shows elevated ESR, anemia and sometimes leukocytosis.


Duke criteria for diagnosis of IE:
I- Definite IE:
A- Pathological criteria:
1- Microorganisms--------culture or histology or
2- Pathological lesions----vegetations, abscess confirmed by histology
b- Clinical criteria: (2 major, or 1 major +3 minor, or 5 minor)
*Major criteria:
1- Positive blood culture for IE.
2- Evidence of endocardial involvement:
Positive echo---vegetations, abscess, new dehiscence of prosthetic valve, or new or
worsened valvular regurgitation.
* Minor criteria:
1- Predisposition: heart disease, or IV drug use.
2- Fever: >38 c
3- Vascular phenomena:
4- Immunologic phenomena:
5- Microbiological evidence:
6- Echo findings:
II- Possible IE:

                                           84
Findings consistent with IE that fall short of (definite) but not (rejected)
III- Rejected: Firm alternative diagnosis for manifestations of endocarditis or
Resolution of manifestations of endocarditis, antibiotic for 4 days or less


COMPLICATIONS:
The most important complications are:
1. Arterial emboli may cause hemiplegia, aphasia, infarction of the bowel, kidney,
lung, or ischemia or gangrene of arm or leg.
2. Destruction or perforation of cardiac valves. Large vegetations may interfere with
prosthetic valve function.
3. Congestive cardiac failure.
4. Uremia.


DIFFERENTIAL DIAGNOSIS:
The most important differential diagnosis is:
a.   Rheumatic activity
b.   Intercurrent infections and fevers.
1.   Sometimes, it may be very difficult to differentiate infective endocarditis from
rheumatic activity. The presence of enlarged spleen, clubbing of the fingers, petechiae,
embolic manifestations and hematuria points towards infective endocarditis. On the
other hand, the appearance of fleeting arthritis, erythema marginatum, subcutaneous
nodules and evidence of previous streptococcal throat infection favours the diagnosis
of rheumatic activity. When in doubt, multiple blood cultures should be done and the
patient should be treated as infective endocarditis.
2.   Infective endocarditis must be differentiated from other causes of fever in
patients with previous heart disease, e.g. specific infections as brucella, typhoid,
tuberculosis etc., connective tissue diseases, lymphomas, etc. These diseases are
diagnosed by their specific signs and tests.



                                            85
PROPHYLAXIS:
1.    Amoxicillin (2 gm) prophylaxis should be given orally to all patients with
rheumatic or congenital heart disease, one hour before all procedures that may result
in bacteremia. These include dental extraction, tonsillectomy, urethral catheterization,
prostatic massage, delivery, abortion, etc. In cases of penicillin sensitivity
clindamycin, erythromycin or vancomycin can be used.
2.    In patients at very high risk of developing endocarditis (e.g. those with prosthetic
valves or history of previous endocarditis), more intensive prophylaxis is required.
Ampicillin 2 gm IV or IM should be given 30 minutes before the procedure together
with gentamycin 1.5 mg/kg. This should be repeated 6 hours later.


TREATMENT:
-    Streptococcus viridans is usually penicillin sensitive and is eradicated by giving 3
million units of penicillin l.V. every 4 hours (18 million per day) for 3-4 weeks
together with gentamycin 1 mg/kg every 8 hours I.M. for the first two weeks of
treatment. For penicillin resistant streptococci and for penicillin allergic patient
vancomycin is given 15 mg/kg/12 hours + gentamycin.
1.    Enterococcus is less sensitive and needs 20-40 million units of penicillin G I.V.
plus gentamycin 3 mg/kg I.M. daily. Ampicillin in a dosage of 2 gm every 4 hours
I.M. may be substituted for penicillin. The effective dose should be maintained for at
least 6-8 weeks.
2.    Staphylococcus: most strains secrete penicillinase and these should be treated by
penicillinase-resistant penicillins (nafcillin or oxacillin) or cefazolin or vancomycin 15
mg/kg/12 hours for 6 weeks. An aminoglycoside antibiotic and rifampicin 300 mg
twice daily may be added.
3.    Culture-negative endocarditis patients should be treated as enterococcal
endocarditis.


                             Surgery will also be needed if:

                                           86
a.   Infection cannot be controlled.
b.   An abscess forms around the valve ring.
c.   Very big vegetations that may cause major emboli.
d.   Congestive heart failure develops due to destruction or perforation of a valve.




                                          87

Contenu connexe

Tendances

Tendances (20)

Congestive heart failure
Congestive heart failureCongestive heart failure
Congestive heart failure
 
Pathophysiology of "Heart failure"
Pathophysiology of "Heart failure"Pathophysiology of "Heart failure"
Pathophysiology of "Heart failure"
 
Heart failure pathophysiology
Heart failure pathophysiologyHeart failure pathophysiology
Heart failure pathophysiology
 
Heart failure
Heart failureHeart failure
Heart failure
 
Congestive Cardiac Failure presentation and diagnosis
Congestive Cardiac Failure presentation and diagnosisCongestive Cardiac Failure presentation and diagnosis
Congestive Cardiac Failure presentation and diagnosis
 
Ischemic Heart Disease:Pathophysiology
Ischemic Heart Disease:PathophysiologyIschemic Heart Disease:Pathophysiology
Ischemic Heart Disease:Pathophysiology
 
Heart failure
Heart failureHeart failure
Heart failure
 
Heart failure
Heart failureHeart failure
Heart failure
 
CONGESTIVE CARDIAC FAILURE
CONGESTIVE CARDIAC FAILURECONGESTIVE CARDIAC FAILURE
CONGESTIVE CARDIAC FAILURE
 
Heart failure
Heart failureHeart failure
Heart failure
 
Myocardial ischemia
Myocardial ischemiaMyocardial ischemia
Myocardial ischemia
 
Congestive heart failure (chf) sushila
Congestive heart failure (chf) sushilaCongestive heart failure (chf) sushila
Congestive heart failure (chf) sushila
 
Congestive heart failure
Congestive heart failureCongestive heart failure
Congestive heart failure
 
Heart failure
Heart  failureHeart  failure
Heart failure
 
heart failure in children 2015
heart failure in children 2015heart failure in children 2015
heart failure in children 2015
 
Chf pathp physio
Chf pathp physioChf pathp physio
Chf pathp physio
 
Hypertensive heart disease (hhd)
Hypertensive heart disease (hhd)Hypertensive heart disease (hhd)
Hypertensive heart disease (hhd)
 
Congestive Heart Failure
Congestive Heart FailureCongestive Heart Failure
Congestive Heart Failure
 
Right and left ventricular hypertrophy
Right and left ventricular hypertrophyRight and left ventricular hypertrophy
Right and left ventricular hypertrophy
 
Valvular Heart Diseases
Valvular Heart DiseasesValvular Heart Diseases
Valvular Heart Diseases
 

En vedette

Samir rafla questions and answers asked in the exam of the medical rounds
Samir rafla questions and answers asked in the exam of the medical roundsSamir rafla questions and answers asked in the exam of the medical rounds
Samir rafla questions and answers asked in the exam of the medical roundsAlexandria University, Egypt
 
Samir rafla principles of cardiology title and contents
Samir rafla principles of cardiology  title and contentsSamir rafla principles of cardiology  title and contents
Samir rafla principles of cardiology title and contentsAlexandria University, Egypt
 
Samir rafla cardiac arrhythmias for 5th year medical students
Samir rafla  cardiac arrhythmias for 5th year medical studentsSamir rafla  cardiac arrhythmias for 5th year medical students
Samir rafla cardiac arrhythmias for 5th year medical studentsAlexandria University, Egypt
 
Samir Rafla Principles of Cardiology pages 112 to end revised
Samir Rafla Principles of Cardiology pages 112 to end  revisedSamir Rafla Principles of Cardiology pages 112 to end  revised
Samir Rafla Principles of Cardiology pages 112 to end revisedAlexandria University, Egypt
 
Samir rafla principles of cardiology pages 1 61 .. revised
Samir rafla principles of cardiology pages 1 61 .. revisedSamir rafla principles of cardiology pages 1 61 .. revised
Samir rafla principles of cardiology pages 1 61 .. revisedAlexandria University, Egypt
 
Real World Social CRM use cases
Real World Social CRM use casesReal World Social CRM use cases
Real World Social CRM use casesAtcore Systems
 
Tobacco budget update nov 2011a
Tobacco budget update nov 2011aTobacco budget update nov 2011a
Tobacco budget update nov 2011aBrandon Williams
 
Flower Portfolio
Flower PortfolioFlower Portfolio
Flower Portfolioallenaba
 
OpenOffice.org Magic Sandbox
OpenOffice.org Magic SandboxOpenOffice.org Magic Sandbox
OpenOffice.org Magic Sandboximacat .
 
Medialandschap uva 2013
Medialandschap uva 2013Medialandschap uva 2013
Medialandschap uva 2013Piet Bakker
 

En vedette (20)

Samir rafla questions and answers asked in the exam of the medical rounds
Samir rafla questions and answers asked in the exam of the medical roundsSamir rafla questions and answers asked in the exam of the medical rounds
Samir rafla questions and answers asked in the exam of the medical rounds
 
Samir rafla principles of cardiology pages 87 111
Samir rafla principles of cardiology pages 87 111Samir rafla principles of cardiology pages 87 111
Samir rafla principles of cardiology pages 87 111
 
Samir rafla principles of cardiology title and contents
Samir rafla principles of cardiology  title and contentsSamir rafla principles of cardiology  title and contents
Samir rafla principles of cardiology title and contents
 
Samir rafla cardiac arrhythmias for 5th year medical students
Samir rafla  cardiac arrhythmias for 5th year medical studentsSamir rafla  cardiac arrhythmias for 5th year medical students
Samir rafla cardiac arrhythmias for 5th year medical students
 
Samir Rafla Principles of Cardiology pages 112 to end revised
Samir Rafla Principles of Cardiology pages 112 to end  revisedSamir Rafla Principles of Cardiology pages 112 to end  revised
Samir Rafla Principles of Cardiology pages 112 to end revised
 
Samir rafla principles of cardiology pages 1 61 .. revised
Samir rafla principles of cardiology pages 1 61 .. revisedSamir rafla principles of cardiology pages 1 61 .. revised
Samir rafla principles of cardiology pages 1 61 .. revised
 
Poul Krogh Joergensen bronzealderens bulvaegshuse
Poul Krogh Joergensen bronzealderens bulvaegshusePoul Krogh Joergensen bronzealderens bulvaegshuse
Poul Krogh Joergensen bronzealderens bulvaegshuse
 
10x7 06 Anne-Mettes Willumsen
10x7 06 Anne-Mettes Willumsen10x7 06 Anne-Mettes Willumsen
10x7 06 Anne-Mettes Willumsen
 
Real World Social CRM use cases
Real World Social CRM use casesReal World Social CRM use cases
Real World Social CRM use cases
 
Tobacco budget update nov 2011a
Tobacco budget update nov 2011aTobacco budget update nov 2011a
Tobacco budget update nov 2011a
 
Flower Portfolio
Flower PortfolioFlower Portfolio
Flower Portfolio
 
Kirsten Nellemann og Maria Thiemke - landbebyggelse og jernhytter
Kirsten Nellemann og Maria Thiemke -  landbebyggelse og jernhytterKirsten Nellemann og Maria Thiemke -  landbebyggelse og jernhytter
Kirsten Nellemann og Maria Thiemke - landbebyggelse og jernhytter
 
Anne Boukris
Anne BoukrisAnne Boukris
Anne Boukris
 
OpenOffice.org Magic Sandbox
OpenOffice.org Magic SandboxOpenOffice.org Magic Sandbox
OpenOffice.org Magic Sandbox
 
Medialandschap uva 2013
Medialandschap uva 2013Medialandschap uva 2013
Medialandschap uva 2013
 
44 jakob bonde_gravh+©j og gravplads i fraugde
44 jakob bonde_gravh+©j og gravplads i fraugde44 jakob bonde_gravh+©j og gravplads i fraugde
44 jakob bonde_gravh+©j og gravplads i fraugde
 
TBC Rewards
TBC RewardsTBC Rewards
TBC Rewards
 
Kamilla Terkildsen - høvdingegården ved toftum næs
Kamilla Terkildsen - høvdingegården ved toftum næsKamilla Terkildsen - høvdingegården ved toftum næs
Kamilla Terkildsen - høvdingegården ved toftum næs
 
Torben Trier Christiansen, Stormandsgården fundet
Torben Trier Christiansen, Stormandsgården fundetTorben Trier Christiansen, Stormandsgården fundet
Torben Trier Christiansen, Stormandsgården fundet
 
Renee Enevold pollen i kludene
Renee Enevold pollen i kludeneRenee Enevold pollen i kludene
Renee Enevold pollen i kludene
 

Similaire à Samir rafla principles of cardiology pages 62 86

Pathophsyology left ventricular failure
Pathophsyology left ventricular failurePathophsyology left ventricular failure
Pathophsyology left ventricular failureKeren Shay
 
Heart failure.pptx
Heart failure.pptxHeart failure.pptx
Heart failure.pptxJabbar Jasim
 
Heart failure management
Heart failure managementHeart failure management
Heart failure managementHimanshu Jangid
 
Cardiac Failure Sem 5.pptx
Cardiac Failure Sem 5.pptxCardiac Failure Sem 5.pptx
Cardiac Failure Sem 5.pptxSharveen2
 
HF presentation
HF presentationHF presentation
HF presentationGeorgesBi
 
UNIT - II.pptx
UNIT - II.pptxUNIT - II.pptx
UNIT - II.pptxJane756411
 
Pathology of CVS-PR.pdf
Pathology of CVS-PR.pdfPathology of CVS-PR.pdf
Pathology of CVS-PR.pdfImtiyaz60
 
Internal Medicine Lecture 4 Chronic forms of ischemic heart disease.pdf
Internal Medicine Lecture 4 Chronic forms of ischemic heart disease.pdfInternal Medicine Lecture 4 Chronic forms of ischemic heart disease.pdf
Internal Medicine Lecture 4 Chronic forms of ischemic heart disease.pdfSani42793
 
Pathology of CVS-PR.pptx
Pathology of CVS-PR.pptxPathology of CVS-PR.pptx
Pathology of CVS-PR.pptxImtiyaz60
 
Cardiac Failure, Cardiac Shock, Cardiac Arrest, PPT
Cardiac Failure, Cardiac Shock, Cardiac Arrest,  PPTCardiac Failure, Cardiac Shock, Cardiac Arrest,  PPT
Cardiac Failure, Cardiac Shock, Cardiac Arrest, PPTDR .PALLAVI PATHANIA
 
HEART lecture MBChB III 2024.pdfnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
HEART lecture MBChB III 2024.pdfnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnHEART lecture MBChB III 2024.pdfnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
HEART lecture MBChB III 2024.pdfnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn202112360
 
Congestive cardiac failure (CCF)
Congestive cardiac failure (CCF)Congestive cardiac failure (CCF)
Congestive cardiac failure (CCF)VIGNESHROSS
 

Similaire à Samir rafla principles of cardiology pages 62 86 (20)

Pathophsyology left ventricular failure
Pathophsyology left ventricular failurePathophsyology left ventricular failure
Pathophsyology left ventricular failure
 
Heart failure.pptx
Heart failure.pptxHeart failure.pptx
Heart failure.pptx
 
Heart failure management
Heart failure managementHeart failure management
Heart failure management
 
Cardiac Failure Sem 5.pptx
Cardiac Failure Sem 5.pptxCardiac Failure Sem 5.pptx
Cardiac Failure Sem 5.pptx
 
5. heart failure
5. heart failure5. heart failure
5. heart failure
 
5. heart failure
5. heart failure5. heart failure
5. heart failure
 
Heart failure (mma) 3
Heart  failure (mma) 3Heart  failure (mma) 3
Heart failure (mma) 3
 
Congestive heart failure
Congestive heart failureCongestive heart failure
Congestive heart failure
 
HF presentation
HF presentationHF presentation
HF presentation
 
UNIT - II.pptx
UNIT - II.pptxUNIT - II.pptx
UNIT - II.pptx
 
Aortic Stenosis
Aortic StenosisAortic Stenosis
Aortic Stenosis
 
Heart Failure
Heart FailureHeart Failure
Heart Failure
 
Pathology of CVS-PR.pdf
Pathology of CVS-PR.pdfPathology of CVS-PR.pdf
Pathology of CVS-PR.pdf
 
Internal Medicine Lecture 4 Chronic forms of ischemic heart disease.pdf
Internal Medicine Lecture 4 Chronic forms of ischemic heart disease.pdfInternal Medicine Lecture 4 Chronic forms of ischemic heart disease.pdf
Internal Medicine Lecture 4 Chronic forms of ischemic heart disease.pdf
 
Heartfailure
HeartfailureHeartfailure
Heartfailure
 
Pathology of CVS-PR.pptx
Pathology of CVS-PR.pptxPathology of CVS-PR.pptx
Pathology of CVS-PR.pptx
 
Cardiac Failure, Cardiac Shock, Cardiac Arrest, PPT
Cardiac Failure, Cardiac Shock, Cardiac Arrest,  PPTCardiac Failure, Cardiac Shock, Cardiac Arrest,  PPT
Cardiac Failure, Cardiac Shock, Cardiac Arrest, PPT
 
Digoxin
DigoxinDigoxin
Digoxin
 
HEART lecture MBChB III 2024.pdfnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
HEART lecture MBChB III 2024.pdfnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnHEART lecture MBChB III 2024.pdfnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
HEART lecture MBChB III 2024.pdfnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
 
Congestive cardiac failure (CCF)
Congestive cardiac failure (CCF)Congestive cardiac failure (CCF)
Congestive cardiac failure (CCF)
 

Plus de Alexandria University, Egypt

To every girl and every woman, this word is provided.pptx
To every girl and every woman, this word is provided.pptxTo every girl and every woman, this word is provided.pptx
To every girl and every woman, this word is provided.pptxAlexandria University, Egypt
 
What is New in Electrophysiology Technologies-Samir Rafla.pptx
What is New in Electrophysiology Technologies-Samir Rafla.pptxWhat is New in Electrophysiology Technologies-Samir Rafla.pptx
What is New in Electrophysiology Technologies-Samir Rafla.pptxAlexandria University, Egypt
 
03 Samir Rafla-Sudden Cardiac Death and Resuscitation.ppt
03 Samir Rafla-Sudden Cardiac Death and Resuscitation.ppt03 Samir Rafla-Sudden Cardiac Death and Resuscitation.ppt
03 Samir Rafla-Sudden Cardiac Death and Resuscitation.pptAlexandria University, Egypt
 
Transseptal left heart catheterization birth, death, and resurrection
Transseptal left heart catheterization birth, death, and resurrectionTransseptal left heart catheterization birth, death, and resurrection
Transseptal left heart catheterization birth, death, and resurrectionAlexandria University, Egypt
 
2020 esc guidelines for the diagnosis and management of atrial fibrillation s...
2020 esc guidelines for the diagnosis and management of atrial fibrillation s...2020 esc guidelines for the diagnosis and management of atrial fibrillation s...
2020 esc guidelines for the diagnosis and management of atrial fibrillation s...Alexandria University, Egypt
 
Electrophysiology program cardio alex 2021 -uploaded by samir rafla
Electrophysiology program  cardio alex 2021 -uploaded by samir raflaElectrophysiology program  cardio alex 2021 -uploaded by samir rafla
Electrophysiology program cardio alex 2021 -uploaded by samir raflaAlexandria University, Egypt
 
0 - how to approach my patient with ventricular arrhythmia-samir rafla
0 - how to approach my patient with ventricular arrhythmia-samir rafla0 - how to approach my patient with ventricular arrhythmia-samir rafla
0 - how to approach my patient with ventricular arrhythmia-samir raflaAlexandria University, Egypt
 
Cardio egypt congress 2021 total program by hall uploaded by samir rafla
Cardio egypt congress 2021 total program by hall uploaded by samir raflaCardio egypt congress 2021 total program by hall uploaded by samir rafla
Cardio egypt congress 2021 total program by hall uploaded by samir raflaAlexandria University, Egypt
 
Covid 19 infection- diagnosis and treatment-short lecture-samir rafla
Covid 19 infection- diagnosis and treatment-short lecture-samir raflaCovid 19 infection- diagnosis and treatment-short lecture-samir rafla
Covid 19 infection- diagnosis and treatment-short lecture-samir raflaAlexandria University, Egypt
 

Plus de Alexandria University, Egypt (20)

To every girl and every woman, this word is provided.pptx
To every girl and every woman, this word is provided.pptxTo every girl and every woman, this word is provided.pptx
To every girl and every woman, this word is provided.pptx
 
What is New in Electrophysiology Technologies-Samir Rafla.pptx
What is New in Electrophysiology Technologies-Samir Rafla.pptxWhat is New in Electrophysiology Technologies-Samir Rafla.pptx
What is New in Electrophysiology Technologies-Samir Rafla.pptx
 
03 Samir Rafla-Sudden Cardiac Death and Resuscitation.ppt
03 Samir Rafla-Sudden Cardiac Death and Resuscitation.ppt03 Samir Rafla-Sudden Cardiac Death and Resuscitation.ppt
03 Samir Rafla-Sudden Cardiac Death and Resuscitation.ppt
 
AV junctional Rhythm disturbances.pptx
AV junctional Rhythm disturbances.pptxAV junctional Rhythm disturbances.pptx
AV junctional Rhythm disturbances.pptx
 
Transseptal left heart catheterization birth, death, and resurrection
Transseptal left heart catheterization birth, death, and resurrectionTransseptal left heart catheterization birth, death, and resurrection
Transseptal left heart catheterization birth, death, and resurrection
 
2020 esc guidelines for the diagnosis and management of atrial fibrillation s...
2020 esc guidelines for the diagnosis and management of atrial fibrillation s...2020 esc guidelines for the diagnosis and management of atrial fibrillation s...
2020 esc guidelines for the diagnosis and management of atrial fibrillation s...
 
Electrophysiology program cardio alex 2021 -uploaded by samir rafla
Electrophysiology program  cardio alex 2021 -uploaded by samir raflaElectrophysiology program  cardio alex 2021 -uploaded by samir rafla
Electrophysiology program cardio alex 2021 -uploaded by samir rafla
 
Ca21 program 0001-cardio alex 2021 full program
Ca21 program 0001-cardio alex 2021 full programCa21 program 0001-cardio alex 2021 full program
Ca21 program 0001-cardio alex 2021 full program
 
The old testament . genesis niv
The old testament . genesis nivThe old testament . genesis niv
The old testament . genesis niv
 
The holy gospel of jesus christ, john
The holy gospel of jesus christ, johnThe holy gospel of jesus christ, john
The holy gospel of jesus christ, john
 
The holy gospel of jesus christ luke
The holy gospel of jesus christ  lukeThe holy gospel of jesus christ  luke
The holy gospel of jesus christ luke
 
The holy gospel of jesus christ, mark
The holy gospel of jesus christ, markThe holy gospel of jesus christ, mark
The holy gospel of jesus christ, mark
 
The holy gospel of jesus christ, matthew
The holy gospel of jesus christ, matthewThe holy gospel of jesus christ, matthew
The holy gospel of jesus christ, matthew
 
Valvular heart disease2 . samir rafla
Valvular heart disease2 . samir raflaValvular heart disease2 . samir rafla
Valvular heart disease2 . samir rafla
 
0 - how to approach my patient with ventricular arrhythmia-samir rafla
0 - how to approach my patient with ventricular arrhythmia-samir rafla0 - how to approach my patient with ventricular arrhythmia-samir rafla
0 - how to approach my patient with ventricular arrhythmia-samir rafla
 
Cardio egypt congress 2021 total program by hall uploaded by samir rafla
Cardio egypt congress 2021 total program by hall uploaded by samir raflaCardio egypt congress 2021 total program by hall uploaded by samir rafla
Cardio egypt congress 2021 total program by hall uploaded by samir rafla
 
Covid 19 infection- diagnosis and treatment-short lecture-samir rafla
Covid 19 infection- diagnosis and treatment-short lecture-samir raflaCovid 19 infection- diagnosis and treatment-short lecture-samir rafla
Covid 19 infection- diagnosis and treatment-short lecture-samir rafla
 
000 summary of af new guidelines samir rafla
000 summary of af new guidelines  samir rafla000 summary of af new guidelines  samir rafla
000 summary of af new guidelines samir rafla
 
02 pacemakers and ic ds an overview-samir rafla
02 pacemakers and ic ds an overview-samir rafla02 pacemakers and ic ds an overview-samir rafla
02 pacemakers and ic ds an overview-samir rafla
 
0 samir rafla heart-failure-slideset
0 samir rafla heart-failure-slideset0 samir rafla heart-failure-slideset
0 samir rafla heart-failure-slideset
 

Dernier

Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 

Dernier (20)

Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 

Samir rafla principles of cardiology pages 62 86

  • 1. Samir Rafla: Principles of Cardiology pages 62-86 HEART FAILURE Heart Failure means that the heart cannot pump sufficient blood for body needs. Classification of heart failure: A: 1. Left-sided heart failure. 2. Right-sided heart failure. 3. Combined left and right sided heart failure. B: 1. Systolic heart failure. 2. Diastolic heart failure (heart failure with preserved systolic function. C: 1. Forward failure (eg cardiogenic shock). 2. Backward failure (pulmonary congestion and pulmonary edema). D: 1. Low output failure. 2. High output failure (eg in hyperthyroidism, anemia...) The pathophysiology heart of heart failure The causes of heart failure: The heart fails either because it is subjected to an overwhelming load, or because the heart muscle is disordered:  A volume load is imposed by disorders which demand that the ventricle expels more blood per minute than is normal. Examples include thyrotoxicosis and anemia, in which the total cardiac output is increased; and mitral regurgitation and aortic regurgitation, in which the left ventricle has to expel not only the normal forward flow into the aorta but also the large volume of regurgitated blood as well.  A pressure load is imposed by disorders which increase resistance to outflow from the ventricles (eg systemic hypertension and by aortic stenosis).  Disorders of myocardial function result not only from diminished contractility but also from loss of contractile tissue, as occurs in myocardial infarction. This is the commonest cause of heart failure. An additional factor in this condition is a paradoxical movement of infarcted muscle which further increases the work of the remaining myocardium. 62
  • 2. Dilatation of the heart - increase in end-diastolic volume In response to a volume load, the heart dilates, i.e. the ventricular volume is increased. Up to a point, dilatation is a normal and efficient response. Hypertrophy of the heart When the ventricle has to face a chronic increase of pressure load, such as that imposed by arterial hypertension, aortic stenosis or pulmonary hypertension, the myocardium hypertrophies, i.e. it increases in weight as a result of an enlargement of individual muscle fibres. Cellular changes in heart failure: Changes include: Abnormal calcium metabolism: Heart failure results in changes in excitation contraction coupling. • Changes in myocardial gene expression. In some types of heart failure, a process of cell self-destruction may be initiated, resulting in further loss of myocytes and progressive impairment of ventricular function. The process of ‘programmed cell death’ is termed apoptosis. Neuroendocrine response to heart failure Cardiac failure activates several components of the neuroendocrine system, which play an important intermediary role in its clinical manifestations:  Sympathetic nervous system. Activation of the sympathetic nervous system results in an increase in myocardial contractility, heart rate, and vasoconstriction of arteries and veins. Although this may be beneficial in maintaining blood pressure, it is adverse in so far as it increases preload, afterload, and myocardial oxygen requirement. There is also an increased plasma noradrenaline (norepinephrine), but myocardial catecholamines are reduced.  Renin-angiotensin-aldosterone systems. Both the fall in cardiac output itself and the increase in sympathetic tone reduce effective blood flow to the kidney and, consequently, increase renin secretion. As a result, there is a rise in angiotensin II levels, which leads directly to vasoconstriction and indirectly, by stimulating 63
  • 3. aldosterone secretion, to sodium retention and the expansion of blood volume. This is advantageous in so far as increasing preload helps to maintain stroke volume by the Starling mechanism, but it does so at the expense of circulatory congestion. Fig: some of the neuroendocrine and renal responses to cardiac failure  Atrial natriuretic peptide (ANP). Distension of the atria leads to the release of this peptide which has natriuretic and vasodilator properties. Levels of ANP are elevated in patients with heart failure and correlate with functional class. In addition, ANP has been suggested as a screening test to aid in the diagnosis of heart failure.  Heart failure results in local vasoconstriction. This is partly a result of a reduced responsiveness to local vasodilators (endothelial derived relaxing factor = nitric oxide) and to increased levels of the local vasoconstrictor, endothelin. A role for endothelin antagonists in the treatment of heart failure has been suggested. Regional circulations in cardiac failure There is a redistribution of blood flow to different organs and tissues in cardiac failure. Salt and water retention 64
  • 4. An almost invariable feature of cardiac failure is the retention of sodium and water. This leads to a substantial increase in extracellular and plasma volume and plays a large part in the production of the clinical features of cardiac failure. Raised venous pressure in cardiac failure When the left ventricle fails the pulmonary venous pressure rises, and when the right ventricle fails the pressure rises in the systemic veins. The increased blood volume resulting from sodium and water retention contributes to the venous return and is thus a factor in producing the raised venous pressure, as is venoconstriction. The effect of Left ventricular failure on the Lungs When the left ventricle fails, the diastolic pressure in the left ventricle rises and with it the left atrial pressure. Since the pulmonary veins and capillaries are in continuity with the left atrium, the pressures in these vessels rise concomitantly. As failure advances, the left atrial pressure progressively increases from its normal level of 5—10 mmHg to 25—30 mmHg. The hydrostatic pressure in the capillaries may lead to an exudation of fluid from the capillaries into the alveolar walls and alveoli. The pulmonary congestion caused by the high pulmonary venous pressure and by the changes in the alveolar walls makes the lung more rigid (less compliant). As a result of this, more work must be done by the respiratory muscles to move a given volume of air. Arrhythmias in heart failure Patients with heart failure have a high incidence of sudden death. The majority of deaths are thought to be due to ventricular tachycardia or ventricular fibrillation. Arrhythmia prevention in patients with heart failure is a particular problem. The efficacy of antiarrhythmic drugs is reduced and there is, moreover, an increased incidence of proarrhythmic side-effects. In addition, most antiarrhythmic drugs have negative inotropic effects. 65
  • 5. CLINICAL SYNDROMES OF HEART FAILURE Left heart failure Aetiology The features of left heart failure develop when there is a major obstruction to outflow from the left atrium (e.g. mitral stenosis) or when the left ventricle can no longer cope with the demands upon it. The common causes of left ventricular failure are: • myocardial infarction • systemic hypertension • valvular heart disease • Cardiomyopathy. Clinical features: The clinical features of left-sided cardiac failure are largely the consequence of pulmonary congestion. The symptoms are: • dyspnoea on exertion • orthopnoea and paroxysmal nocturnal dyspnoea • acute pulmonary oedema. The physical signs of left ventricular failure may include: • pulmonary crepitations • third heart sound • pleural effusion • pulsus alternans — alternate large and low volume indication of severe left ventricular failure. Investigations • The chest radiograph may show features of pulmonary venous congestion, particularly of the upper lobe, interstitial oedema and alveolar oedema. • The electrocardiogram (ECG) may be of value although it does not provide direct evidence of left heart failure. For example, it is unusual for hypertension or aortic valve disease to lead to the symptoms of left heart failure without producing ECG 66
  • 6. evidence of left ventricular hypertrophy first. Again, it is unusual for coronary artery disease to lead to left heart failure if the ECG is normal. This is not, however, true of mitral regurgitation. • Echocardiography: To assess left ventricular end-diastolic and end-systolic dimensions; systolic function (Ejection Fraction). Echocardiography is also important in the exclusion of other potentially treatable causes of heart failure such as aortic stenosis or mitral regurgitation.  Atrial natriuretic peptide (ANP) levels and the closely related brain natriuretic peptide (BNP) are elevated in patients with heart failure. Differential diagnosis The dyspnoea of left heart failure is more likely to be provoked by lying down flat. Patients with dyspnoea due to pulmonary disease usually have a history of asthmatic attacks or of chronic cough and sputum. Paroxysmal nocturnal dyspnoea and acute pulmonary oedema may be difficult to differentiate from acute respiratory attacks. The latter are commonly associated with bronchospasm and purulent sputum. In contrast, the patient with acute pulmonary oedema is usually free of pulmonary infection, has fine crepitations rather than rhonchi and is liable to cough up pink frothy sputum. Furthermore, examination usually reveals the signs of left-sided heart disease. Correct diagnosis is of great importance because the therapy of the two conditions is different. For example, morphine may be lethal in respiratory failure, but invaluable in acute pulmonary oedema. The chest radiograph is also helpful in showing signs of oedema or infection. In cases of doubt, estimation of the arterial CO2 tension is of value because this is usually low in acute pulmonary oedema. Right heart failure Aetiology - left ventricular failure with its consequent effects upon the pulmonary circulation. 67
  • 7. - right ventricular infarction . - pulmonary disease, particularly chronic bronchitis and emphysema pulmonary hypertension . - pulmonary valve disease - tricuspid regurgitation. - Right sided venous congestion can result from tricuspid stenosis. Clinical features: The characteristic features of right heart failure are: • Elevated jugular venous pressure. In the normal individual, the venous pressure in the internal jugular veins does not exceed 2 cm vertically above the sternal angle when the patient is reclining at 45° In right heart failure this figure is exceeded. Even if normal at rest, it rises on exercise. • Hepatomegaly. If chronic, this may result in cirrhosis. • Oedema. This is of the dependent type and usually most evident in the pretibial and ankle regions. • Ascites. This may occasionally occur in patients with severe right heart failure. • Tricuspid regurgitation. This can occur in patients with severe or long-standing right heart failure, when right ventricular dilatation results in a functional incompetence of the tricuspid valve. A prominent V wave may be seen in venous pulse and a pulsatile liver edge may be palpable. Differential diagnosis: In patients presenting with isolated signs of right heart failure, the possibility of pericardial constriction or tamponade should be considered as an alternative diagnosis. Other clinical features of cardiac failure There are a number of common but less specific features of cardiac failure: • Fatigue is a frequent symptom which is difficult to evaluate. • The nutrition of patients with cardiac failure is often good in the early stages, but cachexia sets in as disability increases. 68
  • 8. In the very advanced case, cerebral symptoms may develop with dulling of consciousness, confusion or changes in personality. • Patients with cardiac failure are prone to develop venous thrombosis and pulmonary emboli are common. • Mild jaundice, due to hepatic congestion or cirrhosis, is quite frequent in right- sided heart failure. • Proteinuria due to renal congestion is often present. General management of cardiac failure The principles of treating cardiac failure may be enumerated as follows: • the correction or amelioration of the underlying disease • the control of precipitating factors • the reduction of demands on the heart by weight loss and the restriction of physical activity • pharmacological therapy to modify the heart failure state and, particularly, to reverse the adverse consequences of neuroendocrine and renal responses to heart failure. The objectives of therapy are twofold: to alleviate the symptoms caused by heart failure and to improve the prognosis. The correction or amelioration of the underlying cause When heart disease is due to such causes as thyrotoxicosis or hypertension, corrective treatment can be started immediately. In congenital and rheumatic heart disease, surgical management is usually required. In the case of ischaemic heart disease, the cause of heart failure is generally previous myocardial infarction rather than ongoing ischemia. Coronary revascularization procedures may be considered. The control of complicating factors 69
  • 9. Cardiac failure is often precipitated or exacerbated by factors superimposed on the underlying heart disease. Amongst these are: • arrhythmias • infections • pulmonary embolism • anemia • excessive sodium intake • over-exertion. The recognition of precipitating factors is of great management of heart failure, because the correction of conditions will often result in the abolition of symptoms. Exercise Rest reduces the demands on the heart and leads to a fall in venous pressure and a reduction in pulmonary congestion. It allows a relative increase in renal blood flow and often leads to a diuresis. However, bed rest also encourages the development of venous thrombosis and pulmonary embolism. The degree of physical restriction necessary depends upon the severity of the cardiac failure. When there is severe pulmonary congestion or peripheral oedema, a period of complete rest may be required. Complete bed rest is seldom necessary for more than a few days, after which a gradual increase in activity should be encouraged, depending upon the response. In patients with lesser degrees of heart failure, regular exercise should be encouraged. Typical exercise would be to recommend 20 to 30 mm walking three times per week. Management of salt and water retention Low salt diets effectively counteract cardiac failure. However, with the availability of potent diuretic drugs, no extreme limitation of sodium intake is usually necessary. PHARMACOLOGICAL THERAPY Diuretics: The loop diuretics: furosemide (frusemide), bumetanide 70
  • 10. These drugs prevent reabsorption at multiple sites including the proximal and distal tubules and the ascending limb of the loop of Henle. Thiazide diuretics The main mechanism is the inhibition sodium reabsorption in the distal convoluted tubule. These drugs sometimes cause hyperglycaemia and hyperuricaemia, and may precipitate diabetes and clinical gout. Potassium-sparing diuretics: This group comprises two classes of agent: • Spironolactone. This drug is an aldosterone antagonist, providing a weak diuresis with a potassium-sparing action. • Amiloride and triamterene. These drugs inhibit sodium—potassium exchange in the distal tubule. They have a weak diuretic effect. Recently, spironolactone has been shown to confer an additional mortality benefit of approximately 30% in patients with severe heart failure. Hyperkalaemia is a potential complication, particularly in patients with impaired renal function. Particular caution is necessary when adding potassium retaining diuretics to ACE inhibitor therapy. Spironolactone causes breast enlargement or pain in approximately 10% of men taking the drug. Inhibitors of the renin-angiotensin system Two types of pharmacological agent can be used to block the renin—angiotensin system: • ACE inhibitors, which inhibit the conversion of angiotensin I to angiotensin II. • Angiotensin II receptor blocking agents provide an alternative approach to inhibition of the rennin-angiotensin system. They block the vasoconstrictor and other actions of angiotensin II. ACE inhibitors ACE inhibitors are indicated both for the treatment of symptoms and to improve prognosis in patients with heart failure. In view of these benefits, ACE inhibitors 71
  • 11. should be prescribed, unless contraindicated, in patients with symptomatic heart failure and in all patients, irrespective of symptoms, with an ejection fraction of less than 40%. Following myocardial infarction, ACE inhibitors are of particular value. They are indicated not only for the treatment of failure, but also for the prevention of adverse remodeling. ACE inhibitors are in general well tolerated. However, a number of problems may be encountered, including hypotension, renal impairment and cough: • First-dose hypotension can be minimized by reducing the dose of the ACE inhibitor on commencing therapy and omitting diuretics for 1—2 days beforehand. • ACE inhibitors occasionally cause deterioration of renal function. They are contraindicated in patients with an initial creatinine level greater than 200 mmol/L (or creatinine > 2.6 mg/dl). Renal function should be checked routinely 1—2 Weeks after commencing therapy. • Cough is a potentially troublesome side-effect, occurring in up to 10% of patients. Angiotensin II receptor blockers In patients intolerant of ACE inhibitors there is evidence that angiotensin receptor blocking drugs do improve prognosis. Other vasodilators The widespread applicability and indications for ACE inhibitors have reduced the importance of other vasodilators in the management of heart failure. Nitrate vasodilators remain of value in the management of acute left ventricular failure. Sublingual glyceryl trinitrate can be administered in the acute phase and can be followed by an intravenous infusion. Nitrates act predominantly as venodilators. Hydralazine, by contrast, is predominantly an arterial dilator. Beta-blockers 72
  • 12. Excessive sympathetic stimulation may contribute to progression of heart failure in a number of ways, including additional energy requirements, ventricular hypertrophy and arrhythmias. Beta-blockers result in a reduction in mortality, of the order of 30%. The reduction in mortality relates substantially to a reduction in sudden deaths, but beta-blockers also benefit symptoms and have been shown to reduce hospitalizations for heart failure. Beta-blockers have been shown to benefit patients with class II and III heart failure and to benefit selected patients with class IV heart failure. In general, the more severe the degree of heart failure and the worse the prognosis of the patient, the greater the benefit to be gained from beta-blockade. • Patient selection is crucial. Beta-blockers should not be given in new onset or uncontrolled heart failure. Patients presenting with acute heart failure or with an exacerbation of chronic heart failure should be stabilized with diuretics and ACE inhibitors before initiating a beta-blocker. Bradycardia (heart rate < 60) and hypotension (systolic blood pressure < 100) are relative contraindications and require particularly careful monitoring on commencement of therapy. • Low dose initiation of therapy is crucial. • Slow upward dose titration with clinical monitoring. Titration should occur at intervals of not less than 2 weeks. Dizziness, postural hypotension and worsening heart failure are all relatively common and may require dose reduction or cessation of beta-blocker therapy. Inotropic agents Digitalis glycosides Mechanisms of action The inotropic action of digitalis is mediated through the sodium/potassium ATPase (sodium) pump, to which it binds. The inhibition of this pump leads to an accumulation of intra-cellular sodium; because of the sodium— calcium exchange system, this results in an increase in the amount of calcium available to activate contraction. Digitalis also has sympathomimetic and parasympathetic (vagal) effects. The latter is clinically important, in that it causes slowing of the sinus rate. 73
  • 13. Indications: Digoxin is particularly indicated in patients with heart failure and atrial fibrillation, for its beneficial effects to reduce ventricular response rate. In this setting it is an appropriate first line agent. VENTRICULAR RESYNCHRONIZATION THERAPY There is growing evidence that some individuals with severe heart failure may be improved by biventricular pacing to provide ventricular resynchronization. In many patients with severe heart failure, left ventricular contraction becomes incoordinate. Delay in the spread of the electrical impulse to different regions of the ventricle results in a dispersion of the onset of contraction. As a consequence, the regions of the ventricle activated earliest may be relaxing by the time later regions have started to contract. This results in an additional inefficiency of pump function, responsible for an additional deterioration in ejection fraction and cardiac output. Ventricular resynchronization pacing aims at pacing the septum and lateral wall of the left ventricle simultaneously, thereby improving the synchrony of contraction. One electrode is placed in the right ventricle, as for conventional pacing, and the other at the left free wall. Left ventricular pacing is achieved via the coronary sinus. Simultaneous pacing at the two sites results in a narrowing of QRS width and an improvement in cardiac output. Criteria of selection of patients likely to benefit most from ventricular resynchronization pacing include: • Severe heart failure, New York Heart Association class III or IV • Left bundle branch block • QRS width greater than 120 ms • Evidence of incoordinate left ventricular contraction on echocardiography. ARRHYTHMIA MANAGEMENT 74
  • 14. About 50% of patients with heart failure die from progressive heart failure. The other 50% die suddenly as a result of ventricular arrhythmias. Beta-blockade has been shown to dramatically reduce sudden deaths. There is growing evidence to suggest a role for implantable defibrillators in this patient population. Implantable defibrillators have been shown to significantly reduce mortality in patients with an ejection fraction less than 30%. As implantable defibrillators can be combined with ventricular resynchronization, there is likely to be a growing role for device therapy in the management of patients with severe heart failure. ACUTE LEFT VENTRICULAR FAILURE Acute pulmonary oedema is a life-threatening emergency. Characteristically, the patient is extremely breathless and frightened. The patient is unable to lie flat and prefers to sit bolt upright. In severe cases they may cough up blood tinged, pink sputum. Causes of acute left ventricular failure: - Acute myocardial infarction. - Atrial fibrillation and other tachyarrhythmias. - Severe hypertension. - Myocarditis - Infective endocarditis with acute valve damage (incompetence). - Chordal rupture. - Cardiac tamponade - Acute exacerbation of chronic heart failure (due to increased sodium intake, non- compliance with medications (eg stopping digitalis), exacerbation of hypertension, acute arrhythmias, infection and/or fever, pulmonary embolism, anemia and hemorrhage, thyrotoxicosis, pregnancy and child birth, infective endocarditis with valve damage, rheumatic fever, physical emotion and stress, and prolonged tachycardia or bradycardia). 75
  • 15. Causes of non-cardiac pulmonary edema: - Adult respiratory distress syndrome. - Pulmonary embolism. - Toxic gases. - Gram negative septicemia (shock-lung). - Diffuse pulmonary infections. - Aspiration. - Narcotic overdose especially parentral heroin. - Lymphatic obstruction. - Following cardio-pulmonary bypass. - Hemorrhagic pancreatitis. Clinical features • The patient is tachypnoeic and distressed. • Perspiring profusely. • Systolic pressure is frequently elevated. • A marked tachycardia is evident with a gallop rhythm on auscultation. • Crackles and wheeze are heard throughout the chest. Table: Differentiating Points Between Bronchial Asthma and Cardiac Asthma Bronchial Asthma Cardiac Asthma History of allergy usually present usually absent Age usually young usually older Cardiac lesion absent present (causing left heart failure) Cough associated with viscid associated with frothy pinkish sputum sputum Chest examination mainly wheezes wheezes and crepitations Eosinophilia usually present absent Circulation time normal or short prolonged Investigations 76
  • 16. Chest radiograph shows diffuse haziness due to alveolar fluid. Changes generally bilateral (Bat-wing appearance) but occasionally may be unilateral. • Blood gases. Arterial p02 falls. Initially pCO2 also falls due to breathing, but in the later stages pCO2 may rise due to impaired exchange. Management: Management of acute LVF: • General. A venous line should be inserted and the patient should be monitored. • Oxygen. This should be administered in high concentrations (60%) unless the patient has concomitant airways disease. • Diamorphine. The standard dose of diamorphine is 5 mg given intravenously. • Diuretics. The patient should be given intravenous furosemide (frusemide). The usual dose would be 40 mg, but this may be increased in patients already on diuretic therapy. • Nitrates. Administration of a sublingual tablet of glyceryl trinitrate has an immediate effect of lowering pulmonary pressures and reducing pulmonary oedema. This may be followed, if necessary, by an infusion of the drug. • Inotropic therapy. In cases of refractory pulmonary oedema, inotropic therapy should be considered. Aminophylline 250 mg i.v. over 10 mm is frequently effective. Alternatively, patients may be started on a dobutamine infusion, beginning at 5 µg/kg/min. CARDIOGENIC SHOCK The terms acute circulatory failure, low output state, and shock are used to describe a syndrome comprising arterial hypotension, cold, moist and cyanosed extremities, a rapid weak pulse, a low urine output and a diminished level of consciousness. This pattern can arise as a result of impaired cardiac function, in which case, it is termed cardiogenic shock. This clinical pattern is common to a number of other disorders and cardiogenic shock must be differentiated from other causes of shock, including: 77
  • 17. hypovolaemic shock, eg by haemorrhage and loss of fluid from burns, vomiting and diarrhoea • septicaemic shock • anaphylactic shock • acute pancreatitis. Shock is described as cardiogenic when it is clearly cardiac in origin. This may be due to many different causes, including myocardial infarction, massive pulmonary embolism, dissecting aneurysm, pericardial tamponade, rupture of a valve cusp, and arrhythmias; also pulmonary embolism. In cardiogenic shock, the central venous pressure is usually raised, in contrast to hypovolaemic shock, in which it is characteristically low. Clinical features • In the first stage of shock, there is a fall in cardiac output and blood pressure, due to either a diminution in venous return or to an inability of the myocardium to expel an adequate stroke volume. • As a consequence of the hypotension, there is a fall in renal blood flow, with oliguria. • Reflex tachycardia occurs. • Compensatory reflex arteriolar vasoconstriction further reduces blood flow to the kidneys, abdominal viscera, muscle and skin. Vasodilatation of the cerebral and coronary vessels permits the maintenance of a relatively good blood flow in these territories. If the vasoconstriction is sufficiently great, the blood pressure may be kept at or close to normal levels but at the expense of producing tissue hypoxia with consequent acidosis. Management of cardiogenic shock General management If the patient is in severe pain or distress, opiates should be given intravenously (provided there is no contraindication) and high-flow oxygen administered, preferably by a tight-fitting face mask making use of the Venturi principle, or by mechanical 78
  • 18. ventilation. Unless there is pulmonary oedema, the patient should be laid flat, with the legs slightly raised. A catheter should be introduced to measure urinary output. Arterial blood gases and pH should be monitored. A Swan-Ganz balloon- tip catheter should be used to obtain pulmonary artery and ‘pulmonary capillary wedge’ pressures if a cardiac or pulmonary cause is known or suspected (recently this invasive monitoring was considered not mandatory in some cases). As measurement of blood pressure by a sphygmomanometer is unreliable in severe shock, direct arterial pressure monitoring should be undertaken, when possible. Correction of hypovolaemia Although left ventricular filling pressures are most commonly elevated in patients with cardiogenic shock, this is not always the case. Patients may have undergone a period of prior diuretic therapy resulting in fluid depletion. Alternatively, in cases of right ventricular infarction the left ventricle may be under filled. A Swan—Ganz catheter enables pulmonary artery wedge pressure to be estimated to achieve an optimal pressure of between 18 and 20 mmHg. If the pressure is below this level, saline should be administered to increase the wedge pressure and optimize cardiac output Inotropic agents These drugs enhance myocardial contractility but at the expense of increased oxygen consumption. Dopamine and dobutamine are most frequently used. The effects of dopamine, a natural precursor of noradrenaline (norepinephrine), depend upon the dose. Administered intravenously in a dosage of 2—5 µg/kg/min, it causes dilatation of renal and mesenteric vessels; at doses of 5—10 µg/kg/min, it increases myocardial contractility and cardiac output. At higher doses, it causes vasoconstriction (it should not be infused directly into a peripheral vein as leakage may cause local necrosis). Dopamine may induce nausea and vomiting, and can lead to an excessive tachycardia and arrhythmias. 79
  • 19. Dobutamine is a synthetic sympathomimetic agent whose predominant action is one of stimulating activity. It is less likely to cause vasoconstriction or tachycardia than dopamine. It is given by intravenous infusion at a rate of 2.5—10 µg/kg/min. Mechanical support The intra-aortic balloon pump is of value in acute myocardial infarction if shock has been caused by a surgically correctable lesion, such as a ventricular septal defect or papillary muscle rupture. REFRACTORY HEART FAILURE Heart failure is termed refractory when it persists or deteriorates despite intensive therapy. Causes: - Hyperthyroidism - Anemia - Recurrent pulmonary emboli - Atrial fibrillation and other arrhythmias - Multiple myocardial infarcts, multivessel coronary disease - Hypertension uncontrolled - Pneumonia, other infections, chronic obstructive pulmonary disease with exacerbations. - Infective endocarditis - Rheumatic activity - Pregnancy - Constrictive pericarditis and endomyocardial fibrosis - Left ventricular aneurysm - The myocardium reached end stage with fibrosis, scars, and multiple infarcts. Diagnosis and Treatment: according to cause. ACUTE EXACERBATION ON TOP OF CHRONIC HEART FAILURE Cause, diagnosis and treatment: Review above page 69. 80
  • 20. INFECTIVE ENDOCARDITIS Infective endocarditic can occur in two ways: 1. When the heart valves and endocardium are damaged, organisms of low pathogenicity (e.g. streptococcus viridans) can invade them and produce a slowly progressive infection, i.e. subacute bacterial (or infective) endocarditis. 2. Normal valves and endocardium can be invaded by organisms of high pathogenicity (e.g. staphylococcus aureus, pneumococcus, gonococcus) in the course of a fulminating septicemia originating in another organ. In these cases the course is usually acute, i.e. acute bacterial (or infective) endocarditis. SITE OF INVOLVEMENT: - Subacute infective endocarditis occur on top of a preexisting heart disease, e.g. chronic rheumatic heart disease, congenital heart disease, etc. or on artificial (prosthetic) valve. - It most commonly complicates mitral regurgitation, aortic stenosis, aortic regurgitation, calcific or sclerotic aortic valve, ventricular septal defect, patent ductus arteriosus, bicuspid aortic valve or artificial valves. - It is less common in cases of Fallot’s tetralogy and pure mitral stenosis. It is very rare in cases of atrial septal defect. Endocarditis of the tricuspid valve occurs in intravenous drug abusers who inject drugs under septic conditions. - It is more common in the left side of the heart than the right side. 81
  • 21. ORGANISM: The most common causative organism is Streptococcus viridans. Less common are Staphylococcus aureus and enterococcus. Fungal endocarditis is caused by candida or aspergillus and it is common in patients receiving large doses of antibiotic, steroids or cytotoxic drugs. It is also common in drug abusers and in infections of prosthetic materials placed in the circulation e.g. indwelling catheters, prosthetic valves, etc. SOURCE OF INFECTION: Bacteremia, by dental extraction and other dental procedures, urinary catheterization, labor, abortion, upper respiratory infection, etc. But often the source of infection is unknown. CLINICAL PICTURE: 1. Onset is usually insidious with fever, sweating, arthralgia, malaise, toxic anemic look. 2. Persistent fever is usually of low grade but varies, with pallor and earthy “café au lait” facies. 3. The heart may show the following: a. There is always evidence of pre-existing heart disease. b. Change or increase of existing murmurs or the development of new murmurs due to destruction of heart valves by the infection. c. In advanced cases heart failure results from toxic myocarditis and the effects of valvular defects. 4. The spleen is moderately enlarged and tender in most cases. 5. Clubbing of the fingers occurs after 5-6 weeks. 6. Involvement of the kidney may result in a. Hematuria, whether microscopic or macroscopic, and proteinuria occurs in most cases. b. A picture of immune complex acute glomerulonephritis. 82
  • 22. c. Renal failure may complicate advanced cases. d. Renal infarction may cause pain in the loins and hematuria. 7. Embolism may involve any organ, e.g. spleen, kidney, limbs, brain, retina, mesenteries. It produces variable signs and symptoms of infarction depending on the site and size of the embolus and may cause mycotic aneurysm. Pulmonary embolism may complicate endocarditis involving the right cardiac chambers. Retinal emboli or immune complexes cause areas of hemorrhage with pale center (Roth spots). 8. Neurologic manifestations include: a. Infective endocarditis sometimes presents as cerebral embolism. Septic infarction may result in cerebral abscess. b. Cerebral or subarachnoid hemorrhage may result from rupture of a mycotic aneurysm. c. A picture stimulating meningitis or encephalitis may occur. 9. Skin lesions include: a. The commonest are petechial hemorrhages. They appear as crops of small brown red spots that do not disappear on pressure. They are most commonly found in the chest, neck, palate and conjunctiva. b. Osler nodules are tender intracutaneous nodules usually found in the pulps of finger and in the thenar and hypothenar eminence. c. More rarely streaks of hemorrhage under the nails (splinter hemorrhage), or flat erythematous macules in the palms and soles (Janeway lesions) may be seen. DIAGNOSIS: 1. Bacterial endocarditis must always be suspected in any patient with a murmur or a known heart disease who develops an unexplained or prolonged fever. 2. When bacterial endocarditis is suspected the diagnosis is confirmed by blood culture. Culture must be done for aerobic and anaerobic bacteria and fungi and must be incubated for up to 3 weeks to allow slow growing organisms to emerge. When an organism is isolated its antibiotic sensitivity must be tested. Cultures may also be 83
  • 23. negative in fungal endocarditis and in infections by fastidious or slowly growing organisms, but most commonly in those who recently received antibiotic therapy. 3. Echocardiography is essential and may show vegetations on the valves, an abscess on the valve ring, and the underlying heart disease. Transesophageal echocardiography is more sensitive than the transthoracic technique. 4. Urine examination commonly shows microscopic or macroscopic 5. Hematuria. Red cell casts and heavy proteinuria indicate the presence of immune complex glomerulonephritis. 6. Blood examination shows elevated ESR, anemia and sometimes leukocytosis. Duke criteria for diagnosis of IE: I- Definite IE: A- Pathological criteria: 1- Microorganisms--------culture or histology or 2- Pathological lesions----vegetations, abscess confirmed by histology b- Clinical criteria: (2 major, or 1 major +3 minor, or 5 minor) *Major criteria: 1- Positive blood culture for IE. 2- Evidence of endocardial involvement: Positive echo---vegetations, abscess, new dehiscence of prosthetic valve, or new or worsened valvular regurgitation. * Minor criteria: 1- Predisposition: heart disease, or IV drug use. 2- Fever: >38 c 3- Vascular phenomena: 4- Immunologic phenomena: 5- Microbiological evidence: 6- Echo findings: II- Possible IE: 84
  • 24. Findings consistent with IE that fall short of (definite) but not (rejected) III- Rejected: Firm alternative diagnosis for manifestations of endocarditis or Resolution of manifestations of endocarditis, antibiotic for 4 days or less COMPLICATIONS: The most important complications are: 1. Arterial emboli may cause hemiplegia, aphasia, infarction of the bowel, kidney, lung, or ischemia or gangrene of arm or leg. 2. Destruction or perforation of cardiac valves. Large vegetations may interfere with prosthetic valve function. 3. Congestive cardiac failure. 4. Uremia. DIFFERENTIAL DIAGNOSIS: The most important differential diagnosis is: a. Rheumatic activity b. Intercurrent infections and fevers. 1. Sometimes, it may be very difficult to differentiate infective endocarditis from rheumatic activity. The presence of enlarged spleen, clubbing of the fingers, petechiae, embolic manifestations and hematuria points towards infective endocarditis. On the other hand, the appearance of fleeting arthritis, erythema marginatum, subcutaneous nodules and evidence of previous streptococcal throat infection favours the diagnosis of rheumatic activity. When in doubt, multiple blood cultures should be done and the patient should be treated as infective endocarditis. 2. Infective endocarditis must be differentiated from other causes of fever in patients with previous heart disease, e.g. specific infections as brucella, typhoid, tuberculosis etc., connective tissue diseases, lymphomas, etc. These diseases are diagnosed by their specific signs and tests. 85
  • 25. PROPHYLAXIS: 1. Amoxicillin (2 gm) prophylaxis should be given orally to all patients with rheumatic or congenital heart disease, one hour before all procedures that may result in bacteremia. These include dental extraction, tonsillectomy, urethral catheterization, prostatic massage, delivery, abortion, etc. In cases of penicillin sensitivity clindamycin, erythromycin or vancomycin can be used. 2. In patients at very high risk of developing endocarditis (e.g. those with prosthetic valves or history of previous endocarditis), more intensive prophylaxis is required. Ampicillin 2 gm IV or IM should be given 30 minutes before the procedure together with gentamycin 1.5 mg/kg. This should be repeated 6 hours later. TREATMENT: - Streptococcus viridans is usually penicillin sensitive and is eradicated by giving 3 million units of penicillin l.V. every 4 hours (18 million per day) for 3-4 weeks together with gentamycin 1 mg/kg every 8 hours I.M. for the first two weeks of treatment. For penicillin resistant streptococci and for penicillin allergic patient vancomycin is given 15 mg/kg/12 hours + gentamycin. 1. Enterococcus is less sensitive and needs 20-40 million units of penicillin G I.V. plus gentamycin 3 mg/kg I.M. daily. Ampicillin in a dosage of 2 gm every 4 hours I.M. may be substituted for penicillin. The effective dose should be maintained for at least 6-8 weeks. 2. Staphylococcus: most strains secrete penicillinase and these should be treated by penicillinase-resistant penicillins (nafcillin or oxacillin) or cefazolin or vancomycin 15 mg/kg/12 hours for 6 weeks. An aminoglycoside antibiotic and rifampicin 300 mg twice daily may be added. 3. Culture-negative endocarditis patients should be treated as enterococcal endocarditis. Surgery will also be needed if: 86
  • 26. a. Infection cannot be controlled. b. An abscess forms around the valve ring. c. Very big vegetations that may cause major emboli. d. Congestive heart failure develops due to destruction or perforation of a valve. 87