SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
Introduction to Seismology: Lecture Notes

16 March 2005





TODAY’S LECTURE
    1. Snell’s law in spherical media
    2. Ray equation 

    3. Radius of curvature

    4. Amplitude → Geometrical spreading

    5. τ – p



SNELL’S LAW IN THE SPHERICAL MEDIA


                                           c1                           At each interface


                                           c2                           sin i1 sin j
      i1 A                                                                    =
                                                                          c1    c2
                         i2 B
                j                                                               OQ             OQ
                                                                        sin j =      sin i2 =
                                                                                OA             OB
                                                    Q                           OB          r
                                    r2                                  sin j =    sin i2 = 2 sin i2
                    r1                                                          OA          r1
                                                                        r1 sin i1 r2 sin i2
                                                                                 =          ≡p
                                                                           c1        c2

                                         O 


                           sin i                                                             r sin i
“flat earth” →      p=                                   “spherical earth” →        p=
                             c                                                                  c

                                    rp
At critical angle,        p=             we can get depth of layer.
                                c(rp )


RAY EQUATION

                                           Directional cosine (3D and 2D)

                    s1                             dx1 2   dx       dx                      dx 2    dz
                                               (      ) + ( 2 )2 + ( 3 )2 = 1           (      ) + ( )2 = 1
                                    s2             ds      ds       ds                      ds      ds

      dz     i ds                                                   ∧
                                           Direction of ray ( n )
           dx                                  ∧                                   dx                         dz
                                n              n = (n x ,0, n z )           nx =                       nz =
                                                                                   ds                         ds


                                                            1
Introduction to Seismology: Lecture Notes

16 March 2005




                          1∧
Using Eikonal equation ∇T = n,
                          c
Generalized Snell’s law (Ray Equation)


                                d   1      d 1 dxi
                                  (      )= (          )
                               dxi c( x)   ds c( x) ds


This equation means that the change of wavespeed is related to change of ray geometry.

If there is no change in x direction, the derivative of x direction should be zero. 



d 1 dx                   1 dx                     sin i
  (        )=0      ⇒         = Const.      ⇒           = Const.    ⇒   Snell’s law !!
ds c(x) ds               c ds                      C


How does this angle i change in the direction of propagation?



d                 di dz di d                                        di ( s )    dc
   (sin i) = cos i =      = ( pc)                  ⇒                         =p
ds                ds ds ds ds                                        ds         dz

Therefore, the change of angle is related to the change of velocity. 

     dc                                             di
If      is large                         ⇒              is large

     dz                                             ds

     dc                                  di

If      is zero (c = const.)    ⇒            is zero (i = const.)             Straight

     dz                                  ds
Ray !! 



RADIUS OF CURVATURE

                                 R : the radius of curvature

                                 ds = Rdi
                                      ds 1 dz            1                     1
                                 R=     =     =                ⇒        R=
                    di                di p dc            dc                    dc
                                                       p( )                  p( )
                                                         dz                    dz
                         R
                                 R is related to wavespeed gradient and ray parameter.

     dz i ds
                                      dc
       dx                        If      =0       ⇒R → ∞      Straight Ray !!
                                      dz




                                             2
Introduction to Seismology: Lecture Notes

16 March 2005




     dc
If      large ⇒ rapid change in c Strong Gradient

     dz




                                                              r sin i
                                                   from p =           ,
                                                                 c
                                                   small i → small p → large R

         i




AMPLITUDE-GEOMETRICAL SPREADING



Focusing-defocusing





                                                                                       Shadow Zone




                     Focusing effect                          Defocusing effect




We examine the property of             dp / dx
                                             dp d dT  d 2T
                                               =  ( )= 2
                                             dx dx dx dx

Small    dx      and large     dp   → dp / dx goes to infinity → large amplitude (focusing)


Large    dx      and small     dp   → dp / dx goes to zero     → small amplitude (Shadow zone)

                                                 We also examine x( p )
                         x 

                                                        ds                   x/2
                                                 T =2              tan i =
             i                                          c                     h

     c            ds 
                   h


                                                      3
Introduction to Seismology: Lecture Notes

16 March 2005




One layer : x = 2h tan i


                                    n
Multiple layers          : x =
2   ∑h
                                   j =0
                                          j   tan i j

Continuous case 


          zp               zp                                zp                     zp
                               1                                      dz                dz
x( p ) =
2 ∫ tan idz =
2
p ∫

                            (         −
 p 2 )
−1/ 2 dz =
2
p ∫
                =
2 p ∫

           0               0 c( z )
                                    2
                                                              0  1 / c 2 −
 p 2       0
                                                                                        η




                            d ⎧               ⎫    dx ⎧              ⎫ ⎧ p d 2c ⎫
      zp                         zp                                         z
dx             dz              ⎪        dz    ⎪             1            ⎪         ⎪
   = 2 ∫
              + 2 p ⎨
∫
             ⎬
⇒ 
 ≈ ⎨−             ⎬ + ⎨+ ∫ 2 dz ⎬
dp             2
          1 / c −
 p 2                  2   2
                            dp ⎪ 0 1 /
c − p ⎪     dp ⎩ (dc / dz ) 0 ⎭ ⎪ 0 dz
                                                                         ⎩         ⎪
                                                                                   ⎭
       0                       ⎩              ⎭


The change of distance in terms of ray parameter is related to gradient of wave speed

at surface and gradient of the change in wavespeed between surface and turning point.



                                              d 2c
Changes of velocity gradient,                       , are small → large distance x for smaller ray

                                              dz 2

               dx

parameter p,       < 0 → “Normal” or Prograde behavior
               dp



                                                                       T 

                 c(z)



                                                                                             dx
                                                                                                <0
   z 
                                                                                       dp

                                                                                                Δ





                                                        4
Introduction to Seismology: Lecture Notes

     16 March 2005





                                                             Distance (�)




                                                                                Intercept time (�)
                                 Depth




                                           Velocity                                                  Ray parameter (p)
            Ray parameter (p)




                                                                         Time




                                         Distance (�)                                                Distance (�)


                                                           Figure by MIT OCW.


     This    figure   represents    ray    paths, T ( ∆ ) , p( ∆ ) , and                                       τ ( p)   relationships for
     velocity increasing slowly with depth.


( Adapted from S.               Stein      and   M.     Wysession   (2003),     An Introduction to Seismology, Earthquakes,
     and Earth Sturcture, Blackwell Publishing, p160)




                                                                    5
Introduction to Seismology: Lecture Notes

16 March 2005





                                 d 2c
Changes of v elocity gradient,        , are large → samll distance x for smaller ray

                                 dz 2
               dx
parameter p,      > 0 → Retrograde behavior
               dp
                           dx
If dp   ≠ 0 and dx = 0 →      = 0 → “Caustic” or focusing effect
                           dp


               c(z)




   z




                                            dx
                                   Caustic, dp = 0        large amplitude
                      dx
                         >0
                      dp                          dx
                                                     <0
                                                  dp

                 dx
                    <0
                 dp




                                             6
Introduction to Seismology: Lecture Notes

     16 March 2005





                                                         Distance (�)




                                                                               Intercept time (�)
                                  Depth




                                          Velocity                                                  Ray parameter (p)
              Ray parameter (p)




                                                                        Time




                                          Distance (�)                                                 Distance (�)


                                                         Figure by MIT OCW.



This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity
increasing rapidly with depth. In this case we can see the triplication and retrograde
behavior.
( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology,
Earthquakes, and Earth Sturcture, Blackwell Publishing, p160)




                                                                   7
Introduction to Seismology: Lecture Notes

     16 March 2005





                                                         Distance (�)




                                                                         Intercept time (�)
                                  Depth




                                           Velocity                                           Ray parameter (p)
           Ray parameter (p)




                                                                        Time




                                          Distance (�)                                              Distance (�)


                                                         Figure by MIT OCW.



This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity
decreasing slowly within a low-velocity zone. In this case we can see the shadow zone
where no direct geometric arrivals appear, and hence discontinuous T ( ∆ ) , p( ∆ ) , and τ ( p) curves.

( Adapted from                  S. Stein and M. Wysession (2003), An Introduction to Seismology,
Earthquakes,                   and Earth Sturcture, Blackwell Publishing, p161)




                                                                   8
Introduction to Seismology: Lecture Notes

16 March 2005





τ – p
                                                          dT
                                        T ( p) = τ ( p) +      x = τ ( p) + px
  T 
                                                     dx
                                       ⇒ 	        τ ( p) = T ( p ) − px
                                                  dτ
                                       ⇒             = − x( p)
  τ2
                                             dp
                                       The function τ(p) is called the intercept

                                                                                -
  τ1

                                       slowness representation of the travel time 

                                       curve. Just as p is the slope of the travel

           x1         x2          Δ    time curve, T(x), the distance x is minus the

                                       slope of the τ(p) curve.





                                             9

Contenu connexe

Tendances

Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematicsRagulan Dev
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
การแปลงทางเรขาคณิต
การแปลงทางเรขาคณิตการแปลงทางเรขาคณิต
การแปลงทางเรขาคณิตRuangrit Ritruangdej
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesNishant Prabhakar
 
The imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical latticeThe imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical latticeUtrecht University
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605ketanaka
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)Nigel Simmons
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsGabriel Peyré
 
Multi-subject models of the resting brain
Multi-subject models of the resting brainMulti-subject models of the resting brain
Multi-subject models of the resting brainGael Varoquaux
 
Learning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivityLearning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivityGael Varoquaux
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusGabriel Peyré
 
Conversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windConversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windTarun Gehlot
 

Tendances (17)

Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Lista exercintegrais
Lista exercintegraisLista exercintegrais
Lista exercintegrais
 
การแปลงทางเรขาคณิต
การแปลงทางเรขาคณิตการแปลงทางเรขาคณิต
การแปลงทางเรขาคณิต
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategies
 
The imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical latticeThe imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical lattice
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
Reflections worksheet1student
Reflections worksheet1studentReflections worksheet1student
Reflections worksheet1student
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : Geodesics
 
Multi-subject models of the resting brain
Multi-subject models of the resting brainMulti-subject models of the resting brain
Multi-subject models of the resting brain
 
Learning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivityLearning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivity
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential Calculus
 
Notes 9-2
Notes 9-2Notes 9-2
Notes 9-2
 
Conversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windConversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient wind
 

Similaire à Seismic

T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasSEENET-MTP
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdtAdam Getchell
 
Example triple integral
Example triple integralExample triple integral
Example triple integralZulaikha Ahmad
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and notesmktsj2
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beamsDeepak Agarwal
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
Examples Of Central Forces
Examples Of Central ForcesExamples Of Central Forces
Examples Of Central Forcesnarayana dash
 
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdfUse Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdfaratextails30
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Ex 7 4_fsc_part1
Ex 7 4_fsc_part1Ex 7 4_fsc_part1
Ex 7 4_fsc_part1naeemniazi3
 
20110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-320110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-3Computer Science Club
 

Similaire à Seismic (20)

6m optics
6m optics6m optics
6m optics
 
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdt
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
S 7
S 7S 7
S 7
 
Legendre
LegendreLegendre
Legendre
 
Example triple integral
Example triple integralExample triple integral
Example triple integral
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and note
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
Cepstral coefficients
Cepstral coefficientsCepstral coefficients
Cepstral coefficients
 
Diffraction part i
Diffraction part iDiffraction part i
Diffraction part i
 
Examples Of Central Forces
Examples Of Central ForcesExamples Of Central Forces
Examples Of Central Forces
 
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdfUse Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Ex 7 4_fsc_part1
Ex 7 4_fsc_part1Ex 7 4_fsc_part1
Ex 7 4_fsc_part1
 
20110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-320110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-3
 

Dernier

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 

Dernier (20)

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 

Seismic

  • 1. Introduction to Seismology: Lecture Notes 16 March 2005 TODAY’S LECTURE 1. Snell’s law in spherical media 2. Ray equation 3. Radius of curvature 4. Amplitude → Geometrical spreading 5. τ – p SNELL’S LAW IN THE SPHERICAL MEDIA c1 At each interface c2 sin i1 sin j i1 A = c1 c2 i2 B j OQ OQ sin j = sin i2 = OA OB Q OB r r2 sin j = sin i2 = 2 sin i2 r1 OA r1 r1 sin i1 r2 sin i2 = ≡p c1 c2 O sin i r sin i “flat earth” → p= “spherical earth” → p= c c rp At critical angle, p= we can get depth of layer. c(rp ) RAY EQUATION Directional cosine (3D and 2D) s1 dx1 2 dx dx dx 2 dz ( ) + ( 2 )2 + ( 3 )2 = 1 ( ) + ( )2 = 1 s2 ds ds ds ds ds dz i ds ∧ Direction of ray ( n ) dx ∧ dx dz n n = (n x ,0, n z ) nx = nz = ds ds 1
  • 2. Introduction to Seismology: Lecture Notes 16 March 2005 1∧ Using Eikonal equation ∇T = n, c Generalized Snell’s law (Ray Equation) d 1 d 1 dxi ( )= ( ) dxi c( x) ds c( x) ds This equation means that the change of wavespeed is related to change of ray geometry. If there is no change in x direction, the derivative of x direction should be zero. d 1 dx 1 dx sin i ( )=0 ⇒ = Const. ⇒ = Const. ⇒ Snell’s law !! ds c(x) ds c ds C How does this angle i change in the direction of propagation? d di dz di d di ( s ) dc (sin i) = cos i = = ( pc) ⇒ =p ds ds ds ds ds ds dz Therefore, the change of angle is related to the change of velocity. dc di If is large ⇒ is large dz ds dc di If is zero (c = const.) ⇒ is zero (i = const.) Straight dz ds Ray !! RADIUS OF CURVATURE R : the radius of curvature ds = Rdi ds 1 dz 1 1 R= = = ⇒ R= di di p dc dc dc p( ) p( ) dz dz R R is related to wavespeed gradient and ray parameter. dz i ds dc dx If =0 ⇒R → ∞ Straight Ray !! dz 2
  • 3. Introduction to Seismology: Lecture Notes 16 March 2005 dc If large ⇒ rapid change in c Strong Gradient dz r sin i from p = , c small i → small p → large R i AMPLITUDE-GEOMETRICAL SPREADING Focusing-defocusing Shadow Zone Focusing effect Defocusing effect We examine the property of dp / dx dp d dT d 2T = ( )= 2 dx dx dx dx Small dx and large dp → dp / dx goes to infinity → large amplitude (focusing) Large dx and small dp → dp / dx goes to zero → small amplitude (Shadow zone) We also examine x( p ) x ds x/2 T =2 tan i = i c h c ds h 3
  • 4. Introduction to Seismology: Lecture Notes 16 March 2005 One layer : x = 2h tan i n Multiple layers : x = 2 ∑h j =0 j tan i j Continuous case zp zp zp zp 1 dz dz x( p ) = 2 ∫ tan idz = 2 p ∫ ( − p 2 ) −1/ 2 dz = 2 p ∫ = 2 p ∫ 0 0 c( z ) 2 0 1 / c 2 − p 2 0 η d ⎧ ⎫ dx ⎧ ⎫ ⎧ p d 2c ⎫ zp zp z dx dz ⎪ dz ⎪ 1 ⎪ ⎪ = 2 ∫ + 2 p ⎨ ∫ ⎬ ⇒ ≈ ⎨− ⎬ + ⎨+ ∫ 2 dz ⎬ dp 2 1 / c − p 2 2 2 dp ⎪ 0 1 / c − p ⎪ dp ⎩ (dc / dz ) 0 ⎭ ⎪ 0 dz ⎩ ⎪ ⎭ 0 ⎩ ⎭ The change of distance in terms of ray parameter is related to gradient of wave speed at surface and gradient of the change in wavespeed between surface and turning point. d 2c Changes of velocity gradient, , are small → large distance x for smaller ray dz 2 dx parameter p, < 0 → “Normal” or Prograde behavior dp T c(z) dx <0 z dp Δ 4
  • 5. Introduction to Seismology: Lecture Notes 16 March 2005 Distance (�) Intercept time (�) Depth Velocity Ray parameter (p) Ray parameter (p) Time Distance (�) Distance (�) Figure by MIT OCW. This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity increasing slowly with depth. ( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Sturcture, Blackwell Publishing, p160) 5
  • 6. Introduction to Seismology: Lecture Notes 16 March 2005 d 2c Changes of v elocity gradient, , are large → samll distance x for smaller ray dz 2 dx parameter p, > 0 → Retrograde behavior dp dx If dp ≠ 0 and dx = 0 → = 0 → “Caustic” or focusing effect dp c(z) z dx Caustic, dp = 0 large amplitude dx >0 dp dx <0 dp dx <0 dp 6
  • 7. Introduction to Seismology: Lecture Notes 16 March 2005 Distance (�) Intercept time (�) Depth Velocity Ray parameter (p) Ray parameter (p) Time Distance (�) Distance (�) Figure by MIT OCW. This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity increasing rapidly with depth. In this case we can see the triplication and retrograde behavior. ( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Sturcture, Blackwell Publishing, p160) 7
  • 8. Introduction to Seismology: Lecture Notes 16 March 2005 Distance (�) Intercept time (�) Depth Velocity Ray parameter (p) Ray parameter (p) Time Distance (�) Distance (�) Figure by MIT OCW. This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity decreasing slowly within a low-velocity zone. In this case we can see the shadow zone where no direct geometric arrivals appear, and hence discontinuous T ( ∆ ) , p( ∆ ) , and τ ( p) curves. ( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Sturcture, Blackwell Publishing, p161) 8
  • 9. Introduction to Seismology: Lecture Notes 16 March 2005 τ – p dT T ( p) = τ ( p) + x = τ ( p) + px T dx ⇒ τ ( p) = T ( p ) − px dτ ⇒ = − x( p) τ2 dp The function τ(p) is called the intercept - τ1 slowness representation of the travel time curve. Just as p is the slope of the travel x1 x2 Δ time curve, T(x), the distance x is minus the slope of the τ(p) curve. 9