SlideShare une entreprise Scribd logo
1  sur  11
BMM 104: ENGINEERING MATHEMATICS I                                                       Page 1 of 8


                                CHAPTER 5: PARTIAL DERIVATIVES

Functions of n Independent Variables

Suppose D is a set of n-tuples of real numbers ( x1 , x 2 ,..., x n ) . A real valued function f
on D is a rule that assigns a unique (single) real number

                 w = f ( x1 , x 2 ,..., x n )
to each element in D. The set D is the function’s domain. The set of w-values taken on
by f is the function’s range. The symbol w is the dependent variable of f, and f is said to
be a function of the n independent variables x1 to x n . We also call the x j ' s the
function’s input variables and call w the function’s output variable.

Level Curve, Graph, surface of Functions of Two Variables

The set of points in the plane where a function f ( x , y ) has a constant value f ( x , y ) = c
is called a level curve of f. The set of all points ( x , y , f ( x , y ) ) in space, for ( x , y ) in
the domain of f, is called the graph of f. The graph of f is also called the surface
 z = f ( x , y) .

Functions of Three Variables

The set of points ( x , y , z ) in space where a function of three independent variables has a
constant value f ( x , y , z ) = c is called a level surface of f.

Example: Attend lecture.

Partial Derivatives of a Function of Two Variables

Definition:      Partial Derivative with Respect to x

The partial derivative of f ( x , y ) with respect to x at the point ( x0 , y 0 ) is

                 ∂f                         f ( x0 + h , y 0 ) − f ( x0 , y 0 )
                                    = lim                                       ,
                 ∂x   ( x0 , y0 )
                                      h→0                   h
provided the limit exists.




Definition:      Partial Derivative with Respect to y
BMM 104: ENGINEERING MATHEMATICS I                                                                                        Page 2 of 8


The partial derivative of f ( x , y ) with respect to y at the point ( x0 , y0 ) is

                    ∂f                     d                                      f ( x0 , y 0 + h ) − f ( x0 , y 0 )
                                       =      f ( x0 , y )             = lim                                          ,
                    ∂y   ( x0 , y0 )       dy                 y = y0        h→0                   h
provided the limit exists.

Example:

                                           ∂f     ∂f
1.       Find the values of                   and ∂ at the point ( 4 ,− ) if
                                                                       5
                                           ∂x      y
 f ( x , y ) = x 2 + 3 xy + y − 1 .
                   ∂ f
2.           Find         if f ( x , y ) = y sin xy .
                    ∂ x
                                                                       2y
3.       Find f x and f y if f ( x , y ) = y + cos x .



Functions of More Than Two Variables

Example:

                                                             ∂f   ∂f    ∂f
1.       Let f ( x , y , z ) = xy 2 z 3 . Find                  , ∂ and    at (1,− ,− ) .
                                                                                  2 1
                                                             ∂x    y    ∂z
                                             y
2.       Let g ( x , y , z ) = x 2 e z . Find g x , g y and g z .


Second-Order Partial Derivatives

When we differentiate a function f ( x , y ) twice, we produce its second-order
       derivatives.
These derivatives are usually denoted by

∂2 f                                                         f xx
         “ d squared fdx squared “ or                                   “f sub xx “
∂x 2

∂2 f
         “ d squared fdy squared “ or                        f yy       “f sub yy “
∂ 2
 y

∂2 f                                                         f xx
         “ d squared fdx squared “ or                                   “f sub xx “
∂x 2

 ∂ f
  2

                   “ d squared fdxdy squared “ or                                      f yx     “f sub yx “
 ∂∂
  x y
BMM 104: ENGINEERING MATHEMATICS I                                                                               Page 3 of 8




∂ f
 2

                  “ d squared fdydx squared “ or                                       f xy        “f sub xy “
∂∂
 y x

The defining equations are

                   ∂2 f   ∂  ∂f                          ∂2 f   ∂ ∂ 
                                                                       f
                        =        ,                            =    
                                                                     ∂ 
                   ∂x 2
                          ∂x  ∂x                         ∂∂
                                                            x y   ∂  y
                                                                   x     
and so on. Notice the order in which the derivatives are taken:

         ∂ f
          2

                                             Differentiate first with respect to y, then with respect to x.
         ∂∂
          x y

         f yx = ( f y ) x      Means the same thing.

Example:

                                                ∂2 f    ∂ f
                                                          2
                                                                ∂ f        ∂ f
                                                                             2                      2

1.      Let f ( x , y ) = x 3 y 2 − x 4 y 6 . Find    ,       ,        and       .
                                                 ∂x 2 ∂ ∂ ∂
                                                          y x     y2       ∂∂x y
                                               ∂2 f   ∂ f
                                                        2
                                                              ∂2 f        ∂ f
                                                                           2

2.      If f ( x , y ) = x cos y + ye x , find      ,       ,        and       .
                                               ∂x 2 ∂ ∂ ∂
                                                        y x     y2       ∂∂x y




The Chain Rule

Chain Rule for Functions of Two Independent Variables

If w = f ( x , y ) has continuous partial derivatives f x and f y and if x = x( t ) , y = y ( t )
        are
differentiable functions of t, then the compose w = f ( x( t ) , y ( t ) ) is a differentiable
function of t and

                   df
                      = f x ( x ( t ) , y ( t ) ) • x ' ( t ) + f y ( x( t ) , y ( t ) ) • y ' ( t ) ,
                   dt

or
                   dw   ∂f dx ∂f dy
                      =       +       .
                   dt   ∂x dt   ∂y dt

Example:

Use the chain rule to find the derivative of w = xy , with respect to t along the path
BMM 104: ENGINEERING MATHEMATICS I                                                              Page 4 of 8


                                                             π
x = cos t , y = sin t . What is the derivative’s value at t = ?
                                                                       2

Chain Rule for Functions of Three Independent Variables

If w = f ( x , y , z ) is differentiable and x, y and z are differentiable functions of t, then w
        is
a differentiable function of t and

                   dw   ∂f dx ∂f dy ∂f dz
                      =       +       +       .
                   dt   ∂x dt   ∂y dt   ∂z dt

Example:

       dw
Find      if w = xy + z ,      x = cos t ,   y = sin t ,   z =t.
       dt

Chain Rule for Two Independent Variables and Three Intermediate Variables

Suppose that w = f ( x , y , z ) , x = g ( r , s ) , y = h( r , s ) , and z = k ( r , s ) . If all four
        functions
are differentiable, then w has partial derivatives with respect to r and s, given by the
formulas

                   ∂w   ∂ ∂
                         w x ∂ ∂w y   ∂ ∂
                                       w z
                      =      +      +
                   ∂r   ∂ ∂
                         x r   ∂ ∂
                                y r   ∂ ∂
                                       z r

                   ∂w   ∂ ∂
                         w x ∂ ∂w y   ∂ ∂
                                       w z
                      =      +      +
                   ∂s   ∂ ∂
                         x s   ∂ ∂
                                y s   ∂ ∂
                                       z s

Example:

           ∂w     ∂w
Express       and               in terms of r and s is
           ∂r     ∂s

                                    r
         w = x +2y + z2, x =          , y = r 2 + ln s , z = 2 r .
                                    s

If w = f ( x , y ) , x = g ( r , s ) , and y = h( r , s ) , then

          ∂w   ∂ ∂
                w x   ∂ ∂
                       w y                                         ∂w   ∂ ∂
                                                                         w x   ∂ ∂
                                                                                w y
             =      +                                  and            =      +
          ∂r   ∂ ∂
                x r   ∂ ∂
                       y r                                         ∂s   ∂ ∂
                                                                         x s   ∂ ∂
                                                                                y s
Example:

           ∂w     ∂w
Express       and    in terms of r and s if
           ∂r     ∂s
BMM 104: ENGINEERING MATHEMATICS I                                                                   Page 5 of 8




         w = x2 + y2 ,     x= r− s,                  y =r+s.

If w = f ( x ) and x = g ( r , s ) , then

         ∂w   dw ∂x                     ∂w   dw ∂x
            =       and                    =       .
         ∂r   dx ∂r                     ∂s   dx ∂s




                                     PROBLEM SET: CHAPTER 5

1.      Sketch and name the surfaces

        (a)       f ( x, y , z ) = x 2 + y 2 + z 2        (e)        f ( x, y, z ) = x 2 + y 2
        (b)       f ( x , y , z ) = ln( x 2 + y 2 + z 2 ) (f)        f ( x, y, z ) = y 2 + z 2
        (c)       f ( x, y , z ) = x + z                  (g)        f ( x, y, z ) = z − x 2 − y 2
                                                                                                 x2 y2 z2
        (d)       f ( x, y, z ) = z                                  (h)      f ( x, y , z ) =     +   +
                                                                                                 25 16   9

               ∂f     ∂f
2.      Find      and ∂ .
               ∂x      y

        (a)       f ( x , y ) = 5 xy − 7 x 2 − y 2 + 3 x − 6 y + 2
                                           y
        (b)       f ( x , y ) = tan −1  
                                           x
        (c)       f ( x, y) = e    ( x + y +1)

        (d)       f ( x , y ) = e −x sin( x + y )
        (e)       f ( x , y ) = ln( x + y )
        (f)       f ( x , y ) = sin 2 ( x − 3 y )

3.      Find f x , f y and f z .

        (a)       f ( x , y , z ) = sin −1 ( xyz )
                  f ( x , y , z ) = e −( x                    )
                                             2
                                                 + y 2 +z 2
        (b)
        (c)       f ( x , y , z ) = e −xyz
        (d)       f ( x , y , z ) = tanh( x + 2 y + 3 z )

4.      Find all the second-order partial derivatives of the following functions.

        (a)       f ( x , y ) = x + y + xy
        (b)       f ( x , y ) = sin xy
        (c)       f ( x , y ) = x 2 y + cos y + y sin x
BMM 104: ENGINEERING MATHEMATICS I                                                                      Page 6 of 8


      (d)      f ( x , y ) = xe y + y + 1

5.    Verify that w xy = w yx .

      (a)     w = ln( 2 x + 3 y )                       (c)      w = xy 2 + x 2 y 3 + x 3 y 4
      (b)     w = e x + x ln y + y ln x (d)              w = x sin y + y sin x + xy

                                                            dw
6.    In the following questions, (a) express                  as a function of t, both by using
                                                            dt
      the Chain Rule and by expressing w in terms of t and differentiating directly with
                                              dw
      respect to t. The (b) evaluate             at the given value of t.
                                              dt

      (i)     w = x2 + y2 ,        x = cos t ,      y = sin t ;      t=π .

                    x y                                                     1
      (ii)    w=     + ,         x = cos 2 t ,      y = sin 2 t ,     z=          t =3.
                    z z                                                     t

                                                            ∂z     ∂z
7.    In the following questions, (a) express                  and    as a functions of u and v
                                                            ∂u     ∂v
      both by using the Chain Rule and by expressing z directly in terms of u and v
                                                              ∂z     ∂z
      before differentiating. Then (b) evaluate                  and    at the given point (u , v ) .
                                                              ∂u     ∂v


      (i)     z = 4 e x ln y ,      x = ln( u cos v ) ,       y = u sin v ;      ( u ,v ) =  2 , π 
                                                                                                   
                                                                                                4


      (ii)
                         x
              z = tan −1   ,
                         y          x = u cos v ,       y = u sin v ;       ( u ,v ) = 1.3 , π 
                                                                                                 
                                                                                              6


                    ANSWERS FOR PROBLEM SET: CHAPTER 5

              ∂f                       ∂f
2.    (a)        = 5 y − 14 x + 3 ,        = 5 x − 2 y −6
              ∂x                       ∂y
              ∂f           y        ∂f          x
      (b)        =− 2             ,     = 2
              ∂x     x + y 2 ∂y           x + y2
              ∂f                   ∂f
      (c)        = e ( x +y +1) ,      = e ( x +y +1 )
              ∂x                   ∂y
              ∂f                                             ∂f
      (d)        = −e −x sin( x + y ) + e −x cos ( x + y ) ,    = e −x cos ( x + y )
              ∂x                                             ∂y
              ∂f     1    ∂f    1
      (e)        =      ,    =
              ∂x   x + y ∂y    x+y
              ∂f                                     ∂f
      (f)        = 2 sin( x − 3 y ) cos( x − 3 y ) ,    = −6 sin( x − 3 y ) cos( x − 3 y )
              ∂x                                     ∂x
BMM 104: ENGINEERING MATHEMATICS I                                                                                Page 7 of 8




                            yz                                xz                                   xy
3.    (a)     fx =                            , fy =                          , fz =
                       1−x y z2       2   2
                                                          1−x y z
                                                                2   2   2
                                                                                              1 − x2 y2 z2
              f x = −2 xe −( x                     ) , f = −2 ye −( x                        f z = −2 ze − ( x + y + z )
      (b)
                                  2
                                      + y 2 +z 2                        2
                                                                            + y 2 +z 2   ) ,                  2   2   2
                                                        y

      (c)     f x = −yze −xyz , f y = −xze −xyz , f z = −xye − xyz
      (d)     f x = sec h 2 ( x + 2 y + 3 z ) , f y = 2 sec h 2 ( x + 2 y + 3 z ) ,
              f z = 3 sec h 2 ( x + 2 y + 3 z )

              ∂f          ∂f                   ∂2 f
                             =1 + x , ∂ f = 0,
                                       2
                                                         ∂2 f   ∂2 f
4.    (a)        = 1 + y,                           = 0,      =      =1
              ∂x          ∂y          ∂x 2     ∂y 2      ∂∂
                                                          y x   ∂∂
                                                                 x y


              ∂f              ∂f                                   ∂2 f
                                 = x cos xy , ∂ f = − y 2 sin xy ,
                                               2
      (b)        = y cos xy ,                                           = −x 2 sin xy ,
              ∂x              ∂y              ∂x 2                 ∂y 2
              ∂2 f   ∂2 f
                   =      = cos xy − xy sin xy
              ∂y∂x   ∂x∂y
              ∂f                     ∂f
                                        = x 2 − sin y + sin x , ∂ f = 2 y − y sin x ,
                                                                 2
      (c)         = 2 xy + y cos x ,
              ∂x                     ∂y                         ∂x 2
              ∂ f
               2
                               ∂2 f     ∂2 f
                   = −cos y ,         =       = 2 x + cos x
              ∂y 2
                               ∂y∂x     ∂x∂y
              ∂f     ∂f                        ∂2 f
                        = xe y + 1 , ∂ f = 0 ,
                                      2
                                                             ∂2 f   ∂2 f
      (d)        =ey                                = xe y ,      =      =e y
              ∂x     ∂y              ∂x 2      ∂y 2
                                                             ∂∂
                                                              y x   ∂∂
                                                                     x y




              ∂w       2      ∂w       3      ∂2 w       −6
5.    (a)        =          ,    =          ,      =              , and
              ∂x   2 x + 3 y ∂y    2 x + 3 y ∂y∂x    (2x + 3 y) 2
              ∂2 w       −6
                   =
              ∂x∂y ( 2 x + 3 y ) 2
              ∂w               y ∂w  x         ∂2 w  1 1
      (b)        = e x + ln y + ,   = + ln x ,      = + , and
              ∂x               x ∂y  y         ∂∂
                                                y x  y x
              ∂2w 1 1
                  = +
              ∂x∂y y x

              ∂w                              ∂w
      (c)        = y 2 + 2 xy 3 + 3 x 2 y 4 ,    = 2 xy + 3 x 2 y 2 + 4 x 3 y 3 ,
              ∂x                              ∂y
      ∂2 w                                   ∂2 w
           = 2 y + 6 xy 2 + 12 x 2 y 3 , and      = 2 y + 6 xy 2 + 12 x 2 y 3
      ∂y∂x                                   ∂x∂y
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
BMM 104: ENGINEERING MATHEMATICS I                                        Page 8 of 8


             ∂w                         ∂w
      (d)       = sin y + y cos x + y ,    = x cos y + sin x + x ,
             ∂x                         ∂y
             ∂2 w                          ∂2 w
                  = cos y + cos x + 1, and      = cos y + cos x + 1
             ∂y∂x                          ∂x∂y



                     dw
6.    (i)    (a)        =0              (b)       0
                     dt
                     dw
      (ii)   (a)        =1              (b)       1
                     dt

                     ∂z
7.    (i)    (a)          = ( 4 cos v ) ln( u sin v ) + 4 cos v
                     ∂u
                     ∂z                                      4u cos 2 v
                          = ( − 4u sin v ) ln( u sin v ) +
                     ∂v                                        sin v
                     ∂z
             (b)          = 2 ( ln 2 + 2 )
                     ∂u
                     ∂z
                          = −2 2 ln 2 + 4 2
                     ∂v

                     ∂z
      (ii)   (a)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v
                     ∂z
             (b)          =0
                     ∂u
                     ∂z
                          = −1
                     ∂v

Contenu connexe

Tendances

Higher Order Deriavatives
Higher Order DeriavativesHigher Order Deriavatives
Higher Order DeriavativesPadme Amidala
 
functions-of-several-variables.ppt
functions-of-several-variables.pptfunctions-of-several-variables.ppt
functions-of-several-variables.pptDavidbham
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces xmath266
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & DimensionManikanta satyala
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation Abdul Hannan
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
Odd and even functions
Odd and even functionsOdd and even functions
Odd and even functionsDebra Wallace
 
2.4 defintion of derivative
2.4 defintion of derivative2.4 defintion of derivative
2.4 defintion of derivativemath265
 
Group homomorphism
Group homomorphismGroup homomorphism
Group homomorphismNaliniSPatil
 
68157929 lapangan-hingga
68157929 lapangan-hingga68157929 lapangan-hingga
68157929 lapangan-hinggaOyan Siemens
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notesPrakash Dabhi
 
Partial Differentiation
Partial DifferentiationPartial Differentiation
Partial DifferentiationDeep Dalsania
 
2.6 Graphs of Basic Functions
2.6 Graphs of Basic Functions2.6 Graphs of Basic Functions
2.6 Graphs of Basic Functionssmiller5
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinatemath267
 
22 infinite series send-x
22 infinite series send-x22 infinite series send-x
22 infinite series send-xmath266
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivativesmath265
 

Tendances (20)

Higher Order Deriavatives
Higher Order DeriavativesHigher Order Deriavatives
Higher Order Deriavatives
 
functions-of-several-variables.ppt
functions-of-several-variables.pptfunctions-of-several-variables.ppt
functions-of-several-variables.ppt
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
Odd and even functions
Odd and even functionsOdd and even functions
Odd and even functions
 
2.4 defintion of derivative
2.4 defintion of derivative2.4 defintion of derivative
2.4 defintion of derivative
 
Group homomorphism
Group homomorphismGroup homomorphism
Group homomorphism
 
Function Notation.ppt
Function Notation.pptFunction Notation.ppt
Function Notation.ppt
 
68157929 lapangan-hingga
68157929 lapangan-hingga68157929 lapangan-hingga
68157929 lapangan-hingga
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
 
Partial Differentiation
Partial DifferentiationPartial Differentiation
Partial Differentiation
 
2.6 Graphs of Basic Functions
2.6 Graphs of Basic Functions2.6 Graphs of Basic Functions
2.6 Graphs of Basic Functions
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinate
 
22 infinite series send-x
22 infinite series send-x22 infinite series send-x
22 infinite series send-x
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
 

Similaire à Chapter 5(partial differentiation)

Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application Yana Qlah
 
Bernheim calculusfinal
Bernheim calculusfinalBernheim calculusfinal
Bernheim calculusfinalrahulrasa
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B techRaj verma
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Matthew Leingang
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Mel Anthony Pepito
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codesSpringer
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuSEENET-MTP
 
Difrentiation
DifrentiationDifrentiation
Difrentiationlecturer
 
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)Dabe Milli
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 

Similaire à Chapter 5(partial differentiation) (20)

Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application
 
Bernheim calculusfinal
Bernheim calculusfinalBernheim calculusfinal
Bernheim calculusfinal
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codes
 
Partial Derivatives.pdf
Partial Derivatives.pdfPartial Derivatives.pdf
Partial Derivatives.pdf
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
test
testtest
test
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion Cotaescu
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
 
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
 
Ex algebra (5)
Ex algebra  (5)Ex algebra  (5)
Ex algebra (5)
 
subdiff_prox.pdf
subdiff_prox.pdfsubdiff_prox.pdf
subdiff_prox.pdf
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 

Chapter 5(partial differentiation)

  • 1. BMM 104: ENGINEERING MATHEMATICS I Page 1 of 8 CHAPTER 5: PARTIAL DERIVATIVES Functions of n Independent Variables Suppose D is a set of n-tuples of real numbers ( x1 , x 2 ,..., x n ) . A real valued function f on D is a rule that assigns a unique (single) real number w = f ( x1 , x 2 ,..., x n ) to each element in D. The set D is the function’s domain. The set of w-values taken on by f is the function’s range. The symbol w is the dependent variable of f, and f is said to be a function of the n independent variables x1 to x n . We also call the x j ' s the function’s input variables and call w the function’s output variable. Level Curve, Graph, surface of Functions of Two Variables The set of points in the plane where a function f ( x , y ) has a constant value f ( x , y ) = c is called a level curve of f. The set of all points ( x , y , f ( x , y ) ) in space, for ( x , y ) in the domain of f, is called the graph of f. The graph of f is also called the surface z = f ( x , y) . Functions of Three Variables The set of points ( x , y , z ) in space where a function of three independent variables has a constant value f ( x , y , z ) = c is called a level surface of f. Example: Attend lecture. Partial Derivatives of a Function of Two Variables Definition: Partial Derivative with Respect to x The partial derivative of f ( x , y ) with respect to x at the point ( x0 , y 0 ) is ∂f f ( x0 + h , y 0 ) − f ( x0 , y 0 ) = lim , ∂x ( x0 , y0 ) h→0 h provided the limit exists. Definition: Partial Derivative with Respect to y
  • 2. BMM 104: ENGINEERING MATHEMATICS I Page 2 of 8 The partial derivative of f ( x , y ) with respect to y at the point ( x0 , y0 ) is ∂f d f ( x0 , y 0 + h ) − f ( x0 , y 0 ) = f ( x0 , y ) = lim , ∂y ( x0 , y0 ) dy y = y0 h→0 h provided the limit exists. Example: ∂f ∂f 1. Find the values of and ∂ at the point ( 4 ,− ) if 5 ∂x y f ( x , y ) = x 2 + 3 xy + y − 1 . ∂ f 2. Find if f ( x , y ) = y sin xy . ∂ x 2y 3. Find f x and f y if f ( x , y ) = y + cos x . Functions of More Than Two Variables Example: ∂f ∂f ∂f 1. Let f ( x , y , z ) = xy 2 z 3 . Find , ∂ and at (1,− ,− ) . 2 1 ∂x y ∂z y 2. Let g ( x , y , z ) = x 2 e z . Find g x , g y and g z . Second-Order Partial Derivatives When we differentiate a function f ( x , y ) twice, we produce its second-order derivatives. These derivatives are usually denoted by ∂2 f f xx “ d squared fdx squared “ or “f sub xx “ ∂x 2 ∂2 f “ d squared fdy squared “ or f yy “f sub yy “ ∂ 2 y ∂2 f f xx “ d squared fdx squared “ or “f sub xx “ ∂x 2 ∂ f 2 “ d squared fdxdy squared “ or f yx “f sub yx “ ∂∂ x y
  • 3. BMM 104: ENGINEERING MATHEMATICS I Page 3 of 8 ∂ f 2 “ d squared fdydx squared “ or f xy “f sub xy “ ∂∂ y x The defining equations are ∂2 f ∂  ∂f  ∂2 f ∂ ∂  f =  , =  ∂  ∂x 2 ∂x  ∂x  ∂∂ x y ∂  y x  and so on. Notice the order in which the derivatives are taken: ∂ f 2 Differentiate first with respect to y, then with respect to x. ∂∂ x y f yx = ( f y ) x Means the same thing. Example: ∂2 f ∂ f 2 ∂ f ∂ f 2 2 1. Let f ( x , y ) = x 3 y 2 − x 4 y 6 . Find , , and . ∂x 2 ∂ ∂ ∂ y x y2 ∂∂x y ∂2 f ∂ f 2 ∂2 f ∂ f 2 2. If f ( x , y ) = x cos y + ye x , find , , and . ∂x 2 ∂ ∂ ∂ y x y2 ∂∂x y The Chain Rule Chain Rule for Functions of Two Independent Variables If w = f ( x , y ) has continuous partial derivatives f x and f y and if x = x( t ) , y = y ( t ) are differentiable functions of t, then the compose w = f ( x( t ) , y ( t ) ) is a differentiable function of t and df = f x ( x ( t ) , y ( t ) ) • x ' ( t ) + f y ( x( t ) , y ( t ) ) • y ' ( t ) , dt or dw ∂f dx ∂f dy = + . dt ∂x dt ∂y dt Example: Use the chain rule to find the derivative of w = xy , with respect to t along the path
  • 4. BMM 104: ENGINEERING MATHEMATICS I Page 4 of 8 π x = cos t , y = sin t . What is the derivative’s value at t = ? 2 Chain Rule for Functions of Three Independent Variables If w = f ( x , y , z ) is differentiable and x, y and z are differentiable functions of t, then w is a differentiable function of t and dw ∂f dx ∂f dy ∂f dz = + + . dt ∂x dt ∂y dt ∂z dt Example: dw Find if w = xy + z , x = cos t , y = sin t , z =t. dt Chain Rule for Two Independent Variables and Three Intermediate Variables Suppose that w = f ( x , y , z ) , x = g ( r , s ) , y = h( r , s ) , and z = k ( r , s ) . If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas ∂w ∂ ∂ w x ∂ ∂w y ∂ ∂ w z = + + ∂r ∂ ∂ x r ∂ ∂ y r ∂ ∂ z r ∂w ∂ ∂ w x ∂ ∂w y ∂ ∂ w z = + + ∂s ∂ ∂ x s ∂ ∂ y s ∂ ∂ z s Example: ∂w ∂w Express and in terms of r and s is ∂r ∂s r w = x +2y + z2, x = , y = r 2 + ln s , z = 2 r . s If w = f ( x , y ) , x = g ( r , s ) , and y = h( r , s ) , then ∂w ∂ ∂ w x ∂ ∂ w y ∂w ∂ ∂ w x ∂ ∂ w y = + and = + ∂r ∂ ∂ x r ∂ ∂ y r ∂s ∂ ∂ x s ∂ ∂ y s Example: ∂w ∂w Express and in terms of r and s if ∂r ∂s
  • 5. BMM 104: ENGINEERING MATHEMATICS I Page 5 of 8 w = x2 + y2 , x= r− s, y =r+s. If w = f ( x ) and x = g ( r , s ) , then ∂w dw ∂x ∂w dw ∂x = and = . ∂r dx ∂r ∂s dx ∂s PROBLEM SET: CHAPTER 5 1. Sketch and name the surfaces (a) f ( x, y , z ) = x 2 + y 2 + z 2 (e) f ( x, y, z ) = x 2 + y 2 (b) f ( x , y , z ) = ln( x 2 + y 2 + z 2 ) (f) f ( x, y, z ) = y 2 + z 2 (c) f ( x, y , z ) = x + z (g) f ( x, y, z ) = z − x 2 − y 2 x2 y2 z2 (d) f ( x, y, z ) = z (h) f ( x, y , z ) = + + 25 16 9 ∂f ∂f 2. Find and ∂ . ∂x y (a) f ( x , y ) = 5 xy − 7 x 2 − y 2 + 3 x − 6 y + 2 y (b) f ( x , y ) = tan −1   x (c) f ( x, y) = e ( x + y +1) (d) f ( x , y ) = e −x sin( x + y ) (e) f ( x , y ) = ln( x + y ) (f) f ( x , y ) = sin 2 ( x − 3 y ) 3. Find f x , f y and f z . (a) f ( x , y , z ) = sin −1 ( xyz ) f ( x , y , z ) = e −( x ) 2 + y 2 +z 2 (b) (c) f ( x , y , z ) = e −xyz (d) f ( x , y , z ) = tanh( x + 2 y + 3 z ) 4. Find all the second-order partial derivatives of the following functions. (a) f ( x , y ) = x + y + xy (b) f ( x , y ) = sin xy (c) f ( x , y ) = x 2 y + cos y + y sin x
  • 6. BMM 104: ENGINEERING MATHEMATICS I Page 6 of 8 (d) f ( x , y ) = xe y + y + 1 5. Verify that w xy = w yx . (a) w = ln( 2 x + 3 y ) (c) w = xy 2 + x 2 y 3 + x 3 y 4 (b) w = e x + x ln y + y ln x (d) w = x sin y + y sin x + xy dw 6. In the following questions, (a) express as a function of t, both by using dt the Chain Rule and by expressing w in terms of t and differentiating directly with dw respect to t. The (b) evaluate at the given value of t. dt (i) w = x2 + y2 , x = cos t , y = sin t ; t=π . x y 1 (ii) w= + , x = cos 2 t , y = sin 2 t , z= t =3. z z t ∂z ∂z 7. In the following questions, (a) express and as a functions of u and v ∂u ∂v both by using the Chain Rule and by expressing z directly in terms of u and v ∂z ∂z before differentiating. Then (b) evaluate and at the given point (u , v ) . ∂u ∂v (i) z = 4 e x ln y , x = ln( u cos v ) , y = u sin v ; ( u ,v ) =  2 , π     4 (ii) x z = tan −1   , y x = u cos v , y = u sin v ; ( u ,v ) = 1.3 , π       6 ANSWERS FOR PROBLEM SET: CHAPTER 5 ∂f ∂f 2. (a) = 5 y − 14 x + 3 , = 5 x − 2 y −6 ∂x ∂y ∂f y ∂f x (b) =− 2 , = 2 ∂x x + y 2 ∂y x + y2 ∂f ∂f (c) = e ( x +y +1) , = e ( x +y +1 ) ∂x ∂y ∂f ∂f (d) = −e −x sin( x + y ) + e −x cos ( x + y ) , = e −x cos ( x + y ) ∂x ∂y ∂f 1 ∂f 1 (e) = , = ∂x x + y ∂y x+y ∂f ∂f (f) = 2 sin( x − 3 y ) cos( x − 3 y ) , = −6 sin( x − 3 y ) cos( x − 3 y ) ∂x ∂x
  • 7. BMM 104: ENGINEERING MATHEMATICS I Page 7 of 8 yz xz xy 3. (a) fx = , fy = , fz = 1−x y z2 2 2 1−x y z 2 2 2 1 − x2 y2 z2 f x = −2 xe −( x ) , f = −2 ye −( x f z = −2 ze − ( x + y + z ) (b) 2 + y 2 +z 2 2 + y 2 +z 2 ) , 2 2 2 y (c) f x = −yze −xyz , f y = −xze −xyz , f z = −xye − xyz (d) f x = sec h 2 ( x + 2 y + 3 z ) , f y = 2 sec h 2 ( x + 2 y + 3 z ) , f z = 3 sec h 2 ( x + 2 y + 3 z ) ∂f ∂f ∂2 f =1 + x , ∂ f = 0, 2 ∂2 f ∂2 f 4. (a) = 1 + y, = 0, = =1 ∂x ∂y ∂x 2 ∂y 2 ∂∂ y x ∂∂ x y ∂f ∂f ∂2 f = x cos xy , ∂ f = − y 2 sin xy , 2 (b) = y cos xy , = −x 2 sin xy , ∂x ∂y ∂x 2 ∂y 2 ∂2 f ∂2 f = = cos xy − xy sin xy ∂y∂x ∂x∂y ∂f ∂f = x 2 − sin y + sin x , ∂ f = 2 y − y sin x , 2 (c) = 2 xy + y cos x , ∂x ∂y ∂x 2 ∂ f 2 ∂2 f ∂2 f = −cos y , = = 2 x + cos x ∂y 2 ∂y∂x ∂x∂y ∂f ∂f ∂2 f = xe y + 1 , ∂ f = 0 , 2 ∂2 f ∂2 f (d) =ey = xe y , = =e y ∂x ∂y ∂x 2 ∂y 2 ∂∂ y x ∂∂ x y ∂w 2 ∂w 3 ∂2 w −6 5. (a) = , = , = , and ∂x 2 x + 3 y ∂y 2 x + 3 y ∂y∂x (2x + 3 y) 2 ∂2 w −6 = ∂x∂y ( 2 x + 3 y ) 2 ∂w y ∂w x ∂2 w 1 1 (b) = e x + ln y + , = + ln x , = + , and ∂x x ∂y y ∂∂ y x y x ∂2w 1 1 = + ∂x∂y y x ∂w ∂w (c) = y 2 + 2 xy 3 + 3 x 2 y 4 , = 2 xy + 3 x 2 y 2 + 4 x 3 y 3 , ∂x ∂y ∂2 w ∂2 w = 2 y + 6 xy 2 + 12 x 2 y 3 , and = 2 y + 6 xy 2 + 12 x 2 y 3 ∂y∂x ∂x∂y
  • 8. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v
  • 9. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v
  • 10. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v
  • 11. BMM 104: ENGINEERING MATHEMATICS I Page 8 of 8 ∂w ∂w (d) = sin y + y cos x + y , = x cos y + sin x + x , ∂x ∂y ∂2 w ∂2 w = cos y + cos x + 1, and = cos y + cos x + 1 ∂y∂x ∂x∂y dw 6. (i) (a) =0 (b) 0 dt dw (ii) (a) =1 (b) 1 dt ∂z 7. (i) (a) = ( 4 cos v ) ln( u sin v ) + 4 cos v ∂u ∂z 4u cos 2 v = ( − 4u sin v ) ln( u sin v ) + ∂v sin v ∂z (b) = 2 ( ln 2 + 2 ) ∂u ∂z = −2 2 ln 2 + 4 2 ∂v ∂z (ii) (a) =0 ∂u ∂z = −1 ∂v ∂z (b) =0 ∂u ∂z = −1 ∂v