SlideShare une entreprise Scribd logo
1  sur  25
TERMODINAMIKA
ENTROPI, ENERGI BEBAS DAN
ARAH REAKSI
Entropi dan Ketidakteraturan
• Redistribusi partikel gas dalam wadah terjadi tanpa
perubahan energi dalam total sistem, semua susunan
ekivalen
• Jumlah cara komponen sistem dapat disusun tanpa
merubah energi sistem terkait erat dengan kuantitas
entropi (S)
• Entropi adalah ukuran ketidakteraturan sistem
• Sistem dengan cara tersusun ekivalen komponennya
sedikit seperti kristal padat memiliki ketidakteraturan
yang kecil atau entropi rendah
• Sistem dengan cara tersusun ekivalen komponennya
banyak seperti gas memiliki ketidakteraturan besar atau
entropi tinggi
• Jika entropi sistem meningkat, komponen sistem
menjadi semakin tidak teratur, random dan
energi sistem lebih terdistribusi pada range lebih
besar Sdisorder > Sorder
• Seperti halnya energi dalam atau entalpi, entropi
juga fungsi keadaan yaitu hanya tergantung
pada keadaan awal dan akhir tidak pada
bagaimana proses terjadinya
∆Ssis = Sfinal – Sinitial
• Jika entropi meningkat maka ∆Ssis akan positif,
sebaliknya jika entropi turun, maka ∆Ssis akan
negatif
Entropi dan Hukum Kedua Termodinamika
• Apa yang menentukan arah perubahan spontan?
• Sistem alami cenderung kearah tidak teratur, random,
distribusi partikel kurang teratur
• Beberapa sistem cenderung lebih tidak teratur (es
meleleh) tetapi ada juga yang lebih teratur (air
membeku) secara spontan
• Dengan meninjau sistem dan lingkungan terlihat semua
proses yang berlangsung dalam arah spontan akan
meningkatkan entropi total alam semesta (sistem dan
lingkungan). Ini yang disebut dengan hukum kedua
termodinamika
• Hukum ini tidak memberikan batasan perubahan entropi
sistem atau lingkungan, tetapi untuk perubahan spontan
entropi total sistem dan lingkungan harus positif
∆Suniv = ∆Ssis + ∆Ssurr > 0
Entropi Molar Standar
•
•
•
•
•

•
•
•

Entropi (S) berhubungan dengan jumlah cara (W) sistem dapat
tersusun tanpa merubah energi dalam
Tahun 1877 Ludwig Boltzmann menguraikan hubungan ini secara
kuantitatif
S = k ln W
Dimana k adalah konstanta Blotzmann (R/NA) ≈ 1,38x10-23 J/K
Tidak seperti entalpi, entropi memiliki nilai mutlak dengan
menerapkan hukum ketiga Termodinamika yang menyatakan kristal
sempurna memiliki entropi nol pada temperatur nol absolut S sis = 0
pada 0 K
Pada nol absolut, semua partikel pada kristal memiliki energi
minimum sehingga hanya ada satu cara mereka tersusun
Nilai entropi biasanya dibandingkan pada keadaan standar dengan
T tertentu, untuk gas pada 1 atm, larutan 1 M, dan zat murni pada
keadaan paling stabil untuk padat dan cair
Entropi merupakan besaran ekstensif sehingga tergantung pada
jumlah oleh karena itu dikenalkan dengan entropi molar standar
dalam satuan J/mol K
Memperkirakan Nilai So Relatif
Sistem
•

Berdasarkan pengamatan level
molekuler kita bisa memperkirakan
entropi zat akibat pengaruh
1.
2.
3.
4.
5.

Perubahan temperatur
Keadaan fisik dan perubahan fasa
Pelarutan solid atau liquid
Pelarutan gas
Ukuran atom atau kompleksitas molekul
1. Perubahan Temperatur
• So meningkat seiring dengan kenaikan
temperatur
T(K)
273
295
298
So
31,0
32,9
33,1
• Kenaikan temperatur menunjukkan
kenaikan energi kinetik rata-rata partikel
2. Keadaan Fisik dan Perubahan Fasa
• Ketika fasa yang lebih teratur berubah ke
yang kurang teratur, perubahan entropi
positif
• Untuk zat tertentu So meningkat manakala
perubahan zat dari solid ke liquid ke gas
Na
H2O
C(grafit)
• So (s / l)
• So (g)

51,4(s)
153,6

69,9 (l)
188,7

5,7(s)
158,0
3. Pelarutan solid atau liquid
• Entropi solid atau liquid terlarut biasanya
lebih besar dari solut murni, tetapi jenis
solut dan solven dan bagaimana proses
pelarutannya mempengaruhi entropi
overall
NaCl
AlCl3
CH3OH
• So s/l
• Soaq

72.1(s)
115,1

167(s)
-148

127(l)
132
4. Pelarutan Gas
• Gas begitu tidak teratur dan akan menjadi
lebih teratur saat dilarutkan dalam liquid
atau solid
• Entropi larutan gas dalam liquid atau solid
selalu lebih kecil dibanding gas murni
• Saat O2 (Sog = 205,0J/mol K) dilarutkan
dalam air, entropi turun drastis (S oaq =
110,9 J/mol K)
5. Ukuran Atom atau Kompleksitas
molekul
• Perbedaan entropi zat dengan fasa sama
tergantung pada ukuran atom dan
komplesitas molekul
•
Li
Na
K
Rb
Cs
• Jari2 152 186 227 248 265
• M molar 6.941 22.99 39.10 85.47 132.9
• So(s)
29.1 51.4 64.7 69.5 85.2
• Untuk senyawa, entropi meningkat seiring
dengan kompleksitas kimia yaitu dengan
semakin banyaknya jumlah atom dalam
molekul
• Hal ini berlaku untuk senyawa ionik dan
kovalen
NO
NO2
N2O4
• So(g)
211
240
304
• Kecenderungan ini didasarkan atas variasi
gerakan yang dapat dilakukan molekul
• Untuk molekul lebih besar lagi, juga perlu
diperhitungkan bagaimana bagian dari melekul
dapat bergerak terhadap bagian lain
• Rantai hidrokarbon panjang dapat berotasi dan
bervibrasi dengan lebih banyak cara dibanding
rantai pendek
CH4
C2H6
C3H8
C4H10
• So 186

230

270

310
Latihan
Mana entropi yang lebih tinggi
• 1 mol SO2(g) atau 1 mol SO3(g)
• 1 mol CO2(s) atau 1 mol CO2(g)
• 3 mol gas oksigen (O2) atau 2 mol gas ozon (O3)
• 1 mol KBr(s) atau 1 mol KBr(aq)
• Air laut pada pertengahan musim dingin 2 oC
atau pada pertengahan musim panas 23 oC
• 1 mol CF4(g) atau 1 mol CCl4(g)
Entropi Standar Reaksi ∆S

o

rxn

∀ ∆Sorxn = ΣmSoproduk - ΣnSoreaktan
• m dan n adalah jumlah individual spesies diwakili oleh
koefisien reaksi
• Jika ammonia terbentuk dari komponen nya, 4 mol gas
menghasilkan 2 mol gas karena gas memiliki entropi
molar tinggi, terlihat entropi produk kurang dari reaktan
sehingga entropi turun selama reaksi
• N2(g) + 3H2(g) ⇔ 2NH3(g)
∀ ∆Sorxn = (2 mol NH3 x So NH3) – [(1 mol N2 x So N2) + (3 mol
H2 x So H2)]
∀ ∆Sorxn = (2 x 193) – [(1 x 191,5) + (3 x 130,6) = -197 J/K
• Hk kedua menyatakan penurunan entropi sistem hanya
dapat terjadi jika entropi lingkungan meningkat
melebihinya
• Peran penting lingkungan adalah dalam memberi
panas ke sistem atau mengambilnya dari sistem (lingk
dapat berperan sebagai source or heat sink)
• Pada perubahan eksotermik, panas yang dilepas
sistem, diserap oleh lingkungan ini menyebabkan gerak
random partikel dilingkungan meningkat sehingga
entropi meningkat qsis < 0, qsurr > 0, ∆Ssurr > 0
• Pada perubahan endotermik, sistem menyerap panas
dan lingkungan melepas panas, sehingga entropi
lingkungan menurun, qsis > 0, qsurr < 0, ∆Ssurr < 0
• Perubahan entropi lingkungan berbanding lurus
dengan perubahan panas sistem dan
berbanding terbalik dengan temperatur
lingkungan sebelum transfer panas
∆Ssurr ∝ -qsis, dan ∆Ssurr ∝ 1/T
• Kombinasinya menghasilkan
∆Ssurr = -qsis/T
• Jika proses berlangsung pada tekanan konstan,
qp sama dengan ∆H sehingga
∆Ssurr = -∆Hsis/T
• Kita dapat menghitung ∆Ssurr dengan mengukur
∆Hsis dan temperatur ketika perubahan terjadi
Contoh Soal
• Pada 298K pembentukan ammonia
memiliki ∆Sosis negatif
N2(g) + 3H2(g)  2NH3(g) ∆Sosis = -197 J/K
Hitung ∆Souniv dan nyatakan apakah reaksi
terjadi spontan pada temperatur ini!
• Apakah oksidasi FeO(s) menjadi Fe2O3(s)
terjadi secara spontan pada 298 K?
Perubahan Entropi dan Keadaan
Kesetimbangan
• Perubahan mengarah kekesetimbangan secara
spontan, ∆Suniv > 0
• Ketika kesetimbangan tercapai tidak ada lagi
daya untuk mendorong perubahan sehingga
∆Suniv = 0. Pada titik ini perubahan entropi pada
sistem diikuti perubahan entropi lingkungan
dalam jumlah yang sama tetapi berbeda tanda
• Pada kesetimbangan ∆Suniv = ∆Ssis + ∆Ssurr = 0
• Atau ∆Ssis = -∆Ssurr
Kesetimbangan Uap Air
• Penguapan 1 mol air pada 100oC (373 K)
H2O(l:373 K) ⇔ H2O(g: 373 K)
∆Sosis
= So H2O(g) – So H2O(l)
= 195,9 – 86,8 = 109,1 J/K
• Sistem menjadi lebih tidak teratur
∆Ssurr
= -∆Hosis/T = -∆Hovap/T
= -40,7 x 103 J/373 K = -109 J/K
∆Suniv = 109 J/K + (-109 J/K) = 0
• Saat kesetimbangan tercapai, proses reaksi
berlangsung spontan baik arah maju maupun
balik
Eksotermik dan Endotermik
Spontan
• Reaksi Eksotermik
C6H12O6(s) + 6O2(g)  6CO2(g) + 6H2O(g) +
kalor
CaO(s) + CO2(g)  CaCO3(s) + kalor
• Reaksi Endotermik
Kalor + Ba(OH)2·8H2O(s) + 2NH4NO3(s)  Ba2+
(aq) + 2NO3-(aq) + 2NH3(aq) + 10H2O(l)
Entropi, Energi Bebas dan Kerja
• Spontanitas dapat ditentukan dengan mengukur
∆Ssis dan ∆Ssurr, tetapi akan lebih mudah jika kita
memiliki satu parameter saja untuk menentukan
spontanitas
• Energi bebas Gibbs (G) adalah fungsi yang
menggabungkan entalpi dan entropi dari sistem
G = H – TS
• Diajukan oleh Josiah Willard Gibbs 1877
∆Suniv = ∆Ssis + ∆Ssurr
• Pada Tekanan konstan ∆Ssurr = -∆Hsis/T
∆Suniv = ∆Ssis - ∆Hsis/T
• Jika kedua sisi dikalikan –T maka
-T∆Suniv = ∆Hsis - T∆Ssis atau
-T∆Suniv = ∆Gsis
∀ ∆Suniv > 0 spontan  ∆G < 0
∀ ∆Suniv < 0 non spontan  ∆G > 0
∀ ∆Suniv = 0 setimbang  ∆G = 0
Menghitung Perubahan Energi
Bebas Standar
∆Gosis = ∆Hosis - T∆Sosis
• Energi bebas Gibbs juga dapat dihitung
(karena ia fungsi keadaan) dari energi
bebas produk dan reaktan
∆Gorxn = Σm∆Gof(produk) - Σn∆Gof(reaktan)
• Catatan : ∆Gof suatu unsur pada keadaan
standarnya adalah nol

Contenu connexe

Tendances

Penerapan hukum 2 termodinamika
Penerapan hukum 2 termodinamikaPenerapan hukum 2 termodinamika
Penerapan hukum 2 termodinamikaFKIP UHO
 
3 termodinamika gas ideal dan gas nyata - copy
3 termodinamika  gas ideal  dan gas nyata - copy3 termodinamika  gas ideal  dan gas nyata - copy
3 termodinamika gas ideal dan gas nyata - copyMahammad Khadafi
 
Ikatan pi dan ikatan sigma
Ikatan pi dan ikatan sigmaIkatan pi dan ikatan sigma
Ikatan pi dan ikatan sigmalinda listia
 
Penerapan defrensial
Penerapan defrensialPenerapan defrensial
Penerapan defrensialFKIP UHO
 
Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)Utami Irawati
 
Termodinamika (14) c prinsip_perubahan_entropi
Termodinamika (14) c prinsip_perubahan_entropiTermodinamika (14) c prinsip_perubahan_entropi
Termodinamika (14) c prinsip_perubahan_entropijayamartha
 
TOM (Teori Orbital Molekul)
TOM (Teori Orbital Molekul)TOM (Teori Orbital Molekul)
TOM (Teori Orbital Molekul)Farikha Uly
 
Senyawa koordinasi (kompleks)
Senyawa koordinasi (kompleks)Senyawa koordinasi (kompleks)
Senyawa koordinasi (kompleks)Windha Herjinda
 
Tugas Kimdas (Hukum 3 termodinamika)
Tugas Kimdas (Hukum 3 termodinamika)Tugas Kimdas (Hukum 3 termodinamika)
Tugas Kimdas (Hukum 3 termodinamika)Chaed Al Habibah
 
Jurnal Laju Reaksi
Jurnal Laju ReaksiJurnal Laju Reaksi
Jurnal Laju Reaksinurul limsun
 
TEORI KINETIKA GAS
TEORI KINETIKA GASTEORI KINETIKA GAS
TEORI KINETIKA GASNisaUlFitri
 
Termodinamika (1 - 2) e besaran_intensif_dan_ekstensif
Termodinamika (1 - 2) e besaran_intensif_dan_ekstensifTermodinamika (1 - 2) e besaran_intensif_dan_ekstensif
Termodinamika (1 - 2) e besaran_intensif_dan_ekstensifjayamartha
 
Presentasi spektroskopi-inframerah-ppt
Presentasi spektroskopi-inframerah-pptPresentasi spektroskopi-inframerah-ppt
Presentasi spektroskopi-inframerah-pptDaniel Marison
 

Tendances (20)

Penerapan hukum 2 termodinamika
Penerapan hukum 2 termodinamikaPenerapan hukum 2 termodinamika
Penerapan hukum 2 termodinamika
 
Kimia fisika
Kimia fisikaKimia fisika
Kimia fisika
 
3 termodinamika gas ideal dan gas nyata - copy
3 termodinamika  gas ideal  dan gas nyata - copy3 termodinamika  gas ideal  dan gas nyata - copy
3 termodinamika gas ideal dan gas nyata - copy
 
Ikatan pi dan ikatan sigma
Ikatan pi dan ikatan sigmaIkatan pi dan ikatan sigma
Ikatan pi dan ikatan sigma
 
Penerapan defrensial
Penerapan defrensialPenerapan defrensial
Penerapan defrensial
 
Termodinamika kelompok 6
Termodinamika kelompok 6Termodinamika kelompok 6
Termodinamika kelompok 6
 
Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)
 
Osilasi teredam
Osilasi teredamOsilasi teredam
Osilasi teredam
 
Termodinamika (14) c prinsip_perubahan_entropi
Termodinamika (14) c prinsip_perubahan_entropiTermodinamika (14) c prinsip_perubahan_entropi
Termodinamika (14) c prinsip_perubahan_entropi
 
TOM (Teori Orbital Molekul)
TOM (Teori Orbital Molekul)TOM (Teori Orbital Molekul)
TOM (Teori Orbital Molekul)
 
Senyawa koordinasi (kompleks)
Senyawa koordinasi (kompleks)Senyawa koordinasi (kompleks)
Senyawa koordinasi (kompleks)
 
Bandul Fisis (M5)
Bandul Fisis (M5)Bandul Fisis (M5)
Bandul Fisis (M5)
 
Tugas Kimdas (Hukum 3 termodinamika)
Tugas Kimdas (Hukum 3 termodinamika)Tugas Kimdas (Hukum 3 termodinamika)
Tugas Kimdas (Hukum 3 termodinamika)
 
Jurnal Laju Reaksi
Jurnal Laju ReaksiJurnal Laju Reaksi
Jurnal Laju Reaksi
 
TEORI KINETIKA GAS
TEORI KINETIKA GASTEORI KINETIKA GAS
TEORI KINETIKA GAS
 
Katalis
KatalisKatalis
Katalis
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Termodinamika (1 - 2) e besaran_intensif_dan_ekstensif
Termodinamika (1 - 2) e besaran_intensif_dan_ekstensifTermodinamika (1 - 2) e besaran_intensif_dan_ekstensif
Termodinamika (1 - 2) e besaran_intensif_dan_ekstensif
 
Entropi
EntropiEntropi
Entropi
 
Presentasi spektroskopi-inframerah-ppt
Presentasi spektroskopi-inframerah-pptPresentasi spektroskopi-inframerah-ppt
Presentasi spektroskopi-inframerah-ppt
 

Similaire à TERMODINAMIKA ENTROPI, ENERGI BEBAS DAN ARAH REAKSI

Similaire à TERMODINAMIKA ENTROPI, ENERGI BEBAS DAN ARAH REAKSI (20)

Chermistry
ChermistryChermistry
Chermistry
 
Termokimiaaaa
TermokimiaaaaTermokimiaaaa
Termokimiaaaa
 
TERMOKIMIA PART 1.pptx
TERMOKIMIA PART 1.pptxTERMOKIMIA PART 1.pptx
TERMOKIMIA PART 1.pptx
 
Temodinamika dan Gas
Temodinamika dan GasTemodinamika dan Gas
Temodinamika dan Gas
 
Laporan Hasil Praktikum Menentukan Perubahan Entalpi Reaksi
Laporan Hasil Praktikum Menentukan Perubahan Entalpi ReaksiLaporan Hasil Praktikum Menentukan Perubahan Entalpi Reaksi
Laporan Hasil Praktikum Menentukan Perubahan Entalpi Reaksi
 
Termokimia 1
Termokimia 1Termokimia 1
Termokimia 1
 
02._temperatur__kalor.pptx
02._temperatur__kalor.pptx02._temperatur__kalor.pptx
02._temperatur__kalor.pptx
 
Laporan Kimia - thermokimia
Laporan Kimia - thermokimiaLaporan Kimia - thermokimia
Laporan Kimia - thermokimia
 
Laporan termokimia
Laporan termokimia Laporan termokimia
Laporan termokimia
 
Termokimia
TermokimiaTermokimia
Termokimia
 
Termokimia
TermokimiaTermokimia
Termokimia
 
Ppt termokimia fix.pptx
Ppt termokimia fix.pptxPpt termokimia fix.pptx
Ppt termokimia fix.pptx
 
Materi LKS Fisika X S2
Materi LKS Fisika X S2Materi LKS Fisika X S2
Materi LKS Fisika X S2
 
Lks termokimia
Lks termokimiaLks termokimia
Lks termokimia
 
Pembelajaran Termo Kimia Kelas Xi semester 2
Pembelajaran Termo Kimia Kelas Xi semester 2Pembelajaran Termo Kimia Kelas Xi semester 2
Pembelajaran Termo Kimia Kelas Xi semester 2
 
Termo Kimia.ppt
Termo Kimia.pptTermo Kimia.ppt
Termo Kimia.ppt
 
111199261 rumus-lengkap-kimia-sma
111199261 rumus-lengkap-kimia-sma111199261 rumus-lengkap-kimia-sma
111199261 rumus-lengkap-kimia-sma
 
Rumus lengkap-kimia
Rumus lengkap-kimiaRumus lengkap-kimia
Rumus lengkap-kimia
 
p08-0809-suhu-dan-kalor.ppt
p08-0809-suhu-dan-kalor.pptp08-0809-suhu-dan-kalor.ppt
p08-0809-suhu-dan-kalor.ppt
 
Suhu dan kalor
Suhu dan kalorSuhu dan kalor
Suhu dan kalor
 

Plus de Husain Anker

pertumbuhan dan perkembangan
pertumbuhan dan perkembanganpertumbuhan dan perkembangan
pertumbuhan dan perkembanganHusain Anker
 
Power Point Mutasi
Power Point MutasiPower Point Mutasi
Power Point MutasiHusain Anker
 
Pola pola-hereditas XII IPA
Pola pola-hereditas XII IPAPola pola-hereditas XII IPA
Pola pola-hereditas XII IPAHusain Anker
 
Teori evolusi Power Point
Teori evolusi Power PointTeori evolusi Power Point
Teori evolusi Power PointHusain Anker
 
Persilangan Kelas XII
Persilangan Kelas XIIPersilangan Kelas XII
Persilangan Kelas XIIHusain Anker
 
Ppt. fluida Fisika
Ppt. fluida FisikaPpt. fluida Fisika
Ppt. fluida FisikaHusain Anker
 
Power Point Fisika Fluida
Power Point Fisika FluidaPower Point Fisika Fluida
Power Point Fisika FluidaHusain Anker
 
Ppt. listrik-statis
Ppt. listrik-statisPpt. listrik-statis
Ppt. listrik-statisHusain Anker
 
Ppt. fluida By FitrahRhya
Ppt. fluida By FitrahRhyaPpt. fluida By FitrahRhya
Ppt. fluida By FitrahRhyaHusain Anker
 
Getaran dan-gelombang-yani
Getaran dan-gelombang-yaniGetaran dan-gelombang-yani
Getaran dan-gelombang-yaniHusain Anker
 

Plus de Husain Anker (14)

pembelahan sel
pembelahan selpembelahan sel
pembelahan sel
 
pertumbuhan dan perkembangan
pertumbuhan dan perkembanganpertumbuhan dan perkembangan
pertumbuhan dan perkembangan
 
Gerak melingkar
Gerak melingkarGerak melingkar
Gerak melingkar
 
Power Point Mutasi
Power Point MutasiPower Point Mutasi
Power Point Mutasi
 
Pola pola-hereditas XII IPA
Pola pola-hereditas XII IPAPola pola-hereditas XII IPA
Pola pola-hereditas XII IPA
 
Teori evolusi Power Point
Teori evolusi Power PointTeori evolusi Power Point
Teori evolusi Power Point
 
Persilangan Kelas XII
Persilangan Kelas XIIPersilangan Kelas XII
Persilangan Kelas XII
 
Materi Kimia PPt
Materi Kimia PPtMateri Kimia PPt
Materi Kimia PPt
 
Kimia unsur
Kimia unsurKimia unsur
Kimia unsur
 
Ppt. fluida Fisika
Ppt. fluida FisikaPpt. fluida Fisika
Ppt. fluida Fisika
 
Power Point Fisika Fluida
Power Point Fisika FluidaPower Point Fisika Fluida
Power Point Fisika Fluida
 
Ppt. listrik-statis
Ppt. listrik-statisPpt. listrik-statis
Ppt. listrik-statis
 
Ppt. fluida By FitrahRhya
Ppt. fluida By FitrahRhyaPpt. fluida By FitrahRhya
Ppt. fluida By FitrahRhya
 
Getaran dan-gelombang-yani
Getaran dan-gelombang-yaniGetaran dan-gelombang-yani
Getaran dan-gelombang-yani
 

Dernier

Dinamika Hidrosfer geografi kelas X genap
Dinamika Hidrosfer geografi kelas X genapDinamika Hidrosfer geografi kelas X genap
Dinamika Hidrosfer geografi kelas X genapsefrida3
 
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdfTUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdfElaAditya
 
Materi Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptxMateri Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptxRezaWahyuni6
 
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdfContoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdfCandraMegawati
 
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptxPERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptxRizkyPratiwi19
 
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...Kanaidi ken
 
soal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptxsoal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptxazhari524
 
Modul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase BModul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase BAbdiera
 
Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1udin100
 
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptxSesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptxSovyOktavianti
 
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdfBab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdfbibizaenab
 
PEMANASAN GLOBAL - MATERI KELAS X MA.pptx
PEMANASAN GLOBAL - MATERI KELAS X MA.pptxPEMANASAN GLOBAL - MATERI KELAS X MA.pptx
PEMANASAN GLOBAL - MATERI KELAS X MA.pptxsukmakarim1998
 
LK.01._LK_Peta_Pikir modul 1.3_Kel1_NURYANTI_101.docx
LK.01._LK_Peta_Pikir modul 1.3_Kel1_NURYANTI_101.docxLK.01._LK_Peta_Pikir modul 1.3_Kel1_NURYANTI_101.docx
LK.01._LK_Peta_Pikir modul 1.3_Kel1_NURYANTI_101.docxPurmiasih
 
Aksi nyata Malaikat Kebaikan [Guru].pptx
Aksi nyata Malaikat Kebaikan [Guru].pptxAksi nyata Malaikat Kebaikan [Guru].pptx
Aksi nyata Malaikat Kebaikan [Guru].pptxsdn3jatiblora
 
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptxBab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptxssuser35630b
 
Perumusan Visi dan Prakarsa Perubahan.pptx
Perumusan Visi dan Prakarsa Perubahan.pptxPerumusan Visi dan Prakarsa Perubahan.pptx
Perumusan Visi dan Prakarsa Perubahan.pptxadimulianta1
 
Materi Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptxMateri Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptxRezaWahyuni6
 
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptxKontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptxssuser50800a
 
Modul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase CModul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase CAbdiera
 
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdfsdn3jatiblora
 

Dernier (20)

Dinamika Hidrosfer geografi kelas X genap
Dinamika Hidrosfer geografi kelas X genapDinamika Hidrosfer geografi kelas X genap
Dinamika Hidrosfer geografi kelas X genap
 
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdfTUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
 
Materi Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptxMateri Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptx
 
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdfContoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
 
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptxPERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
 
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
PELAKSANAAN + Link2 Materi Pelatihan "Teknik Perhitungan & Verifikasi TKDN & ...
 
soal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptxsoal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptx
 
Modul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase BModul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase B
 
Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1
 
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptxSesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
Sesi 1_PPT Ruang Kolaborasi Modul 1.3 _ ke 1_PGP Angkatan 10.pptx
 
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdfBab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdf
 
PEMANASAN GLOBAL - MATERI KELAS X MA.pptx
PEMANASAN GLOBAL - MATERI KELAS X MA.pptxPEMANASAN GLOBAL - MATERI KELAS X MA.pptx
PEMANASAN GLOBAL - MATERI KELAS X MA.pptx
 
LK.01._LK_Peta_Pikir modul 1.3_Kel1_NURYANTI_101.docx
LK.01._LK_Peta_Pikir modul 1.3_Kel1_NURYANTI_101.docxLK.01._LK_Peta_Pikir modul 1.3_Kel1_NURYANTI_101.docx
LK.01._LK_Peta_Pikir modul 1.3_Kel1_NURYANTI_101.docx
 
Aksi nyata Malaikat Kebaikan [Guru].pptx
Aksi nyata Malaikat Kebaikan [Guru].pptxAksi nyata Malaikat Kebaikan [Guru].pptx
Aksi nyata Malaikat Kebaikan [Guru].pptx
 
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptxBab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
 
Perumusan Visi dan Prakarsa Perubahan.pptx
Perumusan Visi dan Prakarsa Perubahan.pptxPerumusan Visi dan Prakarsa Perubahan.pptx
Perumusan Visi dan Prakarsa Perubahan.pptx
 
Materi Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptxMateri Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptx
 
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptxKontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
Kontribusi Islam Dalam Pengembangan Peradaban Dunia - KELOMPOK 1.pptx
 
Modul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase CModul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase C
 
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdf
 

TERMODINAMIKA ENTROPI, ENERGI BEBAS DAN ARAH REAKSI

  • 2. Entropi dan Ketidakteraturan • Redistribusi partikel gas dalam wadah terjadi tanpa perubahan energi dalam total sistem, semua susunan ekivalen • Jumlah cara komponen sistem dapat disusun tanpa merubah energi sistem terkait erat dengan kuantitas entropi (S) • Entropi adalah ukuran ketidakteraturan sistem • Sistem dengan cara tersusun ekivalen komponennya sedikit seperti kristal padat memiliki ketidakteraturan yang kecil atau entropi rendah • Sistem dengan cara tersusun ekivalen komponennya banyak seperti gas memiliki ketidakteraturan besar atau entropi tinggi
  • 3. • Jika entropi sistem meningkat, komponen sistem menjadi semakin tidak teratur, random dan energi sistem lebih terdistribusi pada range lebih besar Sdisorder > Sorder • Seperti halnya energi dalam atau entalpi, entropi juga fungsi keadaan yaitu hanya tergantung pada keadaan awal dan akhir tidak pada bagaimana proses terjadinya ∆Ssis = Sfinal – Sinitial • Jika entropi meningkat maka ∆Ssis akan positif, sebaliknya jika entropi turun, maka ∆Ssis akan negatif
  • 4. Entropi dan Hukum Kedua Termodinamika • Apa yang menentukan arah perubahan spontan? • Sistem alami cenderung kearah tidak teratur, random, distribusi partikel kurang teratur • Beberapa sistem cenderung lebih tidak teratur (es meleleh) tetapi ada juga yang lebih teratur (air membeku) secara spontan • Dengan meninjau sistem dan lingkungan terlihat semua proses yang berlangsung dalam arah spontan akan meningkatkan entropi total alam semesta (sistem dan lingkungan). Ini yang disebut dengan hukum kedua termodinamika • Hukum ini tidak memberikan batasan perubahan entropi sistem atau lingkungan, tetapi untuk perubahan spontan entropi total sistem dan lingkungan harus positif ∆Suniv = ∆Ssis + ∆Ssurr > 0
  • 5. Entropi Molar Standar • • • • • • • • Entropi (S) berhubungan dengan jumlah cara (W) sistem dapat tersusun tanpa merubah energi dalam Tahun 1877 Ludwig Boltzmann menguraikan hubungan ini secara kuantitatif S = k ln W Dimana k adalah konstanta Blotzmann (R/NA) ≈ 1,38x10-23 J/K Tidak seperti entalpi, entropi memiliki nilai mutlak dengan menerapkan hukum ketiga Termodinamika yang menyatakan kristal sempurna memiliki entropi nol pada temperatur nol absolut S sis = 0 pada 0 K Pada nol absolut, semua partikel pada kristal memiliki energi minimum sehingga hanya ada satu cara mereka tersusun Nilai entropi biasanya dibandingkan pada keadaan standar dengan T tertentu, untuk gas pada 1 atm, larutan 1 M, dan zat murni pada keadaan paling stabil untuk padat dan cair Entropi merupakan besaran ekstensif sehingga tergantung pada jumlah oleh karena itu dikenalkan dengan entropi molar standar dalam satuan J/mol K
  • 6. Memperkirakan Nilai So Relatif Sistem • Berdasarkan pengamatan level molekuler kita bisa memperkirakan entropi zat akibat pengaruh 1. 2. 3. 4. 5. Perubahan temperatur Keadaan fisik dan perubahan fasa Pelarutan solid atau liquid Pelarutan gas Ukuran atom atau kompleksitas molekul
  • 7. 1. Perubahan Temperatur • So meningkat seiring dengan kenaikan temperatur T(K) 273 295 298 So 31,0 32,9 33,1 • Kenaikan temperatur menunjukkan kenaikan energi kinetik rata-rata partikel
  • 8. 2. Keadaan Fisik dan Perubahan Fasa • Ketika fasa yang lebih teratur berubah ke yang kurang teratur, perubahan entropi positif • Untuk zat tertentu So meningkat manakala perubahan zat dari solid ke liquid ke gas Na H2O C(grafit) • So (s / l) • So (g) 51,4(s) 153,6 69,9 (l) 188,7 5,7(s) 158,0
  • 9.
  • 10. 3. Pelarutan solid atau liquid • Entropi solid atau liquid terlarut biasanya lebih besar dari solut murni, tetapi jenis solut dan solven dan bagaimana proses pelarutannya mempengaruhi entropi overall NaCl AlCl3 CH3OH • So s/l • Soaq 72.1(s) 115,1 167(s) -148 127(l) 132
  • 11. 4. Pelarutan Gas • Gas begitu tidak teratur dan akan menjadi lebih teratur saat dilarutkan dalam liquid atau solid • Entropi larutan gas dalam liquid atau solid selalu lebih kecil dibanding gas murni • Saat O2 (Sog = 205,0J/mol K) dilarutkan dalam air, entropi turun drastis (S oaq = 110,9 J/mol K)
  • 12. 5. Ukuran Atom atau Kompleksitas molekul • Perbedaan entropi zat dengan fasa sama tergantung pada ukuran atom dan komplesitas molekul • Li Na K Rb Cs • Jari2 152 186 227 248 265 • M molar 6.941 22.99 39.10 85.47 132.9 • So(s) 29.1 51.4 64.7 69.5 85.2
  • 13. • Untuk senyawa, entropi meningkat seiring dengan kompleksitas kimia yaitu dengan semakin banyaknya jumlah atom dalam molekul • Hal ini berlaku untuk senyawa ionik dan kovalen NO NO2 N2O4 • So(g) 211 240 304 • Kecenderungan ini didasarkan atas variasi gerakan yang dapat dilakukan molekul
  • 14. • Untuk molekul lebih besar lagi, juga perlu diperhitungkan bagaimana bagian dari melekul dapat bergerak terhadap bagian lain • Rantai hidrokarbon panjang dapat berotasi dan bervibrasi dengan lebih banyak cara dibanding rantai pendek CH4 C2H6 C3H8 C4H10 • So 186 230 270 310
  • 15. Latihan Mana entropi yang lebih tinggi • 1 mol SO2(g) atau 1 mol SO3(g) • 1 mol CO2(s) atau 1 mol CO2(g) • 3 mol gas oksigen (O2) atau 2 mol gas ozon (O3) • 1 mol KBr(s) atau 1 mol KBr(aq) • Air laut pada pertengahan musim dingin 2 oC atau pada pertengahan musim panas 23 oC • 1 mol CF4(g) atau 1 mol CCl4(g)
  • 16. Entropi Standar Reaksi ∆S o rxn ∀ ∆Sorxn = ΣmSoproduk - ΣnSoreaktan • m dan n adalah jumlah individual spesies diwakili oleh koefisien reaksi • Jika ammonia terbentuk dari komponen nya, 4 mol gas menghasilkan 2 mol gas karena gas memiliki entropi molar tinggi, terlihat entropi produk kurang dari reaktan sehingga entropi turun selama reaksi • N2(g) + 3H2(g) ⇔ 2NH3(g) ∀ ∆Sorxn = (2 mol NH3 x So NH3) – [(1 mol N2 x So N2) + (3 mol H2 x So H2)] ∀ ∆Sorxn = (2 x 193) – [(1 x 191,5) + (3 x 130,6) = -197 J/K
  • 17. • Hk kedua menyatakan penurunan entropi sistem hanya dapat terjadi jika entropi lingkungan meningkat melebihinya • Peran penting lingkungan adalah dalam memberi panas ke sistem atau mengambilnya dari sistem (lingk dapat berperan sebagai source or heat sink) • Pada perubahan eksotermik, panas yang dilepas sistem, diserap oleh lingkungan ini menyebabkan gerak random partikel dilingkungan meningkat sehingga entropi meningkat qsis < 0, qsurr > 0, ∆Ssurr > 0 • Pada perubahan endotermik, sistem menyerap panas dan lingkungan melepas panas, sehingga entropi lingkungan menurun, qsis > 0, qsurr < 0, ∆Ssurr < 0
  • 18. • Perubahan entropi lingkungan berbanding lurus dengan perubahan panas sistem dan berbanding terbalik dengan temperatur lingkungan sebelum transfer panas ∆Ssurr ∝ -qsis, dan ∆Ssurr ∝ 1/T • Kombinasinya menghasilkan ∆Ssurr = -qsis/T • Jika proses berlangsung pada tekanan konstan, qp sama dengan ∆H sehingga ∆Ssurr = -∆Hsis/T • Kita dapat menghitung ∆Ssurr dengan mengukur ∆Hsis dan temperatur ketika perubahan terjadi
  • 19. Contoh Soal • Pada 298K pembentukan ammonia memiliki ∆Sosis negatif N2(g) + 3H2(g)  2NH3(g) ∆Sosis = -197 J/K Hitung ∆Souniv dan nyatakan apakah reaksi terjadi spontan pada temperatur ini! • Apakah oksidasi FeO(s) menjadi Fe2O3(s) terjadi secara spontan pada 298 K?
  • 20. Perubahan Entropi dan Keadaan Kesetimbangan • Perubahan mengarah kekesetimbangan secara spontan, ∆Suniv > 0 • Ketika kesetimbangan tercapai tidak ada lagi daya untuk mendorong perubahan sehingga ∆Suniv = 0. Pada titik ini perubahan entropi pada sistem diikuti perubahan entropi lingkungan dalam jumlah yang sama tetapi berbeda tanda • Pada kesetimbangan ∆Suniv = ∆Ssis + ∆Ssurr = 0 • Atau ∆Ssis = -∆Ssurr
  • 21. Kesetimbangan Uap Air • Penguapan 1 mol air pada 100oC (373 K) H2O(l:373 K) ⇔ H2O(g: 373 K) ∆Sosis = So H2O(g) – So H2O(l) = 195,9 – 86,8 = 109,1 J/K • Sistem menjadi lebih tidak teratur ∆Ssurr = -∆Hosis/T = -∆Hovap/T = -40,7 x 103 J/373 K = -109 J/K ∆Suniv = 109 J/K + (-109 J/K) = 0 • Saat kesetimbangan tercapai, proses reaksi berlangsung spontan baik arah maju maupun balik
  • 22. Eksotermik dan Endotermik Spontan • Reaksi Eksotermik C6H12O6(s) + 6O2(g)  6CO2(g) + 6H2O(g) + kalor CaO(s) + CO2(g)  CaCO3(s) + kalor • Reaksi Endotermik Kalor + Ba(OH)2·8H2O(s) + 2NH4NO3(s)  Ba2+ (aq) + 2NO3-(aq) + 2NH3(aq) + 10H2O(l)
  • 23. Entropi, Energi Bebas dan Kerja • Spontanitas dapat ditentukan dengan mengukur ∆Ssis dan ∆Ssurr, tetapi akan lebih mudah jika kita memiliki satu parameter saja untuk menentukan spontanitas • Energi bebas Gibbs (G) adalah fungsi yang menggabungkan entalpi dan entropi dari sistem G = H – TS • Diajukan oleh Josiah Willard Gibbs 1877
  • 24. ∆Suniv = ∆Ssis + ∆Ssurr • Pada Tekanan konstan ∆Ssurr = -∆Hsis/T ∆Suniv = ∆Ssis - ∆Hsis/T • Jika kedua sisi dikalikan –T maka -T∆Suniv = ∆Hsis - T∆Ssis atau -T∆Suniv = ∆Gsis ∀ ∆Suniv > 0 spontan  ∆G < 0 ∀ ∆Suniv < 0 non spontan  ∆G > 0 ∀ ∆Suniv = 0 setimbang  ∆G = 0
  • 25. Menghitung Perubahan Energi Bebas Standar ∆Gosis = ∆Hosis - T∆Sosis • Energi bebas Gibbs juga dapat dihitung (karena ia fungsi keadaan) dari energi bebas produk dan reaktan ∆Gorxn = Σm∆Gof(produk) - Σn∆Gof(reaktan) • Catatan : ∆Gof suatu unsur pada keadaan standarnya adalah nol