SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
Introduction to Seismology: Lecture Notes

16 March 2005





TODAY’S LECTURE
    1. Snell’s law in spherical media
    2. Ray equation 

    3. Radius of curvature

    4. Amplitude → Geometrical spreading

    5. τ – p



SNELL’S LAW IN THE SPHERICAL MEDIA


                                           c1                           At each interface


                                           c2                           sin i1 sin j
      i1 A                                                                    =
                                                                          c1    c2
                         i2 B
                j                                                               OQ             OQ
                                                                        sin j =      sin i2 =
                                                                                OA             OB
                                                    Q                           OB          r
                                    r2                                  sin j =    sin i2 = 2 sin i2
                    r1                                                          OA          r1
                                                                        r1 sin i1 r2 sin i2
                                                                                 =          ≡p
                                                                           c1        c2

                                         O 


                           sin i                                                             r sin i
“flat earth” →      p=                                   “spherical earth” →        p=
                             c                                                                  c

                                    rp
At critical angle,        p=             we can get depth of layer.
                                c(rp )


RAY EQUATION

                                           Directional cosine (3D and 2D)

                    s1                             dx1 2   dx       dx                      dx 2    dz
                                               (      ) + ( 2 )2 + ( 3 )2 = 1           (      ) + ( )2 = 1
                                    s2             ds      ds       ds                      ds      ds

      dz     i ds                                                   ∧
                                           Direction of ray ( n )
           dx                                  ∧                                   dx                         dz
                                n              n = (n x ,0, n z )           nx =                       nz =
                                                                                   ds                         ds


                                                            1
Introduction to Seismology: Lecture Notes

16 March 2005




                          1∧
Using Eikonal equation ∇T = n,
                          c
Generalized Snell’s law (Ray Equation)


                                d   1      d 1 dxi
                                  (      )= (          )
                               dxi c( x)   ds c( x) ds


This equation means that the change of wavespeed is related to change of ray geometry.

If there is no change in x direction, the derivative of x direction should be zero. 



d 1 dx                   1 dx                     sin i
  (        )=0      ⇒         = Const.      ⇒           = Const.    ⇒   Snell’s law !!
ds c(x) ds               c ds                      C


How does this angle i change in the direction of propagation?



d                 di dz di d                                        di ( s )    dc
   (sin i) = cos i =      = ( pc)                  ⇒                         =p
ds                ds ds ds ds                                        ds         dz

Therefore, the change of angle is related to the change of velocity. 

     dc                                             di
If      is large                         ⇒              is large

     dz                                             ds

     dc                                  di

If      is zero (c = const.)    ⇒            is zero (i = const.)             Straight

     dz                                  ds
Ray !! 



RADIUS OF CURVATURE

                                 R : the radius of curvature

                                 ds = Rdi
                                      ds 1 dz            1                     1
                                 R=     =     =                ⇒        R=
                    di                di p dc            dc                    dc
                                                       p( )                  p( )
                                                         dz                    dz
                         R
                                 R is related to wavespeed gradient and ray parameter.

     dz i ds
                                      dc
       dx                        If      =0       ⇒R → ∞      Straight Ray !!
                                      dz




                                             2
Introduction to Seismology: Lecture Notes

16 March 2005




     dc
If      large ⇒ rapid change in c Strong Gradient

     dz




                                                              r sin i
                                                   from p =           ,
                                                                 c
                                                   small i → small p → large R

         i




AMPLITUDE-GEOMETRICAL SPREADING



Focusing-defocusing





                                                                                       Shadow Zone




                     Focusing effect                          Defocusing effect




We examine the property of             dp / dx
                                             dp d dT  d 2T
                                               =  ( )= 2
                                             dx dx dx dx

Small    dx      and large     dp   → dp / dx goes to infinity → large amplitude (focusing)


Large    dx      and small     dp   → dp / dx goes to zero     → small amplitude (Shadow zone)

                                                 We also examine x( p )
                         x 

                                                        ds                   x/2
                                                 T =2              tan i =
             i                                          c                     h

     c            ds 
                   h


                                                      3
Introduction to Seismology: Lecture Notes

16 March 2005




One layer : x = 2h tan i


                                    n
Multiple layers          : x =
2   ∑h
                                   j =0
                                          j   tan i j

Continuous case 


          zp               zp                                zp                     zp
                               1                                      dz                dz
x( p ) =
2 ∫ tan idz =
2
p ∫

                            (         −
 p 2 )
−1/ 2 dz =
2
p ∫
                =
2 p ∫

           0               0 c( z )
                                    2
                                                              0  1 / c 2 −
 p 2       0
                                                                                        η




                            d ⎧               ⎫    dx ⎧              ⎫ ⎧ p d 2c ⎫
      zp                         zp                                         z
dx             dz              ⎪        dz    ⎪             1            ⎪         ⎪
   = 2 ∫
              + 2 p ⎨
∫
             ⎬
⇒ 
 ≈ ⎨−             ⎬ + ⎨+ ∫ 2 dz ⎬
dp             2
          1 / c −
 p 2                  2   2
                            dp ⎪ 0 1 /
c − p ⎪     dp ⎩ (dc / dz ) 0 ⎭ ⎪ 0 dz
                                                                         ⎩         ⎪
                                                                                   ⎭
       0                       ⎩              ⎭


The change of distance in terms of ray parameter is related to gradient of wave speed

at surface and gradient of the change in wavespeed between surface and turning point.



                                              d 2c
Changes of velocity gradient,                       , are small → large distance x for smaller ray

                                              dz 2

               dx

parameter p,       < 0 → “Normal” or Prograde behavior
               dp



                                                                       T 

                 c(z)



                                                                                             dx
                                                                                                <0
   z 
                                                                                       dp

                                                                                                Δ





                                                        4
Introduction to Seismology: Lecture Notes

     16 March 2005





                                                             Distance (�)




                                                                                Intercept time (�)
                                 Depth




                                           Velocity                                                  Ray parameter (p)
            Ray parameter (p)




                                                                         Time




                                         Distance (�)                                                Distance (�)


                                                           Figure by MIT OCW.


     This    figure   represents    ray    paths, T ( ∆ ) , p( ∆ ) , and                                       τ ( p)   relationships for
     velocity increasing slowly with depth.


( Adapted from S.               Stein      and   M.     Wysession   (2003),     An Introduction to Seismology, Earthquakes,
     and Earth Sturcture, Blackwell Publishing, p160)




                                                                    5
Introduction to Seismology: Lecture Notes

16 March 2005





                                 d 2c
Changes of v elocity gradient,        , are large → samll distance x for smaller ray

                                 dz 2
               dx
parameter p,      > 0 → Retrograde behavior
               dp
                           dx
If dp   ≠ 0 and dx = 0 →      = 0 → “Caustic” or focusing effect
                           dp


               c(z)




   z




                                            dx
                                   Caustic, dp = 0        large amplitude
                      dx
                         >0
                      dp                          dx
                                                     <0
                                                  dp

                 dx
                    <0
                 dp




                                             6
Introduction to Seismology: Lecture Notes

     16 March 2005





                                                         Distance (�)




                                                                               Intercept time (�)
                                  Depth




                                          Velocity                                                  Ray parameter (p)
              Ray parameter (p)




                                                                        Time




                                          Distance (�)                                                 Distance (�)


                                                         Figure by MIT OCW.



This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity
increasing rapidly with depth. In this case we can see the triplication and retrograde
behavior.
( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology,
Earthquakes, and Earth Sturcture, Blackwell Publishing, p160)




                                                                   7
Introduction to Seismology: Lecture Notes

     16 March 2005





                                                         Distance (�)




                                                                         Intercept time (�)
                                  Depth




                                           Velocity                                           Ray parameter (p)
           Ray parameter (p)




                                                                        Time




                                          Distance (�)                                              Distance (�)


                                                         Figure by MIT OCW.



This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity
decreasing slowly within a low-velocity zone. In this case we can see the shadow zone
where no direct geometric arrivals appear, and hence discontinuous T ( ∆ ) , p( ∆ ) , and τ ( p) curves.

( Adapted from                  S. Stein and M. Wysession (2003), An Introduction to Seismology,
Earthquakes,                   and Earth Sturcture, Blackwell Publishing, p161)




                                                                   8
Introduction to Seismology: Lecture Notes

16 March 2005





τ – p
                                                          dT
                                        T ( p) = τ ( p) +      x = τ ( p) + px
  T 
                                                     dx
                                       ⇒ 	        τ ( p) = T ( p ) − px
                                                  dτ
                                       ⇒             = − x( p)
  τ2
                                             dp
                                       The function τ(p) is called the intercept

                                                                                -
  τ1

                                       slowness representation of the travel time 

                                       curve. Just as p is the slope of the travel

           x1         x2          Δ    time curve, T(x), the distance x is minus the

                                       slope of the τ(p) curve.





                                             9

Contenu connexe

Tendances

Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematicsRagulan Dev
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
การแปลงทางเรขาคณิต
การแปลงทางเรขาคณิตการแปลงทางเรขาคณิต
การแปลงทางเรขาคณิตRuangrit Ritruangdej
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesNishant Prabhakar
 
The imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical latticeThe imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical latticeUtrecht University
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605ketanaka
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)Nigel Simmons
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsGabriel Peyré
 
Multi-subject models of the resting brain
Multi-subject models of the resting brainMulti-subject models of the resting brain
Multi-subject models of the resting brainGael Varoquaux
 
Learning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivityLearning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivityGael Varoquaux
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusGabriel Peyré
 
Conversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windConversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windTarun Gehlot
 

Tendances (17)

Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Lista exercintegrais
Lista exercintegraisLista exercintegrais
Lista exercintegrais
 
การแปลงทางเรขาคณิต
การแปลงทางเรขาคณิตการแปลงทางเรขาคณิต
การแปลงทางเรขาคณิต
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategies
 
The imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical latticeThe imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical lattice
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
Reflections worksheet1student
Reflections worksheet1studentReflections worksheet1student
Reflections worksheet1student
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : Geodesics
 
Multi-subject models of the resting brain
Multi-subject models of the resting brainMulti-subject models of the resting brain
Multi-subject models of the resting brain
 
Learning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivityLearning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivity
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential Calculus
 
Notes 9-2
Notes 9-2Notes 9-2
Notes 9-2
 
Conversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windConversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient wind
 

Similaire à Seismic

T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasSEENET-MTP
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdtAdam Getchell
 
Example triple integral
Example triple integralExample triple integral
Example triple integralZulaikha Ahmad
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and notesmktsj2
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beamsDeepak Agarwal
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
Examples Of Central Forces
Examples Of Central ForcesExamples Of Central Forces
Examples Of Central Forcesnarayana dash
 
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdfUse Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdfaratextails30
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Ex 7 4_fsc_part1
Ex 7 4_fsc_part1Ex 7 4_fsc_part1
Ex 7 4_fsc_part1naeemniazi3
 
20110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-320110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-3Computer Science Club
 

Similaire à Seismic (20)

6m optics
6m optics6m optics
6m optics
 
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdt
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
S 7
S 7S 7
S 7
 
Legendre
LegendreLegendre
Legendre
 
Example triple integral
Example triple integralExample triple integral
Example triple integral
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and note
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
Cepstral coefficients
Cepstral coefficientsCepstral coefficients
Cepstral coefficients
 
Diffraction part i
Diffraction part iDiffraction part i
Diffraction part i
 
Examples Of Central Forces
Examples Of Central ForcesExamples Of Central Forces
Examples Of Central Forces
 
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdfUse Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Ex 7 4_fsc_part1
Ex 7 4_fsc_part1Ex 7 4_fsc_part1
Ex 7 4_fsc_part1
 
20110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-320110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-3
 

Dernier

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 

Dernier (20)

Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 

Seismic

  • 1. Introduction to Seismology: Lecture Notes 16 March 2005 TODAY’S LECTURE 1. Snell’s law in spherical media 2. Ray equation 3. Radius of curvature 4. Amplitude → Geometrical spreading 5. τ – p SNELL’S LAW IN THE SPHERICAL MEDIA c1 At each interface c2 sin i1 sin j i1 A = c1 c2 i2 B j OQ OQ sin j = sin i2 = OA OB Q OB r r2 sin j = sin i2 = 2 sin i2 r1 OA r1 r1 sin i1 r2 sin i2 = ≡p c1 c2 O sin i r sin i “flat earth” → p= “spherical earth” → p= c c rp At critical angle, p= we can get depth of layer. c(rp ) RAY EQUATION Directional cosine (3D and 2D) s1 dx1 2 dx dx dx 2 dz ( ) + ( 2 )2 + ( 3 )2 = 1 ( ) + ( )2 = 1 s2 ds ds ds ds ds dz i ds ∧ Direction of ray ( n ) dx ∧ dx dz n n = (n x ,0, n z ) nx = nz = ds ds 1
  • 2. Introduction to Seismology: Lecture Notes 16 March 2005 1∧ Using Eikonal equation ∇T = n, c Generalized Snell’s law (Ray Equation) d 1 d 1 dxi ( )= ( ) dxi c( x) ds c( x) ds This equation means that the change of wavespeed is related to change of ray geometry. If there is no change in x direction, the derivative of x direction should be zero. d 1 dx 1 dx sin i ( )=0 ⇒ = Const. ⇒ = Const. ⇒ Snell’s law !! ds c(x) ds c ds C How does this angle i change in the direction of propagation? d di dz di d di ( s ) dc (sin i) = cos i = = ( pc) ⇒ =p ds ds ds ds ds ds dz Therefore, the change of angle is related to the change of velocity. dc di If is large ⇒ is large dz ds dc di If is zero (c = const.) ⇒ is zero (i = const.) Straight dz ds Ray !! RADIUS OF CURVATURE R : the radius of curvature ds = Rdi ds 1 dz 1 1 R= = = ⇒ R= di di p dc dc dc p( ) p( ) dz dz R R is related to wavespeed gradient and ray parameter. dz i ds dc dx If =0 ⇒R → ∞ Straight Ray !! dz 2
  • 3. Introduction to Seismology: Lecture Notes 16 March 2005 dc If large ⇒ rapid change in c Strong Gradient dz r sin i from p = , c small i → small p → large R i AMPLITUDE-GEOMETRICAL SPREADING Focusing-defocusing Shadow Zone Focusing effect Defocusing effect We examine the property of dp / dx dp d dT d 2T = ( )= 2 dx dx dx dx Small dx and large dp → dp / dx goes to infinity → large amplitude (focusing) Large dx and small dp → dp / dx goes to zero → small amplitude (Shadow zone) We also examine x( p ) x ds x/2 T =2 tan i = i c h c ds h 3
  • 4. Introduction to Seismology: Lecture Notes 16 March 2005 One layer : x = 2h tan i n Multiple layers : x = 2 ∑h j =0 j tan i j Continuous case zp zp zp zp 1 dz dz x( p ) = 2 ∫ tan idz = 2 p ∫ ( − p 2 ) −1/ 2 dz = 2 p ∫ = 2 p ∫ 0 0 c( z ) 2 0 1 / c 2 − p 2 0 η d ⎧ ⎫ dx ⎧ ⎫ ⎧ p d 2c ⎫ zp zp z dx dz ⎪ dz ⎪ 1 ⎪ ⎪ = 2 ∫ + 2 p ⎨ ∫ ⎬ ⇒ ≈ ⎨− ⎬ + ⎨+ ∫ 2 dz ⎬ dp 2 1 / c − p 2 2 2 dp ⎪ 0 1 / c − p ⎪ dp ⎩ (dc / dz ) 0 ⎭ ⎪ 0 dz ⎩ ⎪ ⎭ 0 ⎩ ⎭ The change of distance in terms of ray parameter is related to gradient of wave speed at surface and gradient of the change in wavespeed between surface and turning point. d 2c Changes of velocity gradient, , are small → large distance x for smaller ray dz 2 dx parameter p, < 0 → “Normal” or Prograde behavior dp T c(z) dx <0 z dp Δ 4
  • 5. Introduction to Seismology: Lecture Notes 16 March 2005 Distance (�) Intercept time (�) Depth Velocity Ray parameter (p) Ray parameter (p) Time Distance (�) Distance (�) Figure by MIT OCW. This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity increasing slowly with depth. ( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Sturcture, Blackwell Publishing, p160) 5
  • 6. Introduction to Seismology: Lecture Notes 16 March 2005 d 2c Changes of v elocity gradient, , are large → samll distance x for smaller ray dz 2 dx parameter p, > 0 → Retrograde behavior dp dx If dp ≠ 0 and dx = 0 → = 0 → “Caustic” or focusing effect dp c(z) z dx Caustic, dp = 0 large amplitude dx >0 dp dx <0 dp dx <0 dp 6
  • 7. Introduction to Seismology: Lecture Notes 16 March 2005 Distance (�) Intercept time (�) Depth Velocity Ray parameter (p) Ray parameter (p) Time Distance (�) Distance (�) Figure by MIT OCW. This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity increasing rapidly with depth. In this case we can see the triplication and retrograde behavior. ( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Sturcture, Blackwell Publishing, p160) 7
  • 8. Introduction to Seismology: Lecture Notes 16 March 2005 Distance (�) Intercept time (�) Depth Velocity Ray parameter (p) Ray parameter (p) Time Distance (�) Distance (�) Figure by MIT OCW. This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity decreasing slowly within a low-velocity zone. In this case we can see the shadow zone where no direct geometric arrivals appear, and hence discontinuous T ( ∆ ) , p( ∆ ) , and τ ( p) curves. ( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Sturcture, Blackwell Publishing, p161) 8
  • 9. Introduction to Seismology: Lecture Notes 16 March 2005 τ – p dT T ( p) = τ ( p) + x = τ ( p) + px T dx ⇒ τ ( p) = T ( p ) − px dτ ⇒ = − x( p) τ2 dp The function τ(p) is called the intercept - τ1 slowness representation of the travel time curve. Just as p is the slope of the travel x1 x2 Δ time curve, T(x), the distance x is minus the slope of the τ(p) curve. 9