SlideShare une entreprise Scribd logo
1  sur  89
Télécharger pour lire hors ligne
Divide-­‐and-­‐Conquer	
  
Matrix	
  Factoriza5on
Ameet	
  Talwalkar
UC	
  Berkeley

November	
  15th,	
  2013
Collaborators:	
  Lester	
  Mackey2,	
  Michael	
  I.	
  Jordan1,	
  
Yadong	
  Mu3,	
  Shih-­‐Fu	
  Chang3
1UC	
  Berkeley	
  	
  	
  	
  	
  	
  2Stanford	
  University	
  	
  	
  	
  	
  	
  3Columbia	
  University	
  
Three	
  Converging	
  Trends
Three	
  Converging	
  Trends

Big	
  Data
Three	
  Converging	
  Trends

Big	
  Data

Distributed	
  
CompuOng
Three	
  Converging	
  Trends
Machine	
  
Learning

Big	
  Data

Distributed	
  
CompuOng
Goal:	
  Extend	
  ML	
  to	
  the	
  Big	
  Data	
  SeAng	
  
Challenge:	
  ML	
  not	
  developed	
  with	
  scalability	
  in	
  mind
✦

Does	
  not	
  naturally	
  scale	
  /	
  leverage	
  distributed	
  compuOng

Machine	
  
Learning

Big	
  Data

Distributed	
  
CompuOng
Goal:	
  Extend	
  ML	
  to	
  the	
  Big	
  Data	
  SeAng	
  
Challenge:	
  ML	
  not	
  developed	
  with	
  scalability	
  in	
  mind
✦

Does	
  not	
  naturally	
  scale	
  /	
  leverage	
  distributed	
  compuOng

Our	
  approach:	
  Divide-­‐and-­‐conquer
✦

Apply	
  exisOng	
  base	
  algorithms	
  to	
  subsets	
  of	
  data	
  and	
  combine
Machine	
  
Learning

Big	
  Data

Distributed	
  
CompuOng
Goal:	
  Extend	
  ML	
  to	
  the	
  Big	
  Data	
  SeAng	
  
Challenge:	
  ML	
  not	
  developed	
  with	
  scalability	
  in	
  mind
✦

Does	
  not	
  naturally	
  scale	
  /	
  leverage	
  distributed	
  compuOng

Our	
  approach:	
  Divide-­‐and-­‐conquer
✦

Apply	
  exisOng	
  base	
  algorithms	
  to	
  subsets	
  of	
  data	
  and	
  combine
✓
✓
✓

Build	
  upon	
  exisOng	
  suites	
  of	
  ML	
  algorithms
Preserve	
  favorable	
  algorithm	
  properOes
Naturally	
  leverage	
  distributed	
  compuOng

Machine	
  
Learning

Big	
  Data

Distributed	
  
CompuOng
Goal:	
  Extend	
  ML	
  to	
  the	
  Big	
  Data	
  SeAng	
  
Challenge:	
  ML	
  not	
  developed	
  with	
  scalability	
  in	
  mind
✦

Does	
  not	
  naturally	
  scale	
  /	
  leverage	
  distributed	
  compuOng

Our	
  approach:	
  Divide-­‐and-­‐conquer
✦

Apply	
  exisOng	
  base	
  algorithms	
  to	
  subsets	
  of	
  data	
  and	
  combine
✓
✓
✓

✦

Build	
  upon	
  exisOng	
  suites	
  of	
  ML	
  algorithms
Preserve	
  favorable	
  algorithm	
  properOes
Naturally	
  leverage	
  distributed	
  compuOng

E.g.,	
  
✦
✦
✦

Machine	
  
Learning

Big	
  Data

Matrix	
  factorizaOon	
  (DFC) [MTJ, NIPS11; TMMFJ, ICCV13]
[KTSJ, ICML12; KTSJ,
Assessing	
  esOmator	
  quality	
  (BLB) JRSS13; KTASJ, KDD13]
Genomic	
  Variant	
  Calling [BTTJPYS13, submitted, CTZFJP13, submitted]

Distributed	
  
CompuOng
Goal:	
  Extend	
  ML	
  to	
  the	
  Big	
  Data	
  SeAng	
  
Challenge:	
  ML	
  not	
  developed	
  with	
  scalability	
  in	
  mind
✦

Does	
  not	
  naturally	
  scale	
  /	
  leverage	
  distributed	
  compuOng

Our	
  approach:	
  Divide-­‐and-­‐conquer
✦

Apply	
  exisOng	
  base	
  algorithms	
  to	
  subsets	
  of	
  data	
  and	
  combine
✓
✓
✓

✦

Build	
  upon	
  exisOng	
  suites	
  of	
  ML	
  algorithms
Preserve	
  favorable	
  algorithm	
  properOes
Naturally	
  leverage	
  distributed	
  compuOng

E.g.,	
  
✦
✦
✦

Machine	
  
Learning

Big	
  Data

Matrix	
  factorizaOon	
  (DFC) [MTJ, NIPS11; TMMFJ, ICCV13]
[KTSJ, ICML12; KTSJ,
Assessing	
  esOmator	
  quality	
  (BLB) JRSS13; KTASJ, KDD13]
Genomic	
  Variant	
  Calling [BTTJPYS13, submitted, CTZFJP13, submitted]

Distributed	
  
CompuOng
Matrix	
  CompleOon
Matrix	
  CompleOon
Matrix	
  CompleOon
Goal: Recover a matrix from a
subset of its entries
Matrix	
  CompleOon
Goal: Recover a matrix from a
subset of its entries
Matrix	
  CompleOon
Goal: Recover a matrix from a
subset of its entries
Matrix	
  CompleOon
Goal: Recover a matrix from a
subset of its entries
Can we do this at scale?
✦
✦
✦
✦
✦

Netflix: 30M users, 100K+ videos
Facebook: 1B users
Pandora: 70M active users, 1M songs
Amazon: Millions of users and products
...
Reducing	
  Degrees	
  of	
  Freedom
Reducing	
  Degrees	
  of	
  Freedom
✦

Problem: Impossible without
additional information
✦

mn degrees of freedom

n
m
Reducing	
  Degrees	
  of	
  Freedom
✦

Problem: Impossible without
additional information
✦

✦

mn degrees of freedom

Solution: Assume small # of
factors determine preference

n
m

r

=m

n

r

‘Low-rank’
Reducing	
  Degrees	
  of	
  Freedom
✦

Problem: Impossible without
additional information
✦

✦

mn degrees of freedom

Solution: Assume small # of
factors determine preference
✦

O(m + n) degrees of freedom

✦

Linear storage costs

n
m

r

=m

n

r

‘Low-rank’
Bad	
  Sampling

✦

Problem:	
  	
  We	
  have	
  no	
  raOng	
  
informaOon	
  about	
  
Bad	
  Sampling

✦

Problem:	
  	
  We	
  have	
  no	
  raOng	
  
informaOon	
  about

✦

SoluOon:	
  	
  Assume	
  	
  ˜	
  	
  	
  	
  	
  	
  	
  	
   + m))
	
  
⌦(r(n
observed	
  entries	
  drawn	
  
uniformly	
  at	
  random
Bad	
  InformaOon	
  Spread
Bad	
  InformaOon	
  Spread

✦

Problem:	
  Other	
  raOngs	
  don’t	
  
inform	
  us	
  about	
  missing	
  raOng

bad	
  spread	
  of	
  informaOon
Bad	
  InformaOon	
  Spread

✦

Problem:	
  Other	
  raOngs	
  don’t	
  
inform	
  us	
  about	
  missing	
  raOng

✦

SoluOon:	
  	
  Assume	
  
incoherence	
  with	
  standard	
  
basis [Candes and Recht, 2009]

bad	
  spread	
  of	
  informaOon
Matrix	
  CompleOon

=
In

+

‘noise’

Low-rank

Goal:	
  Recover	
  a	
  matrix	
  from	
  a	
  subset	
  of	
  its	
  
entries,	
  assuming
✦

low-­‐rank,	
  incoherent

✦

uniform	
  sampling
Matrix	
  CompleOon

=
In

+
Low-rank

✦

Nuclear-­‐norm	
  heurisOc

+	
  strong	
  theoreOcal	
  guarantees
+	
  good	
  empirical	
  results

‘noise’
Matrix	
  CompleOon

=
In

+
Low-rank

✦

Nuclear-­‐norm	
  heurisOc

+	
  strong	
  theoreOcal	
  guarantees
+	
  good	
  empirical	
  results
⎯	
  very	
  slow	
  computa5on

‘noise’
Matrix	
  CompleOon

=
In

+

‘noise’

Low-rank
✦

Nuclear-­‐norm	
  heurisOc

+	
  strong	
  theoreOcal	
  guarantees
+	
  good	
  empirical	
  results
⎯	
  very	
  slow	
  computa5on

Goal:	
  Scale	
  MC	
  algorithms	
  and	
  preserve	
  guarantees
Divide-­‐Factor-­‐Combine	
  (DFC)
[MTJ, NIPS11]
Divide-­‐Factor-­‐Combine	
  (DFC)
[MTJ, NIPS11]

✦

D	
  step:	
  Divide	
  input	
  matrix	
  into	
  submatrices
Divide-­‐Factor-­‐Combine	
  (DFC)
[MTJ, NIPS11]

✦

D	
  step:	
  Divide	
  input	
  matrix	
  into	
  submatrices

✦

F	
  step:	
  Factor	
  in	
  parallel	
  using	
  a	
  base	
  MC	
  algorithm
Divide-­‐Factor-­‐Combine	
  (DFC)
[MTJ, NIPS11]

✦

D	
  step:	
  Divide	
  input	
  matrix	
  into	
  submatrices

✦

F	
  step:	
  Factor	
  in	
  parallel	
  using	
  a	
  base	
  MC	
  algorithm

✦

C	
  step:	
  Combine	
  submatrix	
  esOmates
Divide-­‐Factor-­‐Combine	
  (DFC)
[MTJ, NIPS11]

✦

D	
  step:	
  Divide	
  input	
  matrix	
  into	
  submatrices

✦

F	
  step:	
  Factor	
  in	
  parallel	
  using	
  a	
  base	
  MC	
  algorithm

✦

C	
  step:	
  Combine	
  submatrix	
  esOmates

Advantages:
✦

Submatrix	
  factorizaOon	
  is	
  much	
  cheaper	
  and	
  easily	
  parallelized

✦

Minimal	
  communicaOon	
  between	
  parallel	
  jobs

✦

Retains	
  comparable	
  recovery	
  guarantees	
  (with	
  proper	
  choice	
  
of	
  division	
  /	
  combinaOon	
  strategies)
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:

✦

F	
  step:	
  Complete	
  the	
  submatrices	
  in	
  parallel
✦

Reduced	
  cost:	
  Expect	
  t-­‐fold	
  speedup	
  per	
  iteraOon

✦

Parallel	
  computaOon:	
  Pay	
  cost	
  of	
  one	
  cheaper	
  MC
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:

✦

F	
  step:	
  Complete	
  the	
  submatrices	
  in	
  parallel
✦
✦

✦

Reduced	
  cost:	
  Expect	
  t-­‐fold	
  speedup	
  per	
  iteraOon
Parallel	
  computaOon:	
  Pay	
  cost	
  of	
  one	
  cheaper	
  MC

C	
  step:	
  Project	
  onto	
  single	
  low-­‐dimensional	
  column	
  space
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:

✦

F	
  step:	
  Complete	
  the	
  submatrices	
  in	
  parallel
✦

Reduced	
  cost:	
  Expect	
  t-­‐fold	
  speedup	
  per	
  iteraOon

✦

Parallel	
  computaOon:	
  Pay	
  cost	
  of	
  one	
  cheaper	
  MC

C	
  step:	
  Project	
  onto	
  single	
  low-­‐dimensional	
  column	
  space

✦
✦

Roughly,	
  share	
  informaOon	
  across	
  sub-­‐soluOons
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:

✦

F	
  step:	
  Complete	
  the	
  submatrices	
  in	
  parallel
✦

Reduced	
  cost:	
  Expect	
  t-­‐fold	
  speedup	
  per	
  iteraOon

✦

Parallel	
  computaOon:	
  Pay	
  cost	
  of	
  one	
  cheaper	
  MC

C	
  step:	
  Project	
  onto	
  single	
  low-­‐dimensional	
  column	
  space

✦
✦

Roughly,	
  share	
  informaOon	
  across	
  sub-­‐soluOons

✦

Minimal	
  cost:	
  linear	
  in	
  n,	
  quadraOc	
  in	
  rank	
  of	
  sub-­‐soluOons
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:

✦

F	
  step:	
  Complete	
  the	
  submatrices	
  in	
  parallel
✦

Reduced	
  cost:	
  Expect	
  t-­‐fold	
  speedup	
  per	
  iteraOon

✦

Parallel	
  computaOon:	
  Pay	
  cost	
  of	
  one	
  cheaper	
  MC

C	
  step:	
  Project	
  onto	
  single	
  low-­‐dimensional	
  column	
  space

✦
✦

Roughly,	
  share	
  informaOon	
  across	
  sub-­‐soluOons

✦

Minimal	
  cost:	
  linear	
  in	
  n,	
  quadraOc	
  in	
  rank	
  of	
  sub-­‐soluOons

=
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:

✦

F	
  step:	
  Complete	
  the	
  submatrices	
  in	
  parallel
✦

Reduced	
  cost:	
  Expect	
  t-­‐fold	
  speedup	
  per	
  iteraOon

✦

Parallel	
  computaOon:	
  Pay	
  cost	
  of	
  one	
  cheaper	
  MC

C	
  step:	
  Project	
  onto	
  single	
  low-­‐dimensional	
  column	
  space

✦
✦

Roughly,	
  share	
  informaOon	
  across	
  sub-­‐soluOons

✦

Minimal	
  cost:	
  linear	
  in	
  n,	
  quadraOc	
  in	
  rank	
  of	
  sub-­‐soluOons

=
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:

✦

F	
  step:	
  Complete	
  the	
  submatrices	
  in	
  parallel
✦

Reduced	
  cost:	
  Expect	
  t-­‐fold	
  speedup	
  per	
  iteraOon

✦

Parallel	
  computaOon:	
  Pay	
  cost	
  of	
  one	
  cheaper	
  MC

C	
  step:	
  Project	
  onto	
  single	
  low-­‐dimensional	
  column	
  space

✦
✦

Roughly,	
  share	
  informaOon	
  across	
  sub-­‐soluOons

✦

Minimal	
  cost:	
  linear	
  in	
  n,	
  quadraOc	
  in	
  rank	
  of	
  sub-­‐soluOons

=
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:

✦

F	
  step:	
  Complete	
  the	
  submatrices	
  in	
  parallel
✦

Reduced	
  cost:	
  Expect	
  t-­‐fold	
  speedup	
  per	
  iteraOon

✦

Parallel	
  computaOon:	
  Pay	
  cost	
  of	
  one	
  cheaper	
  MC

C	
  step:	
  Project	
  onto	
  single	
  low-­‐dimensional	
  column	
  space

✦
✦

Roughly,	
  share	
  informaOon	
  across	
  sub-­‐soluOons

✦

Minimal	
  cost:	
  linear	
  in	
  n,	
  quadraOc	
  in	
  rank	
  of	
  sub-­‐soluOons

=

=
DFC-­‐Proj
✦

D	
  step:	
  Randomly	
  parOOon	
  observed	
  entries	
  into	
  t	
  submatrices:

✦

F	
  step:	
  Complete	
  the	
  submatrices	
  in	
  parallel
✦

Reduced	
  cost:	
  Expect	
  t-­‐fold	
  speedup	
  per	
  iteraOon

✦

Parallel	
  computaOon:	
  Pay	
  cost	
  of	
  one	
  cheaper	
  MC

C	
  step:	
  Project	
  onto	
  single	
  low-­‐dimensional	
  column	
  space

✦
✦
✦

✦

Roughly,	
  share	
  informaOon	
  across	
  sub-­‐soluOons
Minimal	
  cost:	
  linear	
  in	
  n,	
  quadraOc	
  in	
  rank	
  of	
  sub-­‐soluOons

Ensemble: Project onto column space of each sub-solution and
average
Does	
  It	
  Work?
Yes,	
  with	
  high	
  probability.
Theorem:	
  	
  Assume:	
  
✦ L	
  0	
  	
  is	
  low-­‐rank	
  and	
  incoherent,
	
  	
   	
  
✦ 	
  ˜	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  entries	
  sampled	
  uniformly	
  at	
  random,
	
  
⌦(r(n + m))
✦

Nuclear	
  norm	
  heurisOc	
  is	
  base	
  algorithm.
Does	
  It	
  Work?
Yes,	
  with	
  high	
  probability.
Theorem:	
  	
  Assume:	
  
✦ L	
  0	
  	
  is	
  low-­‐rank	
  and	
  incoherent,
	
  	
   	
  
✦ 	
  ˜	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  entries	
  sampled	
  uniformly	
  at	
  random,
	
  
⌦(r(n + m))
✦

Nuclear	
  norm	
  heurisOc	
  is	
  base	
  algorithm.

ˆ	
   	
  	
   	
  	
  	
  
Then	
  	
  L	
  	
  =	
  	
  L0	
  	
  with	
  (slightly	
  less)	
  high	
  probability.	
  	
  
	
  
Does	
  It	
  Work?
Yes,	
  with	
  high	
  probability.
Theorem:	
  	
  Assume:	
  
✦ L	
  0	
  	
  is	
  low-­‐rank	
  and	
  incoherent,
	
  	
   	
  
✦ 	
  ˜	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  entries	
  sampled	
  uniformly	
  at	
  random,
	
  
⌦(r(n + m))
✦

Nuclear	
  norm	
  heurisOc	
  is	
  base	
  algorithm.

ˆ	
   	
  	
   	
  	
  	
  
Then	
  	
  L	
  	
  =	
  	
  L0	
  	
  with	
  (slightly	
  less)	
  high	
  probability.	
  	
  
	
  
✦

Noisy	
  seang:	
  (2	
  	
  	
  	
  	
  ✏)	
  approximaOon	
  of	
  original	
  bound
	
  	
  	
   + 	
  	
  	
  

✦

Can	
  divide	
  into	
  an	
  increasing	
  number	
  of	
  subproblems	
  
˜
(	
  t	
  	
  !	
  	
  1	
  )	
  when	
  number	
  of	
  observed	
  entries	
  in ! (r2 (n + m))
	
   	
  	
  	
   	
  	
  	
  
DFC	
  Noisy	
  Recovery
MC

0.25

Proj−10%
Proj−Ens−10%
Base−MC

RMSE

0.2
0.15
0.1
0.05
0
0

2

4

6

8

10

% revealed entries

✦

Noisy recovery relative to base algorithm ( n = 10K, r = 10 )
DFC Speedup
MC
3500
Proj−10%
Proj−Ens−10%
Base−MC

3000

time (s)

2500
2000
1500
1000
500
0

1

2

3
m

✦

4

5
4

x 10

Speedup over APG for random matrices with 4% of entries
revealed and r = 0.001n
Matrix	
  CompleOon
NeIlix	
  Prize:	
  
✦ 100	
  million	
  raOngs	
  in	
  {1,	
  ...	
  ,	
  5}
✦ 18K	
  movies,	
  480K	
  user
✦ Issues:	
  Full-­‐rank;	
  Noisy,	
  non-­‐uniform	
  
observaOons
Matrix	
  CompleOon
NeIlix	
  Prize:	
  
✦ 100	
  million	
  raOngs	
  in	
  {1,	
  ...	
  ,	
  5}
✦ 18K	
  movies,	
  480K	
  user
✦ Issues:	
  Full-­‐rank;	
  Noisy,	
  non-­‐uniform	
  
observaOons

NeIlix
Method

Error

Time

Nuclear	
  Norm
DFC,	
  t=4
DFC,	
  t=10
DFC-­‐Ens,	
  t=4
DFC-­‐Ens,	
  t=10

0.8433

2653.1s
Matrix	
  CompleOon
NeIlix	
  Prize:	
  
✦ 100	
  million	
  raOngs	
  in	
  {1,	
  ...	
  ,	
  5}
✦ 18K	
  movies,	
  480K	
  user
✦ Issues:	
  Full-­‐rank;	
  Noisy,	
  non-­‐uniform	
  
observaOons

NeIlix
Method

Error

Time

Nuclear	
  Norm
DFC,	
  t=4
DFC,	
  t=10
DFC-­‐Ens,	
  t=4
DFC-­‐Ens,	
  t=10

0.8433
0.8436
0.8484
0.8411
0.8433

2653.1s
689.5s
289.7s
689.5s
289.7
Matrix	
  CompleOon
NeIlix	
  Prize:	
  
✦ 100	
  million	
  raOngs	
  in	
  {1,	
  ...	
  ,	
  5}
✦ 18K	
  movies,	
  480K	
  user
✦ Issues:	
  Full-­‐rank;	
  Noisy,	
  non-­‐uniform	
  
observaOons

NeIlix
Method

Error

Time

Nuclear	
  Norm
DFC,	
  t=4
DFC,	
  t=10
DFC-­‐Ens,	
  t=4
DFC-­‐Ens,	
  t=10

0.8433
0.8436
0.8484
0.8411
0.8433

2653.1s
689.5s
289.7s
689.5s
289.7
Robust	
  Matrix	
  FactorizaOon
[Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candes, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candes, and Ma, 2010]

Matrix	
  
Comple5on

=
In

+
Low-rank

‘noise’
Robust	
  Matrix	
  FactorizaOon
[Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candes, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candes, and Ma, 2010]

Matrix	
  
Comple5on

=
In

Principal	
  
Component	
  
Analysis

+

+

‘noise’

Low-rank

=
In

‘noise’

Low-rank
Robust	
  Matrix	
  FactorizaOon
[Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candes, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candes, and Ma, 2010]

Matrix	
  
Comple5on

=
In

Principal	
  
Component	
  
Analysis

+

+

In

Low-rank

=
In

‘noise’

Low-rank

=

Robust	
  Matrix	
  
Factoriza5on

‘noise’

+
Low-rank

+
Sparse
Outliers

‘noise’
Video	
  Surveillance
✦

Goal:	
  separate	
  foreground	
  from	
  background	
  
✦
✦
✦

Store	
  video	
  as	
  matrix
Low-rank	
  =	
  background
Outliers	
  =	
  movement
Video	
  Surveillance
✦

Goal:	
  separate	
  foreground	
  from	
  background	
  
✦
✦
✦

Store	
  video	
  as	
  matrix
Low-rank	
  =	
  background
Outliers	
  =	
  movement

Original	
  Frame
Video	
  Surveillance
✦

Goal:	
  separate	
  foreground	
  from	
  background	
  
✦
✦
✦

Store	
  video	
  as	
  matrix
Low-rank	
  =	
  background
Outliers	
  =	
  movement

Original	
  Frame

Nuclear	
  Norm
(342.5s)
Video	
  Surveillance
✦

Goal:	
  separate	
  foreground	
  from	
  background	
  
✦
✦
✦

Store	
  video	
  as	
  matrix
Low-rank	
  =	
  background
Outliers	
  =	
  movement

Original	
  Frame

Nuclear	
  Norm
(342.5s)

DFC-­‐5%
(24.2s)

DFC-­‐0.5%
(5.2s)
Subspace	
  SegmentaOon
[Liu, Lin, and Yu, 2010]

Matrix	
  
Comple5on

=
In

+
Low-rank

‘noise’
Subspace	
  SegmentaOon
[Liu, Lin, and Yu, 2010]

Matrix	
  
Comple5on

=
In

Principal	
  
Component	
  
Analysis

+

+

‘noise’

Low-rank

=
In

‘noise’

Low-rank
Subspace	
  SegmentaOon
[Liu, Lin, and Yu, 2010]

Matrix	
  
Comple5on

=
In

Principal	
  
Component	
  
Analysis

+

+

‘noise’

Low-rank

=
In

Subspace	
  
Segmenta5on

‘noise’

Low-rank

=
In

+
Low-rank

‘noise’
MoOvaOon:	
  Face	
  images
MoOvaOon:	
  Face	
  images
...

Principal	
  
Component	
  
Analysis

...
In
MoOvaOon:	
  Face	
  images
...

Principal	
  
Component	
  
Analysis

...
In

=

+

‘noise’

Low-rank

✦ 	
  Model	
  images	
  of	
  one	
  person	
  via	
  one	
  low-­‐dimensional	
  subspace
MoOvaOon:	
  Face	
  images
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on
In
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on
In
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on
In
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on
In
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on
In
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on
In
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on

=
In

+

‘noise’

Low-rank

✦ 	
  Model	
  images	
  of	
  five	
  people	
  via	
  five	
  low-­‐dimensional	
  subspaces
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on

=
In

+

‘noise’

Low-rank

✦ 	
  Model	
  images	
  of	
  five	
  people	
  via	
  five	
  low-­‐dimensional	
  subspaces
✦ 	
  Recover	
  subspaces	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cluster	
  images
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on

=
In

✦

+

‘noise’

Low-rank

Nuclear	
  norm	
  heurisOc	
  to	
  provably	
  recovers	
  subspaces
✦ Guarantees	
  are	
  preserved	
  with	
  DFC [TMMFJ, ICCV13]
MoOvaOon:	
  Face	
  images

Subspace	
  
Segmenta5on

=
In

+

‘noise’

Low-rank

✦

Toy	
  Experiment:	
  IdenOfy	
  images	
  corresponding	
  to	
  same	
  person	
  
(10	
  people,	
  640	
  images)

✦

DFC	
  Results:	
  Linear	
  speedup,	
  State-­‐of-­‐the-­‐art	
  accuracy	
  
Video	
  Event	
  DetecOon
Video	
  Event	
  DetecOon

✦
✦

Input:	
  videos,	
  some	
  of	
  which	
  are	
  associated	
  with	
  events
Goal:	
  predict	
  events	
  for	
  unlabeled	
  videos
Video	
  Event	
  DetecOon

✦
✦
✦

Input:	
  videos,	
  some	
  of	
  which	
  are	
  associated	
  with	
  events
Goal:	
  predict	
  events	
  for	
  unlabeled	
  videos
Idea:
✦

Featurize	
  each	
  video
Video	
  Event	
  DetecOon

✦
✦
✦

Input:	
  videos,	
  some	
  of	
  which	
  are	
  associated	
  with	
  events
Goal:	
  predict	
  events	
  for	
  unlabeled	
  videos
Idea:
✦
✦

Featurize	
  each	
  video
Learn	
  video	
  clusters	
  via	
  nuclear	
  norm	
  heurisOc
Video	
  Event	
  DetecOon

✦
✦
✦

Input:	
  videos,	
  some	
  of	
  which	
  are	
  associated	
  with	
  events
Goal:	
  predict	
  events	
  for	
  unlabeled	
  videos
Idea:
✦
✦
✦

Featurize	
  each	
  video
Learn	
  video	
  clusters	
  via	
  nuclear	
  norm	
  heurisOc
Given	
  labeled	
  nodes	
  and	
  cluster	
  structure,	
  make	
  predicOons
Video	
  Event	
  DetecOon

✦
✦
✦

Input:	
  videos,	
  some	
  of	
  which	
  are	
  associated	
  with	
  events
Goal:	
  predict	
  events	
  for	
  unlabeled	
  videos
Idea:
✦
✦
✦

Featurize	
  each	
  video
Learn	
  video	
  clusters	
  via	
  nuclear	
  norm	
  heurisOc
Given	
  labeled	
  nodes	
  and	
  cluster	
  structure,	
  make	
  predicOons

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Can	
  do	
  this	
  at	
  scale	
  with	
  DFC!
DFC	
  Summary
✦

DFC:	
  distributed	
  framework	
  for	
  matrix	
  factorizaOon
✦ Similar	
  recovery	
  guarantees
✦ Significant	
  speedups	
  

✦

DFC	
  applied	
  to	
  3	
  classes	
  of	
  problems:
✦ Matrix	
  compleOon
✦ Robust	
  matrix	
  factorizaOon
✦ Subspace	
  recovery

✦

Extend	
  DFC	
  to	
  other	
  MF	
  methods,	
  e.g.,	
  ALS,	
  SGD?
Big	
  Data	
  and	
  Distributed	
  CompuOng	
  
are	
  valuable	
  resources,	
  but	
  ...
Big	
  Data	
  and	
  Distributed	
  CompuOng	
  
are	
  valuable	
  resources,	
  but	
  ...
✦

Challenge	
  1:	
  ML	
  not	
  developed	
  with	
  scalability	
  in	
  mind
Big	
  Data	
  and	
  Distributed	
  CompuOng	
  
are	
  valuable	
  resources,	
  but	
  ...
✦

Challenge	
  1:	
  ML	
  not	
  developed	
  with	
  scalability	
  in	
  mind
Divide-­‐and-­‐Conquer	
  (e.g.,	
  DFC)
Big	
  Data	
  and	
  Distributed	
  CompuOng	
  
are	
  valuable	
  resources,	
  but	
  ...
✦

Challenge	
  1:	
  ML	
  not	
  developed	
  with	
  scalability	
  in	
  mind
Divide-­‐and-­‐Conquer	
  (e.g.,	
  DFC)

✦

Challenge	
  2:	
  ML	
  not	
  developed	
  with	
  ease-­‐of-­‐use	
  in	
  mind
Big	
  Data	
  and	
  Distributed	
  CompuOng	
  
are	
  valuable	
  resources,	
  but	
  ...
✦

Challenge	
  1:	
  ML	
  not	
  developed	
  with	
  scalability	
  in	
  mind

ML base

ML base

Divide-­‐and-­‐Conquer	
  (e.g.,	
  DFC)

ML base
ML base
✦

Challenge	
  2:	
  ML	
  not	
  developed	
  with	
  ease-­‐of-­‐use	
  in	
  mind

ML base

ML base
www.mlbase.org

ML base

Contenu connexe

Tendances

Introduction To Applied Machine Learning
Introduction To Applied Machine LearningIntroduction To Applied Machine Learning
Introduction To Applied Machine Learningananth
 
Graph Based Machine Learning with Applications to Media Analytics
Graph Based Machine Learning with Applications to Media AnalyticsGraph Based Machine Learning with Applications to Media Analytics
Graph Based Machine Learning with Applications to Media AnalyticsNYC Predictive Analytics
 
Deep Learning For Practitioners, lecture 2: Selecting the right applications...
Deep Learning For Practitioners,  lecture 2: Selecting the right applications...Deep Learning For Practitioners,  lecture 2: Selecting the right applications...
Deep Learning For Practitioners, lecture 2: Selecting the right applications...ananth
 
Using SHAP to Understand Black Box Models
Using SHAP to Understand Black Box ModelsUsing SHAP to Understand Black Box Models
Using SHAP to Understand Black Box ModelsJonathan Bechtel
 
Robust and declarative machine learning pipelines for predictive buying at Ba...
Robust and declarative machine learning pipelines for predictive buying at Ba...Robust and declarative machine learning pipelines for predictive buying at Ba...
Robust and declarative machine learning pipelines for predictive buying at Ba...Gianmario Spacagna
 
VSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and DeepnetsVSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and DeepnetsBigML, Inc
 
Recommender Systems In Industry
Recommender Systems In IndustryRecommender Systems In Industry
Recommender Systems In IndustryXavier Amatriain
 
Part 1
Part 1Part 1
Part 1butest
 
Using Interactive Genetic Algorithm for Requirements Prioritization
Using Interactive Genetic Algorithm for Requirements PrioritizationUsing Interactive Genetic Algorithm for Requirements Prioritization
Using Interactive Genetic Algorithm for Requirements Prioritization Francis Palma
 
Multi-Task Learning and Web Search Ranking
Multi-Task Learning and Web Search RankingMulti-Task Learning and Web Search Ranking
Multi-Task Learning and Web Search Rankingbutest
 
VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1BigML, Inc
 
L5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature EngineeringL5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature EngineeringMachine Learning Valencia
 
ClassifyingIssuesFromSRTextAzureML
ClassifyingIssuesFromSRTextAzureMLClassifyingIssuesFromSRTextAzureML
ClassifyingIssuesFromSRTextAzureMLGeorge Simov
 
VSSML16 L3. Clusters and Anomaly Detection
VSSML16 L3. Clusters and Anomaly DetectionVSSML16 L3. Clusters and Anomaly Detection
VSSML16 L3. Clusters and Anomaly DetectionBigML, Inc
 
Collaborative Filtering with Spark
Collaborative Filtering with SparkCollaborative Filtering with Spark
Collaborative Filtering with SparkChris Johnson
 
Introduction to Machine learning ppt
Introduction to Machine learning pptIntroduction to Machine learning ppt
Introduction to Machine learning pptshubhamshirke12
 
Parallel Tuning of Machine Learning Algorithms, Thesis Proposal
Parallel Tuning of Machine Learning Algorithms, Thesis ProposalParallel Tuning of Machine Learning Algorithms, Thesis Proposal
Parallel Tuning of Machine Learning Algorithms, Thesis ProposalGianmario Spacagna
 
Natural Language Processing Advancements By Deep Learning: A Survey
Natural Language Processing Advancements By Deep Learning: A SurveyNatural Language Processing Advancements By Deep Learning: A Survey
Natural Language Processing Advancements By Deep Learning: A SurveyRimzim Thube
 
Automated Machine Learning (Auto ML)
Automated Machine Learning (Auto ML)Automated Machine Learning (Auto ML)
Automated Machine Learning (Auto ML)Hayim Makabee
 

Tendances (20)

Introduction To Applied Machine Learning
Introduction To Applied Machine LearningIntroduction To Applied Machine Learning
Introduction To Applied Machine Learning
 
Graph Based Machine Learning with Applications to Media Analytics
Graph Based Machine Learning with Applications to Media AnalyticsGraph Based Machine Learning with Applications to Media Analytics
Graph Based Machine Learning with Applications to Media Analytics
 
Deep Learning For Practitioners, lecture 2: Selecting the right applications...
Deep Learning For Practitioners,  lecture 2: Selecting the right applications...Deep Learning For Practitioners,  lecture 2: Selecting the right applications...
Deep Learning For Practitioners, lecture 2: Selecting the right applications...
 
Using SHAP to Understand Black Box Models
Using SHAP to Understand Black Box ModelsUsing SHAP to Understand Black Box Models
Using SHAP to Understand Black Box Models
 
Robust and declarative machine learning pipelines for predictive buying at Ba...
Robust and declarative machine learning pipelines for predictive buying at Ba...Robust and declarative machine learning pipelines for predictive buying at Ba...
Robust and declarative machine learning pipelines for predictive buying at Ba...
 
VSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and DeepnetsVSSML17 L6. Time Series and Deepnets
VSSML17 L6. Time Series and Deepnets
 
Recommender Systems In Industry
Recommender Systems In IndustryRecommender Systems In Industry
Recommender Systems In Industry
 
Part 1
Part 1Part 1
Part 1
 
Using Interactive Genetic Algorithm for Requirements Prioritization
Using Interactive Genetic Algorithm for Requirements PrioritizationUsing Interactive Genetic Algorithm for Requirements Prioritization
Using Interactive Genetic Algorithm for Requirements Prioritization
 
Multi-Task Learning and Web Search Ranking
Multi-Task Learning and Web Search RankingMulti-Task Learning and Web Search Ranking
Multi-Task Learning and Web Search Ranking
 
VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1
 
L5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature EngineeringL5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature Engineering
 
ClassifyingIssuesFromSRTextAzureML
ClassifyingIssuesFromSRTextAzureMLClassifyingIssuesFromSRTextAzureML
ClassifyingIssuesFromSRTextAzureML
 
VSSML16 L3. Clusters and Anomaly Detection
VSSML16 L3. Clusters and Anomaly DetectionVSSML16 L3. Clusters and Anomaly Detection
VSSML16 L3. Clusters and Anomaly Detection
 
Collaborative Filtering with Spark
Collaborative Filtering with SparkCollaborative Filtering with Spark
Collaborative Filtering with Spark
 
Introduction to Machine learning ppt
Introduction to Machine learning pptIntroduction to Machine learning ppt
Introduction to Machine learning ppt
 
Machine Learning for Dummies
Machine Learning for DummiesMachine Learning for Dummies
Machine Learning for Dummies
 
Parallel Tuning of Machine Learning Algorithms, Thesis Proposal
Parallel Tuning of Machine Learning Algorithms, Thesis ProposalParallel Tuning of Machine Learning Algorithms, Thesis Proposal
Parallel Tuning of Machine Learning Algorithms, Thesis Proposal
 
Natural Language Processing Advancements By Deep Learning: A Survey
Natural Language Processing Advancements By Deep Learning: A SurveyNatural Language Processing Advancements By Deep Learning: A Survey
Natural Language Processing Advancements By Deep Learning: A Survey
 
Automated Machine Learning (Auto ML)
Automated Machine Learning (Auto ML)Automated Machine Learning (Auto ML)
Automated Machine Learning (Auto ML)
 

En vedette

A unique sorting algorithm with linear time & space complexity
A unique sorting algorithm with linear time & space complexityA unique sorting algorithm with linear time & space complexity
A unique sorting algorithm with linear time & space complexityeSAT Journals
 
UCSB College of Engineering Overview
UCSB College of Engineering OverviewUCSB College of Engineering Overview
UCSB College of Engineering Overviewucsb.ira
 
Min and max search
Min and max searchMin and max search
Min and max searchKumar
 
02 greedy, d&c, binary search
02 greedy, d&c, binary search02 greedy, d&c, binary search
02 greedy, d&c, binary searchPankaj Prateek
 
Dinive conquer algorithm
Dinive conquer algorithmDinive conquer algorithm
Dinive conquer algorithmMohd Arif
 
Divide and Conquer - Part II - Quickselect and Closest Pair of Points
Divide and Conquer - Part II - Quickselect and Closest Pair of PointsDivide and Conquer - Part II - Quickselect and Closest Pair of Points
Divide and Conquer - Part II - Quickselect and Closest Pair of PointsAmrinder Arora
 
Divide and conquer - Quick sort
Divide and conquer - Quick sortDivide and conquer - Quick sort
Divide and conquer - Quick sortMadhu Bala
 
Divide and Conquer - Part 1
Divide and Conquer - Part 1Divide and Conquer - Part 1
Divide and Conquer - Part 1Amrinder Arora
 

En vedette (10)

A unique sorting algorithm with linear time & space complexity
A unique sorting algorithm with linear time & space complexityA unique sorting algorithm with linear time & space complexity
A unique sorting algorithm with linear time & space complexity
 
Koptreport
KoptreportKoptreport
Koptreport
 
UCSB College of Engineering Overview
UCSB College of Engineering OverviewUCSB College of Engineering Overview
UCSB College of Engineering Overview
 
Min and max search
Min and max searchMin and max search
Min and max search
 
02 greedy, d&c, binary search
02 greedy, d&c, binary search02 greedy, d&c, binary search
02 greedy, d&c, binary search
 
Dinive conquer algorithm
Dinive conquer algorithmDinive conquer algorithm
Dinive conquer algorithm
 
Divide and Conquer - Part II - Quickselect and Closest Pair of Points
Divide and Conquer - Part II - Quickselect and Closest Pair of PointsDivide and Conquer - Part II - Quickselect and Closest Pair of Points
Divide and Conquer - Part II - Quickselect and Closest Pair of Points
 
Divide and Conquer
Divide and ConquerDivide and Conquer
Divide and Conquer
 
Divide and conquer - Quick sort
Divide and conquer - Quick sortDivide and conquer - Quick sort
Divide and conquer - Quick sort
 
Divide and Conquer - Part 1
Divide and Conquer - Part 1Divide and Conquer - Part 1
Divide and Conquer - Part 1
 

Similaire à Talwalkar mlconf (1)

MLSEV. Logistic Regression, Deepnets, and Time Series
MLSEV. Logistic Regression, Deepnets, and Time Series MLSEV. Logistic Regression, Deepnets, and Time Series
MLSEV. Logistic Regression, Deepnets, and Time Series BigML, Inc
 
BOOSTING ADVERSARIAL ATTACKS WITH MOMENTUM - Tianyu Pang and Chao Du, THU - D...
BOOSTING ADVERSARIAL ATTACKS WITH MOMENTUM - Tianyu Pang and Chao Du, THU - D...BOOSTING ADVERSARIAL ATTACKS WITH MOMENTUM - Tianyu Pang and Chao Du, THU - D...
BOOSTING ADVERSARIAL ATTACKS WITH MOMENTUM - Tianyu Pang and Chao Du, THU - D...GeekPwn Keen
 
powerpoint feb
powerpoint febpowerpoint feb
powerpoint febimu409
 
NIPS2007: structured prediction
NIPS2007: structured predictionNIPS2007: structured prediction
NIPS2007: structured predictionzukun
 
Correlation, causation and incrementally recommendation problems at netflix ...
Correlation, causation and incrementally  recommendation problems at netflix ...Correlation, causation and incrementally  recommendation problems at netflix ...
Correlation, causation and incrementally recommendation problems at netflix ...Roelof van Zwol
 
SVD and the Netflix Dataset
SVD and the Netflix DatasetSVD and the Netflix Dataset
SVD and the Netflix DatasetBen Mabey
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM RecommendersYONG ZHENG
 
Estimating default risk in fund structures
Estimating default risk in fund structuresEstimating default risk in fund structures
Estimating default risk in fund structuresIFMR
 
Online advertising and large scale model fitting
Online advertising and large scale model fittingOnline advertising and large scale model fitting
Online advertising and large scale model fittingWush Wu
 
Kaggle Gold Medal Case Study
Kaggle Gold Medal Case StudyKaggle Gold Medal Case Study
Kaggle Gold Medal Case StudyAlon Bochman, CFA
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_SouamMDO_Lab
 
Case study of Machine learning in banks
Case study of Machine learning in banksCase study of Machine learning in banks
Case study of Machine learning in banksZhongmin Luo
 
Should all a- rated banks have the same default risk as lehman?
Should all a- rated banks have the same default risk as lehman?Should all a- rated banks have the same default risk as lehman?
Should all a- rated banks have the same default risk as lehman?Zhongmin Luo
 
Machine Learning Approach.pptx
Machine Learning Approach.pptxMachine Learning Approach.pptx
Machine Learning Approach.pptxCYPatrickKwee
 
Applying Linear Optimization Using GLPK
Applying Linear Optimization Using GLPKApplying Linear Optimization Using GLPK
Applying Linear Optimization Using GLPKJeremy Chen
 
adversarial robustness lecture
adversarial robustness lectureadversarial robustness lecture
adversarial robustness lectureMuhammadAhmedShah2
 
Why Deep Learning Works: Self Regularization in Deep Neural Networks
Why Deep Learning Works: Self Regularization in Deep Neural NetworksWhy Deep Learning Works: Self Regularization in Deep Neural Networks
Why Deep Learning Works: Self Regularization in Deep Neural NetworksCharles Martin
 
Tensors Are All You Need: Faster Inference with Hummingbird
Tensors Are All You Need: Faster Inference with HummingbirdTensors Are All You Need: Faster Inference with Hummingbird
Tensors Are All You Need: Faster Inference with HummingbirdDatabricks
 
Graphs and Financial Services Analytics
Graphs and Financial Services AnalyticsGraphs and Financial Services Analytics
Graphs and Financial Services AnalyticsNeo4j
 

Similaire à Talwalkar mlconf (1) (20)

MLSEV. Logistic Regression, Deepnets, and Time Series
MLSEV. Logistic Regression, Deepnets, and Time Series MLSEV. Logistic Regression, Deepnets, and Time Series
MLSEV. Logistic Regression, Deepnets, and Time Series
 
BOOSTING ADVERSARIAL ATTACKS WITH MOMENTUM - Tianyu Pang and Chao Du, THU - D...
BOOSTING ADVERSARIAL ATTACKS WITH MOMENTUM - Tianyu Pang and Chao Du, THU - D...BOOSTING ADVERSARIAL ATTACKS WITH MOMENTUM - Tianyu Pang and Chao Du, THU - D...
BOOSTING ADVERSARIAL ATTACKS WITH MOMENTUM - Tianyu Pang and Chao Du, THU - D...
 
powerpoint feb
powerpoint febpowerpoint feb
powerpoint feb
 
NIPS2007: structured prediction
NIPS2007: structured predictionNIPS2007: structured prediction
NIPS2007: structured prediction
 
Correlation, causation and incrementally recommendation problems at netflix ...
Correlation, causation and incrementally  recommendation problems at netflix ...Correlation, causation and incrementally  recommendation problems at netflix ...
Correlation, causation and incrementally recommendation problems at netflix ...
 
SVD and the Netflix Dataset
SVD and the Netflix DatasetSVD and the Netflix Dataset
SVD and the Netflix Dataset
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
 
Estimating default risk in fund structures
Estimating default risk in fund structuresEstimating default risk in fund structures
Estimating default risk in fund structures
 
Online advertising and large scale model fitting
Online advertising and large scale model fittingOnline advertising and large scale model fitting
Online advertising and large scale model fitting
 
Kaggle Gold Medal Case Study
Kaggle Gold Medal Case StudyKaggle Gold Medal Case Study
Kaggle Gold Medal Case Study
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_Souam
 
Case study of Machine learning in banks
Case study of Machine learning in banksCase study of Machine learning in banks
Case study of Machine learning in banks
 
Should all a- rated banks have the same default risk as lehman?
Should all a- rated banks have the same default risk as lehman?Should all a- rated banks have the same default risk as lehman?
Should all a- rated banks have the same default risk as lehman?
 
Machine Learning Approach.pptx
Machine Learning Approach.pptxMachine Learning Approach.pptx
Machine Learning Approach.pptx
 
VOLT - ESWC 2016
VOLT - ESWC 2016VOLT - ESWC 2016
VOLT - ESWC 2016
 
Applying Linear Optimization Using GLPK
Applying Linear Optimization Using GLPKApplying Linear Optimization Using GLPK
Applying Linear Optimization Using GLPK
 
adversarial robustness lecture
adversarial robustness lectureadversarial robustness lecture
adversarial robustness lecture
 
Why Deep Learning Works: Self Regularization in Deep Neural Networks
Why Deep Learning Works: Self Regularization in Deep Neural NetworksWhy Deep Learning Works: Self Regularization in Deep Neural Networks
Why Deep Learning Works: Self Regularization in Deep Neural Networks
 
Tensors Are All You Need: Faster Inference with Hummingbird
Tensors Are All You Need: Faster Inference with HummingbirdTensors Are All You Need: Faster Inference with Hummingbird
Tensors Are All You Need: Faster Inference with Hummingbird
 
Graphs and Financial Services Analytics
Graphs and Financial Services AnalyticsGraphs and Financial Services Analytics
Graphs and Financial Services Analytics
 

Plus de MLconf

Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...MLconf
 
Ted Willke - The Brain’s Guide to Dealing with Context in Language Understanding
Ted Willke - The Brain’s Guide to Dealing with Context in Language UnderstandingTed Willke - The Brain’s Guide to Dealing with Context in Language Understanding
Ted Willke - The Brain’s Guide to Dealing with Context in Language UnderstandingMLconf
 
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...MLconf
 
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold RushIgor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold RushMLconf
 
Josh Wills - Data Labeling as Religious Experience
Josh Wills - Data Labeling as Religious ExperienceJosh Wills - Data Labeling as Religious Experience
Josh Wills - Data Labeling as Religious ExperienceMLconf
 
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...MLconf
 
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...MLconf
 
Meghana Ravikumar - Optimized Image Classification on the Cheap
Meghana Ravikumar - Optimized Image Classification on the CheapMeghana Ravikumar - Optimized Image Classification on the Cheap
Meghana Ravikumar - Optimized Image Classification on the CheapMLconf
 
Noam Finkelstein - The Importance of Modeling Data Collection
Noam Finkelstein - The Importance of Modeling Data CollectionNoam Finkelstein - The Importance of Modeling Data Collection
Noam Finkelstein - The Importance of Modeling Data CollectionMLconf
 
June Andrews - The Uncanny Valley of ML
June Andrews - The Uncanny Valley of MLJune Andrews - The Uncanny Valley of ML
June Andrews - The Uncanny Valley of MLMLconf
 
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection TasksSneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection TasksMLconf
 
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...MLconf
 
Vito Ostuni - The Voice: New Challenges in a Zero UI World
Vito Ostuni - The Voice: New Challenges in a Zero UI WorldVito Ostuni - The Voice: New Challenges in a Zero UI World
Vito Ostuni - The Voice: New Challenges in a Zero UI WorldMLconf
 
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...MLconf
 
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...MLconf
 
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...MLconf
 
Neel Sundaresan - Teaching a machine to code
Neel Sundaresan - Teaching a machine to codeNeel Sundaresan - Teaching a machine to code
Neel Sundaresan - Teaching a machine to codeMLconf
 
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...MLconf
 
Soumith Chintala - Increasing the Impact of AI Through Better Software
Soumith Chintala - Increasing the Impact of AI Through Better SoftwareSoumith Chintala - Increasing the Impact of AI Through Better Software
Soumith Chintala - Increasing the Impact of AI Through Better SoftwareMLconf
 
Roy Lowrance - Predicting Bond Prices: Regime Changes
Roy Lowrance - Predicting Bond Prices: Regime ChangesRoy Lowrance - Predicting Bond Prices: Regime Changes
Roy Lowrance - Predicting Bond Prices: Regime ChangesMLconf
 

Plus de MLconf (20)

Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
Jamila Smith-Loud - Understanding Human Impact: Social and Equity Assessments...
 
Ted Willke - The Brain’s Guide to Dealing with Context in Language Understanding
Ted Willke - The Brain’s Guide to Dealing with Context in Language UnderstandingTed Willke - The Brain’s Guide to Dealing with Context in Language Understanding
Ted Willke - The Brain’s Guide to Dealing with Context in Language Understanding
 
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
Justin Armstrong - Applying Computer Vision to Reduce Contamination in the Re...
 
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold RushIgor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
Igor Markov - Quantum Computing: a Treasure Hunt, not a Gold Rush
 
Josh Wills - Data Labeling as Religious Experience
Josh Wills - Data Labeling as Religious ExperienceJosh Wills - Data Labeling as Religious Experience
Josh Wills - Data Labeling as Religious Experience
 
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
Vinay Prabhu - Project GaitNet: Ushering in the ImageNet moment for human Gai...
 
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
Jekaterina Novikova - Machine Learning Methods in Detecting Alzheimer’s Disea...
 
Meghana Ravikumar - Optimized Image Classification on the Cheap
Meghana Ravikumar - Optimized Image Classification on the CheapMeghana Ravikumar - Optimized Image Classification on the Cheap
Meghana Ravikumar - Optimized Image Classification on the Cheap
 
Noam Finkelstein - The Importance of Modeling Data Collection
Noam Finkelstein - The Importance of Modeling Data CollectionNoam Finkelstein - The Importance of Modeling Data Collection
Noam Finkelstein - The Importance of Modeling Data Collection
 
June Andrews - The Uncanny Valley of ML
June Andrews - The Uncanny Valley of MLJune Andrews - The Uncanny Valley of ML
June Andrews - The Uncanny Valley of ML
 
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection TasksSneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
Sneha Rajana - Deep Learning Architectures for Semantic Relation Detection Tasks
 
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
Anoop Deoras - Building an Incrementally Trained, Local Taste Aware, Global D...
 
Vito Ostuni - The Voice: New Challenges in a Zero UI World
Vito Ostuni - The Voice: New Challenges in a Zero UI WorldVito Ostuni - The Voice: New Challenges in a Zero UI World
Vito Ostuni - The Voice: New Challenges in a Zero UI World
 
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
Anna choromanska - Data-driven Challenges in AI: Scale, Information Selection...
 
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
Janani Kalyanam - Machine Learning to Detect Illegal Online Sales of Prescrip...
 
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
Esperanza Lopez Aguilera - Using a Bayesian Neural Network in the Detection o...
 
Neel Sundaresan - Teaching a machine to code
Neel Sundaresan - Teaching a machine to codeNeel Sundaresan - Teaching a machine to code
Neel Sundaresan - Teaching a machine to code
 
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
 
Soumith Chintala - Increasing the Impact of AI Through Better Software
Soumith Chintala - Increasing the Impact of AI Through Better SoftwareSoumith Chintala - Increasing the Impact of AI Through Better Software
Soumith Chintala - Increasing the Impact of AI Through Better Software
 
Roy Lowrance - Predicting Bond Prices: Regime Changes
Roy Lowrance - Predicting Bond Prices: Regime ChangesRoy Lowrance - Predicting Bond Prices: Regime Changes
Roy Lowrance - Predicting Bond Prices: Regime Changes
 

Dernier

#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 

Dernier (20)

#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 

Talwalkar mlconf (1)

  • 1. Divide-­‐and-­‐Conquer   Matrix  Factoriza5on Ameet  Talwalkar UC  Berkeley November  15th,  2013 Collaborators:  Lester  Mackey2,  Michael  I.  Jordan1,   Yadong  Mu3,  Shih-­‐Fu  Chang3 1UC  Berkeley            2Stanford  University            3Columbia  University  
  • 4. Three  Converging  Trends Big  Data Distributed   CompuOng
  • 5. Three  Converging  Trends Machine   Learning Big  Data Distributed   CompuOng
  • 6. Goal:  Extend  ML  to  the  Big  Data  SeAng   Challenge:  ML  not  developed  with  scalability  in  mind ✦ Does  not  naturally  scale  /  leverage  distributed  compuOng Machine   Learning Big  Data Distributed   CompuOng
  • 7. Goal:  Extend  ML  to  the  Big  Data  SeAng   Challenge:  ML  not  developed  with  scalability  in  mind ✦ Does  not  naturally  scale  /  leverage  distributed  compuOng Our  approach:  Divide-­‐and-­‐conquer ✦ Apply  exisOng  base  algorithms  to  subsets  of  data  and  combine Machine   Learning Big  Data Distributed   CompuOng
  • 8. Goal:  Extend  ML  to  the  Big  Data  SeAng   Challenge:  ML  not  developed  with  scalability  in  mind ✦ Does  not  naturally  scale  /  leverage  distributed  compuOng Our  approach:  Divide-­‐and-­‐conquer ✦ Apply  exisOng  base  algorithms  to  subsets  of  data  and  combine ✓ ✓ ✓ Build  upon  exisOng  suites  of  ML  algorithms Preserve  favorable  algorithm  properOes Naturally  leverage  distributed  compuOng Machine   Learning Big  Data Distributed   CompuOng
  • 9. Goal:  Extend  ML  to  the  Big  Data  SeAng   Challenge:  ML  not  developed  with  scalability  in  mind ✦ Does  not  naturally  scale  /  leverage  distributed  compuOng Our  approach:  Divide-­‐and-­‐conquer ✦ Apply  exisOng  base  algorithms  to  subsets  of  data  and  combine ✓ ✓ ✓ ✦ Build  upon  exisOng  suites  of  ML  algorithms Preserve  favorable  algorithm  properOes Naturally  leverage  distributed  compuOng E.g.,   ✦ ✦ ✦ Machine   Learning Big  Data Matrix  factorizaOon  (DFC) [MTJ, NIPS11; TMMFJ, ICCV13] [KTSJ, ICML12; KTSJ, Assessing  esOmator  quality  (BLB) JRSS13; KTASJ, KDD13] Genomic  Variant  Calling [BTTJPYS13, submitted, CTZFJP13, submitted] Distributed   CompuOng
  • 10. Goal:  Extend  ML  to  the  Big  Data  SeAng   Challenge:  ML  not  developed  with  scalability  in  mind ✦ Does  not  naturally  scale  /  leverage  distributed  compuOng Our  approach:  Divide-­‐and-­‐conquer ✦ Apply  exisOng  base  algorithms  to  subsets  of  data  and  combine ✓ ✓ ✓ ✦ Build  upon  exisOng  suites  of  ML  algorithms Preserve  favorable  algorithm  properOes Naturally  leverage  distributed  compuOng E.g.,   ✦ ✦ ✦ Machine   Learning Big  Data Matrix  factorizaOon  (DFC) [MTJ, NIPS11; TMMFJ, ICCV13] [KTSJ, ICML12; KTSJ, Assessing  esOmator  quality  (BLB) JRSS13; KTASJ, KDD13] Genomic  Variant  Calling [BTTJPYS13, submitted, CTZFJP13, submitted] Distributed   CompuOng
  • 13. Matrix  CompleOon Goal: Recover a matrix from a subset of its entries
  • 14. Matrix  CompleOon Goal: Recover a matrix from a subset of its entries
  • 15. Matrix  CompleOon Goal: Recover a matrix from a subset of its entries
  • 16. Matrix  CompleOon Goal: Recover a matrix from a subset of its entries Can we do this at scale? ✦ ✦ ✦ ✦ ✦ Netflix: 30M users, 100K+ videos Facebook: 1B users Pandora: 70M active users, 1M songs Amazon: Millions of users and products ...
  • 18. Reducing  Degrees  of  Freedom ✦ Problem: Impossible without additional information ✦ mn degrees of freedom n m
  • 19. Reducing  Degrees  of  Freedom ✦ Problem: Impossible without additional information ✦ ✦ mn degrees of freedom Solution: Assume small # of factors determine preference n m r =m n r ‘Low-rank’
  • 20. Reducing  Degrees  of  Freedom ✦ Problem: Impossible without additional information ✦ ✦ mn degrees of freedom Solution: Assume small # of factors determine preference ✦ O(m + n) degrees of freedom ✦ Linear storage costs n m r =m n r ‘Low-rank’
  • 21. Bad  Sampling ✦ Problem:    We  have  no  raOng   informaOon  about  
  • 22. Bad  Sampling ✦ Problem:    We  have  no  raOng   informaOon  about ✦ SoluOon:    Assume    ˜                 + m))   ⌦(r(n observed  entries  drawn   uniformly  at  random
  • 24. Bad  InformaOon  Spread ✦ Problem:  Other  raOngs  don’t   inform  us  about  missing  raOng bad  spread  of  informaOon
  • 25. Bad  InformaOon  Spread ✦ Problem:  Other  raOngs  don’t   inform  us  about  missing  raOng ✦ SoluOon:    Assume   incoherence  with  standard   basis [Candes and Recht, 2009] bad  spread  of  informaOon
  • 26. Matrix  CompleOon = In + ‘noise’ Low-rank Goal:  Recover  a  matrix  from  a  subset  of  its   entries,  assuming ✦ low-­‐rank,  incoherent ✦ uniform  sampling
  • 27. Matrix  CompleOon = In + Low-rank ✦ Nuclear-­‐norm  heurisOc +  strong  theoreOcal  guarantees +  good  empirical  results ‘noise’
  • 28. Matrix  CompleOon = In + Low-rank ✦ Nuclear-­‐norm  heurisOc +  strong  theoreOcal  guarantees +  good  empirical  results ⎯  very  slow  computa5on ‘noise’
  • 29. Matrix  CompleOon = In + ‘noise’ Low-rank ✦ Nuclear-­‐norm  heurisOc +  strong  theoreOcal  guarantees +  good  empirical  results ⎯  very  slow  computa5on Goal:  Scale  MC  algorithms  and  preserve  guarantees
  • 31. Divide-­‐Factor-­‐Combine  (DFC) [MTJ, NIPS11] ✦ D  step:  Divide  input  matrix  into  submatrices
  • 32. Divide-­‐Factor-­‐Combine  (DFC) [MTJ, NIPS11] ✦ D  step:  Divide  input  matrix  into  submatrices ✦ F  step:  Factor  in  parallel  using  a  base  MC  algorithm
  • 33. Divide-­‐Factor-­‐Combine  (DFC) [MTJ, NIPS11] ✦ D  step:  Divide  input  matrix  into  submatrices ✦ F  step:  Factor  in  parallel  using  a  base  MC  algorithm ✦ C  step:  Combine  submatrix  esOmates
  • 34. Divide-­‐Factor-­‐Combine  (DFC) [MTJ, NIPS11] ✦ D  step:  Divide  input  matrix  into  submatrices ✦ F  step:  Factor  in  parallel  using  a  base  MC  algorithm ✦ C  step:  Combine  submatrix  esOmates Advantages: ✦ Submatrix  factorizaOon  is  much  cheaper  and  easily  parallelized ✦ Minimal  communicaOon  between  parallel  jobs ✦ Retains  comparable  recovery  guarantees  (with  proper  choice   of  division  /  combinaOon  strategies)
  • 35. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices:
  • 36. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices: ✦ F  step:  Complete  the  submatrices  in  parallel ✦ Reduced  cost:  Expect  t-­‐fold  speedup  per  iteraOon ✦ Parallel  computaOon:  Pay  cost  of  one  cheaper  MC
  • 37. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices: ✦ F  step:  Complete  the  submatrices  in  parallel ✦ ✦ ✦ Reduced  cost:  Expect  t-­‐fold  speedup  per  iteraOon Parallel  computaOon:  Pay  cost  of  one  cheaper  MC C  step:  Project  onto  single  low-­‐dimensional  column  space
  • 38. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices: ✦ F  step:  Complete  the  submatrices  in  parallel ✦ Reduced  cost:  Expect  t-­‐fold  speedup  per  iteraOon ✦ Parallel  computaOon:  Pay  cost  of  one  cheaper  MC C  step:  Project  onto  single  low-­‐dimensional  column  space ✦ ✦ Roughly,  share  informaOon  across  sub-­‐soluOons
  • 39. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices: ✦ F  step:  Complete  the  submatrices  in  parallel ✦ Reduced  cost:  Expect  t-­‐fold  speedup  per  iteraOon ✦ Parallel  computaOon:  Pay  cost  of  one  cheaper  MC C  step:  Project  onto  single  low-­‐dimensional  column  space ✦ ✦ Roughly,  share  informaOon  across  sub-­‐soluOons ✦ Minimal  cost:  linear  in  n,  quadraOc  in  rank  of  sub-­‐soluOons
  • 40. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices: ✦ F  step:  Complete  the  submatrices  in  parallel ✦ Reduced  cost:  Expect  t-­‐fold  speedup  per  iteraOon ✦ Parallel  computaOon:  Pay  cost  of  one  cheaper  MC C  step:  Project  onto  single  low-­‐dimensional  column  space ✦ ✦ Roughly,  share  informaOon  across  sub-­‐soluOons ✦ Minimal  cost:  linear  in  n,  quadraOc  in  rank  of  sub-­‐soluOons =
  • 41. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices: ✦ F  step:  Complete  the  submatrices  in  parallel ✦ Reduced  cost:  Expect  t-­‐fold  speedup  per  iteraOon ✦ Parallel  computaOon:  Pay  cost  of  one  cheaper  MC C  step:  Project  onto  single  low-­‐dimensional  column  space ✦ ✦ Roughly,  share  informaOon  across  sub-­‐soluOons ✦ Minimal  cost:  linear  in  n,  quadraOc  in  rank  of  sub-­‐soluOons =
  • 42. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices: ✦ F  step:  Complete  the  submatrices  in  parallel ✦ Reduced  cost:  Expect  t-­‐fold  speedup  per  iteraOon ✦ Parallel  computaOon:  Pay  cost  of  one  cheaper  MC C  step:  Project  onto  single  low-­‐dimensional  column  space ✦ ✦ Roughly,  share  informaOon  across  sub-­‐soluOons ✦ Minimal  cost:  linear  in  n,  quadraOc  in  rank  of  sub-­‐soluOons =
  • 43. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices: ✦ F  step:  Complete  the  submatrices  in  parallel ✦ Reduced  cost:  Expect  t-­‐fold  speedup  per  iteraOon ✦ Parallel  computaOon:  Pay  cost  of  one  cheaper  MC C  step:  Project  onto  single  low-­‐dimensional  column  space ✦ ✦ Roughly,  share  informaOon  across  sub-­‐soluOons ✦ Minimal  cost:  linear  in  n,  quadraOc  in  rank  of  sub-­‐soluOons = =
  • 44. DFC-­‐Proj ✦ D  step:  Randomly  parOOon  observed  entries  into  t  submatrices: ✦ F  step:  Complete  the  submatrices  in  parallel ✦ Reduced  cost:  Expect  t-­‐fold  speedup  per  iteraOon ✦ Parallel  computaOon:  Pay  cost  of  one  cheaper  MC C  step:  Project  onto  single  low-­‐dimensional  column  space ✦ ✦ ✦ ✦ Roughly,  share  informaOon  across  sub-­‐soluOons Minimal  cost:  linear  in  n,  quadraOc  in  rank  of  sub-­‐soluOons Ensemble: Project onto column space of each sub-solution and average
  • 45. Does  It  Work? Yes,  with  high  probability. Theorem:    Assume:   ✦ L  0    is  low-­‐rank  and  incoherent,       ✦  ˜                                          entries  sampled  uniformly  at  random,   ⌦(r(n + m)) ✦ Nuclear  norm  heurisOc  is  base  algorithm.
  • 46. Does  It  Work? Yes,  with  high  probability. Theorem:    Assume:   ✦ L  0    is  low-­‐rank  and  incoherent,       ✦  ˜                                          entries  sampled  uniformly  at  random,   ⌦(r(n + m)) ✦ Nuclear  norm  heurisOc  is  base  algorithm. ˆ             Then    L    =    L0    with  (slightly  less)  high  probability.      
  • 47. Does  It  Work? Yes,  with  high  probability. Theorem:    Assume:   ✦ L  0    is  low-­‐rank  and  incoherent,       ✦  ˜                                          entries  sampled  uniformly  at  random,   ⌦(r(n + m)) ✦ Nuclear  norm  heurisOc  is  base  algorithm. ˆ             Then    L    =    L0    with  (slightly  less)  high  probability.       ✦ Noisy  seang:  (2          ✏)  approximaOon  of  original  bound       +       ✦ Can  divide  into  an  increasing  number  of  subproblems   ˜ (  t    !    1  )  when  number  of  observed  entries  in ! (r2 (n + m))              
  • 48. DFC  Noisy  Recovery MC 0.25 Proj−10% Proj−Ens−10% Base−MC RMSE 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 % revealed entries ✦ Noisy recovery relative to base algorithm ( n = 10K, r = 10 )
  • 49. DFC Speedup MC 3500 Proj−10% Proj−Ens−10% Base−MC 3000 time (s) 2500 2000 1500 1000 500 0 1 2 3 m ✦ 4 5 4 x 10 Speedup over APG for random matrices with 4% of entries revealed and r = 0.001n
  • 50. Matrix  CompleOon NeIlix  Prize:   ✦ 100  million  raOngs  in  {1,  ...  ,  5} ✦ 18K  movies,  480K  user ✦ Issues:  Full-­‐rank;  Noisy,  non-­‐uniform   observaOons
  • 51. Matrix  CompleOon NeIlix  Prize:   ✦ 100  million  raOngs  in  {1,  ...  ,  5} ✦ 18K  movies,  480K  user ✦ Issues:  Full-­‐rank;  Noisy,  non-­‐uniform   observaOons NeIlix Method Error Time Nuclear  Norm DFC,  t=4 DFC,  t=10 DFC-­‐Ens,  t=4 DFC-­‐Ens,  t=10 0.8433 2653.1s
  • 52. Matrix  CompleOon NeIlix  Prize:   ✦ 100  million  raOngs  in  {1,  ...  ,  5} ✦ 18K  movies,  480K  user ✦ Issues:  Full-­‐rank;  Noisy,  non-­‐uniform   observaOons NeIlix Method Error Time Nuclear  Norm DFC,  t=4 DFC,  t=10 DFC-­‐Ens,  t=4 DFC-­‐Ens,  t=10 0.8433 0.8436 0.8484 0.8411 0.8433 2653.1s 689.5s 289.7s 689.5s 289.7
  • 53. Matrix  CompleOon NeIlix  Prize:   ✦ 100  million  raOngs  in  {1,  ...  ,  5} ✦ 18K  movies,  480K  user ✦ Issues:  Full-­‐rank;  Noisy,  non-­‐uniform   observaOons NeIlix Method Error Time Nuclear  Norm DFC,  t=4 DFC,  t=10 DFC-­‐Ens,  t=4 DFC-­‐Ens,  t=10 0.8433 0.8436 0.8484 0.8411 0.8433 2653.1s 689.5s 289.7s 689.5s 289.7
  • 54. Robust  Matrix  FactorizaOon [Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candes, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candes, and Ma, 2010] Matrix   Comple5on = In + Low-rank ‘noise’
  • 55. Robust  Matrix  FactorizaOon [Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candes, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candes, and Ma, 2010] Matrix   Comple5on = In Principal   Component   Analysis + + ‘noise’ Low-rank = In ‘noise’ Low-rank
  • 56. Robust  Matrix  FactorizaOon [Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candes, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candes, and Ma, 2010] Matrix   Comple5on = In Principal   Component   Analysis + + In Low-rank = In ‘noise’ Low-rank = Robust  Matrix   Factoriza5on ‘noise’ + Low-rank + Sparse Outliers ‘noise’
  • 57. Video  Surveillance ✦ Goal:  separate  foreground  from  background   ✦ ✦ ✦ Store  video  as  matrix Low-rank  =  background Outliers  =  movement
  • 58. Video  Surveillance ✦ Goal:  separate  foreground  from  background   ✦ ✦ ✦ Store  video  as  matrix Low-rank  =  background Outliers  =  movement Original  Frame
  • 59. Video  Surveillance ✦ Goal:  separate  foreground  from  background   ✦ ✦ ✦ Store  video  as  matrix Low-rank  =  background Outliers  =  movement Original  Frame Nuclear  Norm (342.5s)
  • 60. Video  Surveillance ✦ Goal:  separate  foreground  from  background   ✦ ✦ ✦ Store  video  as  matrix Low-rank  =  background Outliers  =  movement Original  Frame Nuclear  Norm (342.5s) DFC-­‐5% (24.2s) DFC-­‐0.5% (5.2s)
  • 61. Subspace  SegmentaOon [Liu, Lin, and Yu, 2010] Matrix   Comple5on = In + Low-rank ‘noise’
  • 62. Subspace  SegmentaOon [Liu, Lin, and Yu, 2010] Matrix   Comple5on = In Principal   Component   Analysis + + ‘noise’ Low-rank = In ‘noise’ Low-rank
  • 63. Subspace  SegmentaOon [Liu, Lin, and Yu, 2010] Matrix   Comple5on = In Principal   Component   Analysis + + ‘noise’ Low-rank = In Subspace   Segmenta5on ‘noise’ Low-rank = In + Low-rank ‘noise’
  • 65. MoOvaOon:  Face  images ... Principal   Component   Analysis ... In
  • 66. MoOvaOon:  Face  images ... Principal   Component   Analysis ... In = + ‘noise’ Low-rank ✦  Model  images  of  one  person  via  one  low-­‐dimensional  subspace
  • 74. MoOvaOon:  Face  images Subspace   Segmenta5on = In + ‘noise’ Low-rank ✦  Model  images  of  five  people  via  five  low-­‐dimensional  subspaces
  • 75. MoOvaOon:  Face  images Subspace   Segmenta5on = In + ‘noise’ Low-rank ✦  Model  images  of  five  people  via  five  low-­‐dimensional  subspaces ✦  Recover  subspaces                        cluster  images
  • 76. MoOvaOon:  Face  images Subspace   Segmenta5on = In ✦ + ‘noise’ Low-rank Nuclear  norm  heurisOc  to  provably  recovers  subspaces ✦ Guarantees  are  preserved  with  DFC [TMMFJ, ICCV13]
  • 77. MoOvaOon:  Face  images Subspace   Segmenta5on = In + ‘noise’ Low-rank ✦ Toy  Experiment:  IdenOfy  images  corresponding  to  same  person   (10  people,  640  images) ✦ DFC  Results:  Linear  speedup,  State-­‐of-­‐the-­‐art  accuracy  
  • 79. Video  Event  DetecOon ✦ ✦ Input:  videos,  some  of  which  are  associated  with  events Goal:  predict  events  for  unlabeled  videos
  • 80. Video  Event  DetecOon ✦ ✦ ✦ Input:  videos,  some  of  which  are  associated  with  events Goal:  predict  events  for  unlabeled  videos Idea: ✦ Featurize  each  video
  • 81. Video  Event  DetecOon ✦ ✦ ✦ Input:  videos,  some  of  which  are  associated  with  events Goal:  predict  events  for  unlabeled  videos Idea: ✦ ✦ Featurize  each  video Learn  video  clusters  via  nuclear  norm  heurisOc
  • 82. Video  Event  DetecOon ✦ ✦ ✦ Input:  videos,  some  of  which  are  associated  with  events Goal:  predict  events  for  unlabeled  videos Idea: ✦ ✦ ✦ Featurize  each  video Learn  video  clusters  via  nuclear  norm  heurisOc Given  labeled  nodes  and  cluster  structure,  make  predicOons
  • 83. Video  Event  DetecOon ✦ ✦ ✦ Input:  videos,  some  of  which  are  associated  with  events Goal:  predict  events  for  unlabeled  videos Idea: ✦ ✦ ✦ Featurize  each  video Learn  video  clusters  via  nuclear  norm  heurisOc Given  labeled  nodes  and  cluster  structure,  make  predicOons                                            Can  do  this  at  scale  with  DFC!
  • 84. DFC  Summary ✦ DFC:  distributed  framework  for  matrix  factorizaOon ✦ Similar  recovery  guarantees ✦ Significant  speedups   ✦ DFC  applied  to  3  classes  of  problems: ✦ Matrix  compleOon ✦ Robust  matrix  factorizaOon ✦ Subspace  recovery ✦ Extend  DFC  to  other  MF  methods,  e.g.,  ALS,  SGD?
  • 85. Big  Data  and  Distributed  CompuOng   are  valuable  resources,  but  ...
  • 86. Big  Data  and  Distributed  CompuOng   are  valuable  resources,  but  ... ✦ Challenge  1:  ML  not  developed  with  scalability  in  mind
  • 87. Big  Data  and  Distributed  CompuOng   are  valuable  resources,  but  ... ✦ Challenge  1:  ML  not  developed  with  scalability  in  mind Divide-­‐and-­‐Conquer  (e.g.,  DFC)
  • 88. Big  Data  and  Distributed  CompuOng   are  valuable  resources,  but  ... ✦ Challenge  1:  ML  not  developed  with  scalability  in  mind Divide-­‐and-­‐Conquer  (e.g.,  DFC) ✦ Challenge  2:  ML  not  developed  with  ease-­‐of-­‐use  in  mind
  • 89. Big  Data  and  Distributed  CompuOng   are  valuable  resources,  but  ... ✦ Challenge  1:  ML  not  developed  with  scalability  in  mind ML base ML base Divide-­‐and-­‐Conquer  (e.g.,  DFC) ML base ML base ✦ Challenge  2:  ML  not  developed  with  ease-­‐of-­‐use  in  mind ML base ML base www.mlbase.org ML base