SlideShare une entreprise Scribd logo
1  sur  17
Télécharger pour lire hors ligne
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-31-47
www.ijmsi.org 31 | P a g e
The structure of determining matrices for single-delay
autonomous linear neutral control systems
Ukwu Chukwunenye
Department of Mathematics,University of Jos, P.M.B 2084 Jos, Plateau State, Nigeria.
ABSTRACT: This paper derived and established the structure of determining matrices for single – delay
autonomous linear neutral differential systems through a sequence of lemmas, theorems and corollaries and the
exploitation of key facts about permutations. The proofs were achieved using ingenious combinations of
summation notations, the multinomial distribution,change of variables technique and compositions of signum
and max functions. The paper also pointed out some induction pitfalls in the derivation of the main results.
The paper has extended the results on single–delay models, with more complexity in the structure of the
determining matrices.
KEYWORDS: Delay, Determining, Neutral, Structure, Systems.
I. INTRODUCTION
The importance of determining matrices stems from the fact that they constitute the optimal
instrumentality for the determination of Euclidean controllability and compactness of cores of Euclidean targets.
See Gabasov and Kirillova (1976) and Ukwu (1992, 1996 and 2013a). In sharp contrast to determining matrices,
the use of indices of control systems on the one hand and the application of controllability Grammians on the
other, for the investigation of the Euclidean controllability of systems can at the very best be quite
computationally challenging and at the worst, mathematically intractable. Thus, determining matrices are
beautiful brides for the interrogation of the controllability disposition of single-delay neutral control systems.
See (Ukwu 2013a).
However up-to-date review of literature on this subject reveals that there is currently no correct result on
the structure of determining matrices for single-delay neutral systems. This could be attributed to the severe
difficulty in identifying recognizable mathematical patterns needed for inductive proof of any claimed result
and induction pitfalls in the derivation of determining matrices. This paper establishes valid expressions for
the determining matrices in this area of acute research need.
II. ON DETERMINING MATRICES AND CONTROLLABILITY OF SINGLE-DELAY
AUTONOMOUS NEUTRAL CONTROL SYSTEMS
We consider the class of neutral systems:
     1 0 1( ) ( ) ( ) , 0 (1)
d
x t A x t h A x t A x t h Bu t t
dt
       where
A A A1 0 1, , are n n constant matrices with real entries and B is an n m constant matrix with the real
entries. The initial function  is in   , 0 , n
C h R equipped with sup norm. The control u is in
  10, , n
L t R . Such controls will be called admissible controls.      1
for, 0,n
x t x t h t t  R . If
  1
, , n
x C h t  R , then for  t t 0 1, we define   , 0 , n
t C hx   R by
     x s x t s s ht    , , 0 .
2.1 Existence, Uniqueness and Representation of Solutions
If A 1 0 and  is continuously differentiable on  , 0h , then there exists a unique function  : ,x h 
which coincides with  on  , 0h , is continuously differentiable and satisfies (1) except possibly at the points
The structure of determining matrices for single-delay…
www.ijmsi.org 32 | P a g e
; 0,1, 2,...jh j  . This solution x can have no more derivatives than  and continuously differentiable if and
only if the relation:
       1 0 1
0 (0) 0 (2)A h A A h Bu   
      
is satisfied. See Bellman and Cooke (1963) and theorem 7.1 in Dauer and Gahl (1977) for complete discussion
on existence, uniqueness and representations of solutions of (1).
2.2 Preliminaries on the Partial Derivatives
( , )
, 0,1,
k
k
X t
k






Let  t t, ,  0 1 for fixed t, let     t, be the unique function satisfying the matrix differential
equation:
       
 
1 0 1
, , , , (3)
subject to:
; (4)
, =
0,
0 , ; 0,1,...,
n
t t h A t A t h A
I t
t
t
t t jh j
 
   
   



 

        



    



By Tadmore (1984 , p. 80),  ,t    is analytic on   1 , , 0,1,....t j h t jh j    and hence
 , ist C  
  on these intervals.
The left and right-hand limits of  ,t    exist at   t jh , so that  ,t  is of bounded
variation on each compact interval. Cf. Banks and Jacobs (1973), Banks and Kent (1972) and Hale (1977). We
maintain the notation
 
   
  k k
t t, , ,  as in the double-delay systems.
2.3 Investigation of the Expressions and Structure of Determining Matrices for System (1)
In this section we establish the expressions and the structure of the determining matrices for system (1), as well
as their relationships with
( )
( , )k
X t  through a sequence of lemmas, theorems and corollaries and the
exploitation of key facts about permutations.
The process of obtaining necessary and sufficient conditions for the Euclidean controllability of (1) in
chapter four will be initiated in the rest of chapter three as follows:
i. Obtaining a workable expression for the determining matrices of
(1):   1
for : 0, 1, 2,.. (5)k
Q jh j t jh k  
ii.Showing that:
 
     1 1
, 1 (6)
kk
k
t jh t Q jh   
for j t jh k: , , , ,....,1 0 0 1 2  
iii.Showing that  Q t 1 is a linear combination of:
       0 1 1
, ,..., , 0, ,...., 1 (7)n
Q s Q s Q s s h n h
 
We now define the determining equation of the n n matrices,  Q sk .
For every integer k and real number s, define  Q sk by:
       1 0 1 1 1
(8)k k k k
Q s A Q s h A Q s A Q s h  
    
for k s h h 0 1 0 2, ,...; , , ,..... subject to  Q In0 0  , the n n identity matrix and
  0 for 0 or 0k
Q s k s   .
2.4 Preliminary Lemma on Determining matrices ( ),kQ s sR
In (1), assume that A 1 0, then for j k,  1,
i.  Q Ak
k
0 0
The structure of determining matrices for single-delay…
www.ijmsi.org 33 | P a g e
ii.  Q jh A
j
0 1 
iii.    
 Q h A A A A A A Ak
k
r
k
k r r
  


 
0 1
0
1
0
1
1 1 0 0
iv.      
Q jh A A A A A A Aj
r
j
r j r
1 1 0
0
1
1 0 1 1 1
1
  


  
 

v.
 
   1 1 0, 1
kk k
t t A
  
vi.
 
 1 1, 0
k
t t
 
vii.  1 1 1, j
t jh t A  
Remarks: Notice that Ar
0 can switch places with
 
Ak r
0
1 
in (iii); similarly for Ar
1 and
 
A j r

 
1
1
in
(iv), since r and  1k r  have the same range for fixed k; similarly in (iv), r and  1j r  have the same
range for fixed j.
Proof
i.From (8) we have
       
 
Q A Q h A Q A Q h
A Q
k k k k
k
0 0
0 0 0
1 0 1 1 1
0 1
    
  
  

Now,    Q A Q A I An1 0 0 0 00 0   . Assume that  Q Ak
k
0 0 for some k  1. Then,
         
 
1 1 1 0 1 1
0 0
1
0
by the induction hypotheses
0 0 0 0 0k k k k k
k
k
Q A Q h A Q A Q h A Q
A A
A
  

       


Hence,  Q Ak
k
0 0 for all k  12, ,.....; this proves (i).
         
  
0 1 0 0 1 1 1
1 0
ii 1 1
1 0 0
Q jh A Q j h A Q jh A Q j h
A Q j h
  

    
   
Hence,    Q h A Q A0 1 0 10  
The rest of the proof is by the principle of mathematical induction: Assume that  0 1
for some 1
j
Q jh A j
  .
Then
          
 
Q j h A Q jh A Q j h A Q j h
A Q jh A A Aj j
0 1 0 0 1 1 1
1 0 1 1 1
1
1 1 1
0 0
     
    
  
   

,
by induction hypothesis. So  0 1
for 1, 2,......
j
Q jh A j
 
iii From (8),
     1 1 1 0 0 1 0
1 0 0 1 1
( ) 0 0
.
Q h A Q A Q h A Q
A A A A A

 
  
  
.
Plugging in the right-hand side of iii yields
 
 
1 1
1 1
1 0 1 0 1 1 0 0 0 1 1 1 0
0
( ) r r
r
Q h A A A A A A A A A A A A

 
   

      .
Therefore the formula (iii) is valid for k  1.
Assume the validity of (iii) for some k  1. Now
The structure of determining matrices for single-delay…
www.ijmsi.org 34 | P a g e
       
 
 
 
   
Q h A Q A Q k A Q
A A A A A A A A A A A A A
A A A A A A A A A A A A
A A A A A
k k k k
k k
r
k
k r r k
k
r
k
k r r k
k
r
k
k r
  





 





 
 





  
    
    
  



1 1 1 0 1
1 0
1
0 0 1 0
0
1
0
1
1 1 0 0 1 0
0
1
1 0
0
1
0
1
1 1 0 0 1 1 0 0
0
1
1
0
1
0 1
0 0
   
   







 
 
   
1 0 0 0 1 1 0 0
0
1
1
0
0 1 1 0 0 1
A A A A A A A
A A A A A A A Q h
r k k k
k
r
k
k r r
k
.
Therefore (iii) is true for k  1 and so true for k  1 2, ,.....
iv  Q h A A A A A1 0 1 1 0 1    .
Plug in the right-hand side of (iv) to obtain
 A A A A A A A A A A A A         1 0 1
0
0 1 1 1
0
1 0 0 1 1
It follows that (iv) is true for 1.j  Assume that (iv) is valid for some j  1. Now
         
   
 
   
 
 
1 1 1 0 0 1 0
1
1
1 1 0 1 0 1 1 1
0
1
0 1 1 1
1
11 1
1 0 1 0 1 1 1 0 1 1 1
0
1
1 0 1 0 1 1 1
1
by the induction hypothesis
1 1
j
j rj r
r
j j
j
j rj r j
r
j
j r j
r
Q j h A Q jh A Q j h A Q jh
A A A A A A A A
A A A A
A A A A A A A A A A A
A A A A A A A


 
    


 

  
     


   

    
 
   
 
 
    
  


  
    
1 0 1 1 1
0
1
1 0 1 0 1 1 1 1
0
1
r r j r
r
j
j r j r
r
A A A A A
A A A A A A A Q j h
 
  

 
   

 
    
So, the formula (iv) is valid for j  1. This completes the proof that (iv) holds for all j  1 2, ,...
v. For k  1,
 
   
   
        
1
1
1
1
1 1 1 1 1
1 1 0 1 1 1 1 1 0 1 0
,
, 0. 0
, ,
, ,
k
t
t
t
t t t t t
t t A t h t A h t A A A A






 

 



 


 

    
             
by (3), noting that for  sufficiently close to t h t1 1,   ; so  t h t1 1 

.
Assume that
 
   1 1 0, 1
kk k
t t A
   for some k  1. Then
 
   
 
   
    
  
   
1
1 1 1
1
1 1 0 1 1 1 1 1 1
1 1
0 0 0
, ,
( , ) , ,
1 0 0 1
k k
t
k k k
k kk k
X t t X t
X t t A X t h t A X t h t A
A A A



 
 

 

 
 
   
     
      
Therefore,
 
   1 1 0, for all 1, 2,...
kk
X t t A k
   .
The structure of determining matrices for single-delay…
www.ijmsi.org 35 | P a g e
 
   
 1
1 1
1 1 1
lim
vi. , , 0
k k
t
t t h
X t t X t



  
  , since   t1
vii Let j be a nonnegative integer such that t jh1 0  . We integrate (3) and apply (4). Thus
 
       
 1 1
1 1 1 1 0 1 10 0
, , , ,
t jh t jh
X t X h t A d X t A X h t A d

     

 
 
             
Hence,
          
   
 1
1 1 1 1 1 1 1 1
1 0 1 10
, 1 , 0, ,
, ,
t jh
t jh t t j h t A t h t A
t A h t A d  


 


         
       
Similarly
          
    1
1 1 1 1 1 1 1 1
( )
1 0 1 10
1, 1 0, ,
, ,
, ,
t jh
X t jh t X t t j h t X t h t A
t A h t A d
A
  





      
     
Therefore
             
     
 1
1
1 1 1 1 1 1 1 1 1 1
1 0 1 1
1 1
, , 0,
, , , ,
t jh
t jh
X t jh t X t j h t A X t jh t X t j h t A
X t A X h t A d  


  
 


       
   
   
   

since  lim
0 0
a
a
f t dt

 

 
 , for any bounded integrable function f, and    1 0 1 1, ,t A h t A      
is bounded and integrable. Therefore we have deduced that
             1 1 1 1 1 1 1 1 1
1 1, , , ,X t jh t X t jh t X t j h t X t j h t A
  

         
 
for any 1j  , j integer.
For j  1, we have
         1 1 1 1 1 1 1 1 1 1 1, , , , nX t h t X t h t X t t X t t A I A A
   
  
        
by (vi).
The rest of the proof is by induction on j.
Assume the validity of (vii) for j  1,..., p for some p  1.
Then
          
     
1 1 1 1 1 1
1 1 1 1 1 1 1
1 , 1 , 1 ,
, , p
X t p h t X t p h t X t p h t
X t ph t X t ph t A A A
 
 
  
       
     
 
by the induction hypothesis. So    1
1 1 11 , p
t p h t A 
    and hence (vii) is valid.
2.5 Lemma on 1
( ) and ( )k
Q h Q jh as sums of products of permutations
For any nonnegative integers and ,j k
(i)
1 11
1 11 1(1),0( ) 0( 1),1(1)( , , ) ( , , )
( ) k k
k k k k
k v v v v
v v P v v P
Q h A A A A
   
   
 
(ii)
1 1 1
1 1 11( ),0(1) 1( 1), 1(1)
1
( , , ) ( , , )
( ) jj
jj j j
v v v v
v v P v v P
Q jh A A A A
    
   
 
Proof of (i)
The structure of determining matrices for single-delay…
www.ijmsi.org 36 | P a g e
By lemma 2.4,      
 
1
1
0 1 0 1 0 1 1 0 0
0
and
k
k rj k r
k
r
Q jh A Q h A A A A A A A

 
  

   
 
 
1
1 2 1
1 1(1),0(0)
1 2 11(1),0(1) 0(1 1),1(1)
0 1 1
1 0 1 1 0 1 0 1 1 0 1
( , )
0, 1, ; 0
1 ;
v
v v v
v P
v v P v P
k j Q h A rhs A A
k Q h A A A A A rhs A A A A A A A A

 
 
   

 
      
        

 
So, the lemma is valid for {0,1}.k 
Assume the validity of the lemma for 2 ,k p  for some integer p . Then,
   
 
1
1
0 1 0 1 1 0 0
0
p
p rp r
p
r
Q h A A A A A A A

 
 

  
1 1 1
1 1 11(1),0( ) 0( 1),1(1)( , , ) ( , , )
p
pp p p
pv v v
v v P v v P
vA A A A
   
   
 
   
 
 
   
   
1 1 0
1 1 0 0
0
1
1 1
1 11
0 1 0 1 1 0 0
0
1
0 1 0 1 1 0 0
0
1
1
0 1 0 0 1 1 0 0
0
1
1 (1 )
0 1 0 0 1 1 0 0
0
1
(1
0 1 0
0
Now p
p
p rp r
r
p
p p r r
r
p
p p p r r
r
p
p p p r r
r
p
p p
r
A A A
A A A A
A
Q h A A A A A A A
A A A A A A A
A A A A A A A A
A A A A A A A A
A A A



 
  
 

 
 


 
 


  
 


 


 
   
   
 
  







    1 1 0
)
1 1 0 0 0
r r p
A A AA A A A A  
 
 
 
0 1 1
0 1 0 1
1 1 1
1 1 11(1),0( ) 0( 1),1(1)
1 1 1
1 1 11(1),0( ) 0( 1),1(1)
1
0 0
( , , ) ( , , )
1
0 0
( , , ) ( , , )
pp
pp p p
pp
pp p p
p p
v v v v
v v P v v P
p p
v v v v
v v P v v P
A A A A A A A
A A A A A A A A
A A
A A



  

  

 

 
   
   
 
  
 
 
 
 
 
 
 
0 11 2
1 2 1(1),0( 1)
1 2
1 2 1(1),0( 1) ( , , )( , , )
(with a leading ) (with a leading )
p
p p
p
p p
v v
v v P
v v
v v P
A AA AA A 
  

   
  

0 11 1 1 1
1 1 1 10( 1 1),1(1) 0( 1 1),1(1)( , , ) ( , , )
(with a leading ) (with a leading )p p
p pp p
v v v v
v v P v v P
A A A A A A 
     
  
 
 
1 2 1 1
1 2 1 11(1),0( 1) 0( ),1(1)( , , ) ( , , )
p p
p pp p
v v v v
v v P v v P
A A A A 
   
   
 
Therefore, part (i) of the lemma is valid for 1k p  , and hence valid for every nonnegative integer k .
Proof of (ii)
Using similar reasoning (ii) can be established by induction; but let us do it differently by using the expression
for 1
( )Q jh from lemma 2.4.
The structure of determining matrices for single-delay…
www.ijmsi.org 37 | P a g e
     
1
1 1 0 1 0 1 1 1
0
1
1 0 1 1 1 1
0 0
1
1
j
j r
r
j j
r r
r r
j r
j r j r
Q jh A A A A A A A
A A A A A A

   


   
 
 
  
  
 

 
1 1 1
1 1 11( ),0(1) 1( 1),1(1)( , , ) ( , , )
,jj
jj j j
v v v v
v v P v v P
A A A A
    
   
 
noting that in the first summation over r 0A occupies positions 1,2, , 1j  for 0,1, ,r j 
respectively. 0A leads only once and trails only once.; in the second summation 1A occupies positions
1,2, , j for 0,1, , 1r j  respectively. 1A leads only once and trails only once.
Remarks: Observe that 1
( )Q jh may be deduced from ( )k
Q h by (a) replacing k by j in the expression for
( )k
Q h (b) interchanging -1 and 0 in the expression for ( )k
Q h (c) replacing 0 by -1 in the summations or
permutations involving only the indices 0 and 1.
2.6 Lemma on 1( , )X t



of uncontrolled part of (1)
1
(1)
1 1 1 1 1
0 0
1
(1)
1 1 1 1 1
0 0
1
(1)
1 1 1 1 1
0 0
(i) (( ) , ) (( ( ( )) ) , )
(ii) (( ) , ) (( ( ( )) ) , )
(iii) ( , ) ( ( ( )) ), )
j
r
i
r i
j
r
i
r i
j
r
i
r i
X t jh t X t j r i h t A A
X t jh t X t j r i h t A A
X t jh t X t j r i h t A A
 

 
 

 

 
 
      
 
 
      
 
 
        
 
 
 
 
Proof of (i)
(1) (1)
1 1 1 1 0 1 1 1 1 1 1
(1)
1 1 1 1 1 0 1 1 1 1
(1) 2
1 1 1
( ,( ) ) (( ) , ) (( ( 1) ) , ) (( ( 1) ) , )
(( ( 1) ) , ) [ (( ( 1) ) , ) (( ( 2) ) , ) ]
(( ( 2) ) , )
X t t jh X t jh t A X t j h t A X t j h t A
X t j h t A X t j h t A X t j h t A A
X t j h t A
   

  
 


         
        
  
(1) (1)
1 1 0 1
1 0 1 0 1
(By(v)of lemma 2.4)
0 lhs ( , ) rhs; 1 lhs (( ) , )
(( ) , )
j X t t A j X t h t
X t h t A A A A
 


         
    
1 1
1 1 1 1 1 0
0 0
1 1 1 1 0 1
Let us examine yield
yield
Sum the results for these contingencies to get
yield yield
(( (1 ( )) ) , ) ; 0, 0 ( ( ,( ) )
0, 1 ( ( , ) ; 1, 0 ; 1, 1 0.
r
i
r i
X t r i h t A A r i X t t h A
r i X t t A A r i A A r i
 

 


 
        
 
         

 
1 1
1 1 1 1 1 0 1 0 1
0 0
(( (1 ( )) ) , ) ( (( ) , )r
i
r i
X t r i h t A A X t h t A A A A 
 
 
 
        
 
 
So, the lemma is valid for 1j  . Let us explore 2j  .
(1) (1)
1 1 0 1 1 1 1
2
1 0 1 1 1 0 1 1 1 0 1
2 lhs (( 2 ) , ) (( 2 ) , ) (( ) , ) (( ) , )
(( 2 ) , ) (( ) , ) (( ) , )
j X t h t X t h t A X t h t A X t h t A
X t h t A X t h t A X t h t A A A A A A
   

  
  
          
        
The structure of determining matrices for single-delay…
www.ijmsi.org 38 | P a g e
2 1
1 1 1
0 0
1 1 0
1 1 1 1 1 0 1
1 1
2
0 1
Let us examine
yield
yield yield
yield
yield y
(( (2 ( )) ) , ) ;
0, 0 ( (( 2 ) , )
0, 1 ( (( ) , ) ; 1, 0 ( (( ) , ) ;
1, 1 ;
2, 0 ; 2, 0
r
i
r i
X t r i h t A A
r i X t h t A
r i X t h t A r i X t h t A A
r i A A
r i A A r i


 

 



 
    
 
   
       
  
    
 
2 1
1 1 1
0 0
2
1 1 0 1 1 1 1 1 0 1 1 1 0 1
ield
Sum the results for these contingencies to get
0.
(( (2 ( )) ) , )
( (( 2 ) , ) ( (( ) , ) ( (( ) , ) .
r
i
r i
X t r i h t A A
X t h t A X t h t A X t h t A A A A A A


 
  
  
 
    
 
        
 
So, (i) of the lemma is valid for {0,1,2}.j  Assume that (i) of the lemma is valid for
3 , for some integer .j n n  Then
1
(1)
1 1 1 1 1
0 0
by the induction hypothesis.(( ) , ) (( ( ( )) ) , ) ,
n
r
i
r i
X t nh t X t n r i h t A A 

 
 
      
 
 
(1)
1 1 1 1 0 1 1 1
(1)
1 1 1
1
(1)
1 1 1 1 1
0
1
1
1 1 1 1
0 0
Now, (( ( 1) ) , ) (( ( 1) ) , ) (( ) , )
(( ) , )
(( ) , ) (( ( 1 ) ) , )
(( ( ( )) ) , ) (( ( 1
i
i
n
r
i
r i
X t n h t X t n h t A X t nh t A
X t nh t A
X t nh t A X t n i h t A
X t n r i h t A A X t n
  


 


 

 
         
 
     
 
         
 

 
1
1
0
) ) , ) i
i
i h t A


1 1
1 1 1
0 0
as desired. So (i) is true for ,and hence valid
for all .
(( ( 1 ( )) ) , ) ,
n
r
i
r i
j n
j
X t n r i h t A A



 

 
      
 
 
Proof of (ii)
(1) (1)
1 1 1 1 0 1 1 1 1 1 1
(1)
1 1 1 1 1 0 1 1 1 1
(1) 2
1 1 1
(( ) , ) (( ) , ) (( ( 1) ) , ) (( ( 1) ) , )
(( ( 1) ) , ) [ (( ( 1) ) , ) (( ( 2) ) , ) ]
(( ( 2) ) , )
X t jh t X t jh t A X t j h t A X t j h t A
X t j h t A X t j h t A X t j h t A A
X t j h t A
   

  
 


         
        
  
(1)
1 1
(1) (1)
1 1 1 1 0 1 1 1 1 1 1
1 1 0
0 lhs ( , ) 0 rhs;
1 lhs (( ) , ) (( ) , ) ( , ) ( , )
(( ) , ) 0 0
j X t t
j X t h t X t h t A X t t A X t t A
X t h t A

   


    
        
    
The structure of determining matrices for single-delay…
www.ijmsi.org 39 | P a g e
1 1
1 1 1 1 1 1 0
0 0
1 1 1 1 1 0 1
Let us examine yield
yield yield yield
Sum the results for these contingenc
(( (1 ( )) ) , ) ; 0, 0 ( ( ,( ) , )
0, 1 ( ( , ) 0; 1, 0 ( , ) 0; 1, 1 0.
r
i
r i
X t r i h t A A r i X t t h t A
r i X t t A r i X t t A A r i
 

 
 

 
        
 
         
 
1 1
1 1 1 1 1 0
0 0
ies to get
(( (1 ( )) ) , ) ( (( ) , )r
i
r i
X t r i h t A A X t h t A 

 
 
       
 
 
So, (ii) of the lemma is valid for 1j  . Let us explore 2j  .
(1) (1)
1 1 0 1 1 1 1
1 0 1 1 1 0 1 1 1 1 1
(1) 2
1 1
1 0 1 1
2 lhs (( 2 ) , ) (( 2 ) , ) (( ) , ) (( ) , )
(( 2 ) , ) (( ) , ) (( ) , ) ( , )
( , )
(( 2 ) , ) (( ) , ) (( ) ,
j X t h t X t h t A X t h t A X t h t A
X t h t A X t h t A X t h t A A X t t A A
X t t A
X t h t A X t h t A X t h t
   

   
 


  
          
       

       1 0 1)A A
2 1
1 1 1
0 0
1 1 0 1 1 1
1 1 0 1
Let us examine
yield yield
yield yield yield
yield
Sum
(( (2 ( )) ) , ) ;
0, 0 ( (( 2 ) , ) ; 0, 1 ( (( ) , ) ;
1, 0 ( (( ) , ) ; 1, 1 0; 2, 0 0;
2, 1 0.
r
i
r i
X t r i h t A A
r i X t h t A r i X t h t A
r i X t h t A A r i r i
r i


 
 


 
    
 
       
       
 
 
2 1
1 1 1
0 0
1 1 0 1 1 1 1 1 0 1
the results for these contingencies to get
(( (2 ( )) ) , )
( (( 2 ) , ) ( (( ) , ) ( (( ) , ) .
r
i
r i
X t r i h t A A
X t h t A X t h t A X t h t A A


 
  

 
    
 
      
 
So, (ii) of the lemma is valid for {0,1,2}.j  Assume that (ii) of the lemma is valid for
3 , for some integer .j n n  Then
1
(1)
1 1 1 1 1
0 0
by the induction hypothesis.(( ) , ) (( ( ( )) ) , ) ,
n
r
i
r i
X t nh t X t n r i h t A A 

 
 
      
 
 
(1)
1 1 1 1 0 1 1 1
(1)
1 1 1
1
(1)
1 1 1 1 1
0
1
1
1 1 1 1
0 0
Now, (( ( 1) ) , ) (( ( 1) ) , ) (( ) , )
(( ) , )
(( ) , ) (( ( 1 ) ) , )
(( ( ( )) ) , ) (( ( 1
i
i
n
r
i
r i
X t n h t X t n h t A X t nh t A
X t nh t A
X t nh t A X t n i h t A
X t n r i h t A A X t n
  


 


 

 
         
 
     
 
         
 

 
1
1
0
) ) , ) i
i
i h t A


1 1
1 1 1
0 0
as desired. So (ii) is true for 1,and
hence true for all
(( ( 1 ( )) ) , ) ,
.
n
r
i
r i
j nX t n r i h t A A
j



 
 
 
      
 
 
Proof of (iii)
The proof follows by noting that
(1) (1) (1)
1 1 1 1 1 1( , ) (( ) , ) (( ) , )X t jh t X t jh t X t jh t 
      and then
using (i) and (ii) to deduce that
The structure of determining matrices for single-delay…
www.ijmsi.org 40 | P a g e
1
(1)
1 1 1 1 1 1 1
0 0
1 1
( )
1 1 1 1 1
0 0 0 0
( ,( )) (( ( ( )) ) , ) (( ( ( )) ) , )
(( ( ( )) ), )
j
r
i
r i
j j
r j r i r
i i
r i r i
X t t jh X t j r i h t X t j r i h t A A
X t j r i h t A A A A A
 

 
 
  
   
 
             
 
   
         
   
 
   
2.7 Lemma on
( )
1 1( ,(( ))k
X t t jh  recursions
1
( ) ( 1)
1 1 1 1 1
0 0
( , ) (( ( ( )) ), )
j
k k r
i
r i
X t jh t X t j r i h t A A

 
 
       
 
 
Proof
1
( ) ( 1)
1 1 0 1 1
0
( 1) ( 1) 1 1
1 1 0 1 1 1 0 0 0 (by lemma 2.4)
If 0,then 0; lhs ( , ) ( 1) ,rhs ( , )
( , ) ( , ) ( 1)( 1) 0 ( 1)
k k k k
i
i
k k k k k k
j r X t t A X t ih t A
X t t A X t h t A A A A


   
 
         
 
          

( ) ( 1) ( 1)
1 1 1 1 1 0 1 1 1
( ) ( 1) 1 1
1 1 1 1 1 0 0 1
( 1) 1 1
0 1 1 1 0 0
If 1, then using lemma 2.4,
lhs ( (1 1) , ) ( , ) ( , )
( (1 1) , ) ( , ) ( 1)
( 1) [ ( , ) ( 1)
k k k
k k k k
k k k k k
j
X t h t A X t h t A X t t A
X t h t A X t h t A A A
A A X t h t A A
 

  

  


          
         
       1 (by 2.4).A
1
( 1)
1 1 1
0 0
( 1) 0 ( 1) ( 1) 1 ( 1)
1 1 0 1 1 1 1 1 1 0 1 1 1 1 1
( 1) 1 1 1
1 1 0 0 1 0
Rhs (( ( ( )) ), )
(( ), ) ( , ) ( , ) ( , )
(( ), ) ( 1) ( 1)
j
k r
i
r i
k k k k
k k k k k
X t j r i h t A A
X t h t A A X t t A X t t A A X t h t A A
X t h t A A A A


 
   
  
   
 
     
 
                
         
 
1 1
0 1
( 1) 1 1
0 1 1 1 0 0 1
0
( 1) (( ), ) ( 1)k k k k k
A A
A A X t h t A A A


  

  
        
So, lhs = rhs. Therefore the lemma is valid for j = 1. Assume the validity of the lemma for 2 j m  for
some integer m .
1
( ) ( 1)
1 1 1 1 1
0 0
Then (( ), ) (( ( ( )) ), )
m
k k r
i
r i
X t mh t X t m r i h t A A

 
 
       
 
 
( )
1 1
( 1) ( 1)
1 1 0 1 1 1
( )
1 1 1
1 1
( 1) ( 1) 1
1 1 1 1 1
0 0 0
Now (( ( 1) ), )
(( ( 1) ), ) ( , )
( , )
(( ( 1 ) ), ) (( ( ( )) , )
k
k k
k
m
k k r
i i
i r i
X t m h t
X t m h t A X t mh t A
X t mh t A
X t m i h t A X t m r i h t A A
 

  

  
  
        
  
 
          
 
  
1 1 1
( 1) ( 1) 1 1
1 1 1 1 1
0 1 0
(( ( 1 ) ), ) (( ( ( 1 )) , )
m
k k r
i i
i r i
X t m i h t A X t m r i h t A A

   

  
 
           
 
  
1 1 1
( 1) ( 1)
1 1 1 1 1
0 0 0
1 1 1
( 1) ( 1)
1 1 1 1 1
0 0 0
(( ( 1 ) ), ) (( ( 1 ( )) , )
(( ( 1 ) ), ) (( ( 1 ( )) , )
m
k k r
i i
i r i
m
k k r
i i
i r i
X t m i h t A X t m r i h t A A
X t m i h t A X t m r i h t A A

 

  

 

  
 
           
 
 
           
 
  
  
The structure of determining matrices for single-delay…
www.ijmsi.org 41 | P a g e
(We used the change of variables 1r r  in the r  summand, 1r r  in the limits).r 
So the lemma is valid for 1j m  . This completes the desired proof.
The following major theorem gives explicit computable expressions for ( ),k
Q jh based on painstakingly and
rigorously observed ( )k
Q jh patterns for various ,j k contingencies.
III. THEOREM ON EXPLICIT COMPUTABLE EXPRESSION FOR DETERMINING
MATRICES OF (1)
Let andj k be nonnegative integers. If 1, thenj k 
1
1
1
1
1
1 11( ),0( ) 1( ),1( )
1 1( ),0( ),1( )
( , , ) ( , , )
( , , )
Q ( )
j r
k
k
v
r
j
jj k j k j k k
j r r j k r k r
v
v
j kv v
v v P v v P
v v P
v
jh
A A
A A A A



   
    

 




 
  


 
1 1
1 11( ),0( ) 0( ),1( )
1
1 1( ),0( ),1( )
( , , ) ( , , )
1
1 ( , , )
If 1, then
Q ( )k
j k k
j k j k k k j j
k r
k r r r k j j r
v v v v
v v P v v P
j
v v
r v v P
k j
jh
A A A A
A A

  

    
 

 
 
 

 
 
 

 

Proof
Case j k .
0 0 1
1
1 1 0 1 0 1 1 1
0
1
1 0 1 0 1 1
0
( 1)
If 0, then ( ) (0) , by ( 4); 0 ( ) ( ) (by (ii) of lemma 2.4).
1, 1 ( ) ( ) ( ) ,(by (iv) of lemma 2.4)
k n k
j
j r
k
r
j
j
r
r
j r
j r j r
j k Q jh Q I k Q jh Q jh A
j k Q jh Q jh A A A A A A A
A A A A A A


   


   

 

       
      
  


1
1 1
0
1 1 1
1 1( 1),1(1)1 1 1( ),0(1)
( 1)
( , , )( , , )
j
r
jj
j jj j
j r
v v v v
v v Pv v P
A A A A A A




  
 

   

 
1 3 1 2
1 2 11 3
2 1 2 0 1 1 1
1 1
0 0 1
1 3 1 21(1),0(2) 0(1),1(1)
1 3 1 2 1 21(2),0(1) 1(1),1(1) 1(1),0(
( , , ) ( , )
( , , ) ( , ) ( , )
If 2, then ( ) (2 ) ( ) (2 ) ( )k
v v v v
v v vv v
v v P v v P
v v P v v P v v P
j k Q jh Q h A Q h A Q h A Q h
A A A A A A
A A A A A A A A

 

  
 
  
     
 
  
 
 



 2 11
11) 1(1)
v v
v P
A A A

 
1 4 1 3
1 4 1 2 1 2
2
1
2 1
1
1 4 1 31(2),0(2) 1(1),0(1),1(1)
1 4 1 2 1 21(2),0(2) 1(2 2),1(2) 1( ),0( ),1(2 )
( , , ) ( , , )
( , , ) ( , ) ( , , )
r
v v v v
v v
r r s r r r
v v v v
v v P v v P
v v P v v P v v P
A A A A A
A A A A A A 


 
    
 
  
 
  
 
   
 
 
 
 
Therefore the theorem is valid for , {0, 1, 2}.j k  In particular it is valid for 0 2.k j  
1
The cases : ( ) and ( ) have been established already. We need only prove the remaining cases.k
Q jh Q h
The structure of determining matrices for single-delay…
www.ijmsi.org 42 | P a g e
Case :j k Assume that the theorem is valid for all pairs of triples
, , ( ); , , ( ) for which ,for some 3, and 2.k k
j k Q jh j k Q jh j k j k j k    
    Then apply the induction
principle to the right-hand side of the determining equation:
0 1 1 1 1
([ 1] ) ([ 1] ) ( ) ( ),noting that 1 ,
1 1, 1.
k k k k
Q j h A Q j h A Q jh A Q jh j k j k
j k j k
  
        
    
,
Therefore:
1
1
1 1
1 1
1 1 11( 1),0( 1) 1( 1 ( 1)),1( 1)
1
1 1 1( 1 ( 1),0( ),1( 1 )
1
1 1(
0 0
1 1
0
1
1 1
( , , ) ( , , )
( , , )
( , , )
Q ([ 1] )
j
jj k
jj k j k j k k
j r
j r r j k r k r
j k
j
k
v
k
v
r
v v v
v v v
v v P v v P
v
v v P
v
v v P
j h
A A A A A A
A A A
A A A A A A

        
 
        
 

 

 







 
 
 


 

 
1
1
1 1 1( ),0( 1) ( 1)),1( 1)
1
1 11( ),0( ) 1( ),1( )
1
1
1
1
1 1
1
1 1( ( 1),0( ),1( 1 )
1
( , , )
( , , ) ( , , )
( , , )
( , , )
j r
j k j k j k k
jj k
jj k j k j k k
k r
v v
s
v
j r r j k r k r
j r
j r
v v P
v v v
v v P v v P
v
v v P
v
v v
A A A
A A A A A A
A A A

      

   
 

 

      



 




 
 
 

 



 

1
1 1( ),0( ),1( )
k
r r j k r k rP

    


















 
1 1 11
1 1 1 11( 1),0( ) 1( 1 ),1( )
1 1
1 1 1( 2 ),0( ),1( 1 )
0
1 { 1,1}
0 01 1
1 1 1( 2 ),1( 1)
( , , ) ( , , )
( , , )( , , )
(9)
(10)
jj k
iL iL
j jj k j k k
j r r j k r k r
i i
r
j j r
j j k k
v v v v
v v P v v P
v v
v v P
v v
v v P
A A A A
A A A A A A
 
     
       
  
  
    
 

 
 
   
 
 

 
 
1
2
1
2
1 1
1
1
1
1
1 1
1 11 1( ),0( 1) 1( 1 ),0( ),1( 1 )
1
1 1( ),0( ),1( )
( , , ) ( , , )
( , , )
(11)
(12)
k
k
r
k
r
j rj k
j rj k j k r j k r k r
j r
j r r j k r k r
vv v v
v v P v v P
v v
v v P
A A A A A A
A A A







 
         

    
 




  
 
 

 

 
1 1 11
1 1 1 11( 1),0( ) 1( 1 ),1( )( , , ) ( , , )
The expression 9 yields:
(13)jj k
j jj k j k k
v v v v
v v P v v P
A A A A  
      
  
 
1 1
1
1 1( 1 ),0( ),1( )
1
1 ( , , )
The expression:
is immediate from (12)
(14)j r
L
j r r j k r k r
k
r
v v
v v P
A A  

     

 
 


The structure of determining matrices for single-delay…
www.ijmsi.org 43 | P a g e
 
1 1 1 1
1 1 1 11( 2 ),1( 1) 1( 2 ),0( ),1( 1 )
1 1
1 1
2
0 0
1
0
( , , ) ( , , )
( , , )
We use the change of variables technique in the expression 10 to get:
(15)j j r
j j rj k k r j k r k r
j
j
k
r
v v v v
v v P v v P
v v
v v
A A A A A A
A A A
  
           



 



   

 
 1 1 1
1 1 11( 2 ),1( 1) 1( 1 2 ),0( 1),1( 1 ( 1))
1 1 1 1 1
1 1 1 1 11( 2 ),1( 1) 1( 1 ),0( 1),1( )
1
0
2
1
0 0
2
( , , )
( , , ) ( , , )
j r
j rj k k r j k r k r
j j r
j j rj k k r j k r k r
k
r
k
r
v v
P v v P
v v v v
v v P v v P
A A A
A A A A A A
  
              
   
            





 

 
  
  

 

 
1 1 1 1 1
1 1 1 1 11( 2 ),1( 1) 1( 1 ),0( 1),1( )
1 1 1 1 1 1 1
1 1 1 1 1 1 11(1 1 ),0(1 1),1( 1)
1
0 0
1
0 0
( , , ) ( , , )
( , , ) ( , , )
j j r
j j rj k k r j k r k r
j j r
j j rj k k
k
v
r
v v v
v v P v v P
v v v v
v v P v v P
A A A A A A
A A A A A A
   
            
     
          

 
 
 
 
  

 
 
 
 
1( 1 ),0( 1),1( )
1 1
0
1 1 1( 1 ),0( ),1( )
1
1
1
1 ( , , )
(16)
r j k r k r
j r
L
j r r j k r k r
k
r
k
r
v v
v v P
A A
     
 
      



 

 
 


 
11 1
1 11 1( ),0( 1) 1( 1 ),0( ),1( 1 )
1 1
1 1 1( ),0( 1)
2
1 1
1
1 1 1
( , , ) ( , , )
( , , )
We are left with expression 11 , which yields:
(17)j rj k
j rj k j k r j k r k r
jj k
j k j k
k
v v
r
v v
v v P v v P
v v v
v v P
v
A A A A A A
A A A A A A
 
         
 
   

 


 
  

 

 
 
1 1( 1 ),0( ),1( 1 )
1 1
1 11( 1 1 ),0( 1),1( 1 ( 1)) 1( 1 ),0( ),1( 1 )
1 1
1 1 1( 1
1
1
1
1 1
1
( , , )
( , , ) ( , , )
( , , )
r
j r r j k r k r
j r j r
j r j rk j k k k k r j k r k r
j r
j r r j
k
r
k
r
v v P
v v v v
v v P v v P
v v
v v P
A A A A A A
A A

      
 
               
 
    





 

 

 
  

 

 

1
),0( ),1( )
1
1
(18)
L
k r k r
k
r  


 
The resulting expressions (13), (14), (16) and (18) add up to yield:
11
1
1
1
1 11 1( 1),0( ) 1( 1 ),1( )
1
1 1 1( 1 ),0( ),1( )
( , , ) ( , , )
( , , )
Q ([ 1] )
(19)
j
k
j k v v
k
r
jj k j k j k k
j r
j r r j k r k r
v v
v
v v P v v P
v
v v P
j h
A A A A
A A



      
 
      
 


 

 
 
 

 

This concludes the inductive proof for the case .j k
We proceed to furnish the inductive proof for the case .k j
Theorem 3 is already proved for , {1,2,3,4.}, .j k k j 
Therefore the theorem is valid for , {0, 1, 2, 3,4}.j k  Assume that the theorem is valid for all pairs of
triples , , ( ); , , ( ) for which ,for some 3, and 4.k k
j k Q jh j k Q jh j k j k j k    
    Then apply the induction
principle to the right-hand side of the determining equation:
The structure of determining matrices for single-delay…
www.ijmsi.org 44 | P a g e
1 0 1 1 1
( ) ( ) ([ 1] ) ([ 1] ),noting that k 1 ,
1 1, 1. Therefore:
k k k k
Q jh A Q jh A Q j h A Q j h j k j
k j k j
  
        
    
1 1
1 11( ),0( ) 0( )),1( )
1
1 1( ),0( ),1( )
1 11
1 1 11 0( ( 1)),1( 1)
1
0 0
1
0
1
1 1
( , , ) ( , , )
( , , )
( , , ) ( , , )
Q ( )
kj k
j k j k k k j j
k r
j r r r k j j r
j k k
jj k k j j
k
v v v
j
r
v
v v P v v P
v v
v v P
v v v v
v v v v P
jh
A A A A A A
A A A
A A A A A A

  

    
 
    



 

 




 
 

 

 
 

 
1( 1),0( )
1
1 1( ),0( ( 1)),1( 1 )
1 1 1
1 11( 1),0( 1) 0( 1 ( 1)),1( 1)
1 1
1 1 1( ),0(
1
1
1
1 1
1
( , , )
( , , ) ( , , )
( , , )
j k
k r
k r r r k j j r
j k k
jj k j k k j j
k r
k r r r
j r
r
P
v v
v v P
v v v v
v v P v v P
v v
v v P
A A A
A A A A A A
A A A
 

      
 
       
 
   
 

 


 





 
 

 


 

1 ( 1)),1( 1 )
2
1 k j j r
j
r     




















 
1 11 1
1 1 11 1( ),0( 1) 0( 1 ),1( )
1
1 1( ),0( ),1( )
1 1
1 1 1( 1),0( )
0 1
1 0
1
0
1
1 1
( , , ) ( , , )
( , , )
( , , )
(20)
(21)
j k k
iL iL
jj k j k k j j
k r
k r r r k j j r
j k
j k j k
i i
j
r
v v v v
v v P v v P
v v
v v P
v v
v v P
A A A A
A A A
A A A A A
  
     

    
 
   
 


 


 


   
 

 


 

 1
1 1( ),0( 1 ),1( 1 )
1 12 1
1 11 0( 2 ),0( 1) 1 1( ),0( 2 ),1( 1 )
2
1
2
1 1
1
( , , )
( , , ) ( , , )
(22)
(23)
k r
k r r r k j j r
k j k r
k k j j k r r r k j j r
j
r
j
r
v v
v v P
v v v v
v v P v v P
A
A A A A A A

      
   
           



 


 
 
 
  

 

 
 
1 1 11
1 1 1 11( ),0( 1) 0( 1 ),1( )( , , ) ( , , )
The expression 20 yields:
(24)jj k
j jj k k j j
v v v v
v v P v v P
A A A A  
     
  
 
1
1
1 1
0
1 1 1( ),0( 1 ),1( )( , , )
The expression:
is immediate from (21)
(25)
j
r
k r
L
k r r r k j j r
v v
v v P
A A


 
      
 


The structure of determining matrices for single-delay…
www.ijmsi.org 45 | P a g e
2
1 1
1
1
1 11
1 11 1( 1),0( ) 1( ),0( 1 ),1( 1 )
1 1
1 1 1( 1),0(
( , , ) ( , , )
( , , )
We use the addition and subtraction technique in (22) to get:
=
j
r
j k k r
j k j k k r r r k j j r
j k
j k j
v v v v
v v P v v P
v v
v v P
A A A A A A
A A A


  
          
 
   
 



   

 

1
1
1
1
1
1
1
1
1) 1( ),0( 1 ),1( 1 )
1
1 1 1( 1),0( 1 1 ),1( 1 ( 1))
1 1
1
1 1( ),0( 1 ),1( )
( , , )
( , , )
( , , )
(26)
j
r
j
r
k r
k k r r r k j j r
k j
k j j j k j j j
k r
L
k r r r k j j r
v
v v
v v P
v
v v P
v v
v v P
A A A
A A A
A A





      
 
          
 
     





  

 






We are left with expression (23), which, using the change of variables technique yields:
1 1
1 1 1 1( 1),0( 1
2
1 1
1
1 1
1 12 1
1 11 0( 2 ),0( 1) 1 1( ),0( 2 ),1( 1 )
2 1 1
1 1 0( 2 ),0( 1) ( , , )
( , , ) ( , , )
( , , )
=
k r r r k
j
r
k j k r
k k j j k r r r k j j r
k j k r
k k j j
v v
v v P
v v v v
v v P v v P
v v
v v P
A A A A A A
A A A A A A
       

 

 
   
           
    
    
 



  
 
 

 
 
2 ),1( 1 ( 1))
1 12
1 1 1 1( 1),0( 1 2 ),1( 1 ( 1))
1
1
2
1
1 1
1
1
1 1
1 1 0( 2 ),0( 1)
1 1 1
1 1 1 1 1(1 1),0(1 1 2 ),1
( , , )( , , )
( , , )
j j r
k j
k r r r k j j r
j
r
j
r
k r
k k j j
k
k k j
v v v
v v P
v
v
v v P
v
v v P
A A A A A A
A A A
   
 
           



 


  
   
  
        


 

 
  

 

1
1
( 1 (1 1))
1 1
1
1 1 1( ),0( 1 ),1( )( , , )
(27)
j
r
j
k r
L
k r r r k j j r
v v
v v P
A A


  
 

      


 


The resulting expressions (24), (25), (26) and (27) add up to yield:
1
1 1 1
1 11 1( ),0( 1) 1 0( 1 ),1( )
1 1
1 1 1( ),0( 1 ),1( )
1
1
( , , ) ( , , )
( , , )
Q ( )
(28)
k
j k k
j k j k k k j j
k r
j r r r k j j r
j
r
v v v v
v v P v v P
v v
v v P
jh
A A A A
A A

 
      
 
      


 

 

 
 
 

 

This concludes the inductive proof for the case , completing the proof of the theorem.k j
The cases andj k k j  , in the preceding theorem can be unified by using a composition of the max and the
signum functions as follows:
IV. INDUCTION PITFALLS IN THE DERIVATION OF THE DETERMINING
MATRICES
In the development of ( )kQ jh for the single – delay neutral system (1) we had proposed, based on the observed
pattern for ( )k
Q jh for 0 min{ , } 2,j k  that for 1,j k 
The structure of determining matrices for single-delay…
www.ijmsi.org 46 | P a g e
1
1
1 1
1
1 11( ),0( ) 1( ),1( )
1
1 2 1( ),0( ),1( )
( , , ) ( , , )
( , , )
Q ( ) ; 1
; 2
jk
k k r
r s
j k
jj k j k j k k
j r
r j k s r j k r s
v vv v
v v P v v P
v v
v v P
jh k
A A k
A A A A
 
 

   

     
 

 
 

 
  


 
and for 1,k j 
1
1
1
1 1
1 0( ),1( )
2
1
1 1( ),0( )
1 2 1( ),0( ),1( )
( , , )( , , )
( , , )
; 1
; 2
Q ( )
j j r
v
r s
k k j j
r k j s
vk j k k
j k j k
r k j s r r k j s
v v P
v
v v v
v v P
v v P
j
A A j
jh A A A A
 
 

  

 
     




 
 
 


 
This formula is valid for all , :1 min{ , } 2.j k j k  However it turns out to be false for all
, :min{ , } 3.j k j k  This revelelation came to the fore following the discovery of some fallacy in the proof of
the expressions for ( ),kQ jh which could never be overcome; it became imperative to examine 3 (3 )Q h from
the determining equations for ( ).kQ jh The formula was found to be inconsistent with the true result from the
determining equations. Therefore the formula had to be abandoned after so much effort.
Further long and sustained research effort led to the conjecture
1
1 1
1 1( ),1( )
1
1 2 1( ),0( ),1( )
1
1 2 1( ),0( ),1( )
1 1
1 1( ),0( )
( , , )
( , , )
( , , )
( , , )
Q ( ) ; 1
; 2, ,
; 2
k
k k r
r s
j
j j k k
j r
r j k s r j k r s
j r
r j k s r j k r s
j k
j k j k
v v P
v v
v v P
v v
v v P
v v v v
v v P
jh k
A A k j k
A A j k
A A A A
 
 
 

     

     

 




 
 

 

 

 





 
1
1 max{1, 1 2 }
k k r
r s k r
 
   







 
as well as the analogous expression for ( )k
Q jh for 1.k j 
The formula was found to be valid for , :1 min{ , } 2,j k j k  as in the aborted formula. Furthermore
3
(3 )Q h obtained from the postulated formula agreed with the corresponding result (sum of 63 permutation
products) obtained directly from the determining equations. Unfortunately, the proof for arbitrary j and k could
not push through; there was no way to apply induction on the lower limit for s, not to talk of dealing with the
piece–wise nature of the third component summations.
Above pitfalls provided object lessons that integer–based mathematical claims should never be
accepted without error-free proofs by mathematical induction. There is no other way to ascertain that a pattern
will persist –no matter the number of terms for which it has remained valid.
V. CONCLUSION
The results in this article bear eloquent testimony to the fact that we have comprehensively extended
the previous single-delay result by Ukwu (1992) together with appropriate embellishments through the
unfolding of intricate inter–play multiple summations and permutation objects in the course of deriving the
expressions for the determining matrices.
By using the change of variables technique, deft application of mathematical induction principles and
careful avoidance of some induction pitfalls, we were able to obtain the structure of the determining matrices for
the single–delay neutral control model, without which the computational investigation of Euclidean
controllability would be impossible.
The structure of determining matrices for single-delay…
www.ijmsi.org 47 | P a g e
REFERENCES
[1] Gabasov, R. and Kirillova, F. The qualitative theory of optimal processes ( Marcel Dekker Inc., New York, 1976).
[2] Ukwu, C. Euclidean controllability and cores of euclidean targets for differential difference systems Master of Science Thesis in
Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A., 1992.
[3] Ukwu, C. An exposition on Cores and Controllability of differential difference systems, ABACUS, Vol. 24, No. 2, 1996, pp. 276-
285.
[4] Ukwu, C. On determining matrices, controllability and cores of targets of certain classes of autonomous functional
differential systems with software development and implementation. Doctor of Philosophy Thesis, UNIJOS, 2013a (In
progress).
[5] Bellman, R. and Cooke, K. Differential-difference equations. Acad. Press, New York, (1963).
[6] Dauer, J. P. and Gahl, R. D. Controllability of nonlinear delay systems. J.O.T.A. Vol. 21, No. 1, January (1977).
[7] G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous controls. J.
Differential equations, ,Vol. 51, No. 2, 1984,Pp. 151-181.
[8] Banks, H. T. and Jacobs, M. An attainable sets approach to optimal control of functional differential equations with
function space terminal conditions. Journal of differential equations, 13, 1973, 121- 149.
[9] Banks, H. T. and Kent G. A. Control of functional differential equations of retarded and neutral type to targets in function
space, SIAM J. Control, Vol. 10, November 4, 1972.
[10] Hale, J. K. Theory of functional differential equations. Applied Mathematical Science, Vol. 3, 1977, Springer-Verlag, New York.

Contenu connexe

Tendances

Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-Metric
Komal Goyal
 
An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...
Alexander Decker
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
Matthew Leingang
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
Alexander Decker
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivatives
math265
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
laboratoridalbasso
 

Tendances (19)

On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-Metric
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
 
An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...An order seven implicit symmetric sheme applied to second order initial value...
An order seven implicit symmetric sheme applied to second order initial value...
 
22nd BSS meeting poster
22nd BSS meeting poster 22nd BSS meeting poster
22nd BSS meeting poster
 
Stochastics Calculus: Malliavin Calculus in a simplest way
Stochastics Calculus: Malliavin Calculus in a simplest wayStochastics Calculus: Malliavin Calculus in a simplest way
Stochastics Calculus: Malliavin Calculus in a simplest way
 
Nokton theory-en
Nokton theory-enNokton theory-en
Nokton theory-en
 
Stability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsStability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problems
 
Classification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeClassification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum plane
 
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD Thesis
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivatives
 
Introduction to FDA and linear models
 Introduction to FDA and linear models Introduction to FDA and linear models
Introduction to FDA and linear models
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
 
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
Computational Motor Control: State Space Models for Motor Adaptation (JAIST s...
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 

En vedette

The real secret to health
The real secret to healthThe real secret to health
The real secret to health
webhealthforyou
 
Mami laudith
Mami laudithMami laudith
Mami laudith
laudithmm
 

En vedette (14)

Dịch vụ seo king ads
Dịch vụ seo king adsDịch vụ seo king ads
Dịch vụ seo king ads
 
How To Have Fun On Your Trip
How To Have Fun On Your TripHow To Have Fun On Your Trip
How To Have Fun On Your Trip
 
USING GOOGLE’S KEYWORD RELATION IN MULTIDOMAIN DOCUMENT CLASSIFICATION
USING GOOGLE’S KEYWORD RELATION IN MULTIDOMAIN DOCUMENT CLASSIFICATIONUSING GOOGLE’S KEYWORD RELATION IN MULTIDOMAIN DOCUMENT CLASSIFICATION
USING GOOGLE’S KEYWORD RELATION IN MULTIDOMAIN DOCUMENT CLASSIFICATION
 
Hawaii diet cookbook 5
Hawaii diet cookbook 5Hawaii diet cookbook 5
Hawaii diet cookbook 5
 
Mens Maintenancel5 09
Mens Maintenancel5 09Mens Maintenancel5 09
Mens Maintenancel5 09
 
The real secret to health
The real secret to healthThe real secret to health
The real secret to health
 
Tarea 3
Tarea 3Tarea 3
Tarea 3
 
DECLARATORIA INCONSTITUCIONALIDAD ART. 46 CODIGO ORGANICO TRIBUTARIO
DECLARATORIA INCONSTITUCIONALIDAD ART. 46 CODIGO ORGANICO TRIBUTARIODECLARATORIA INCONSTITUCIONALIDAD ART. 46 CODIGO ORGANICO TRIBUTARIO
DECLARATORIA INCONSTITUCIONALIDAD ART. 46 CODIGO ORGANICO TRIBUTARIO
 
Facebook vs Instagram
Facebook vs Instagram Facebook vs Instagram
Facebook vs Instagram
 
Mami laudith
Mami laudithMami laudith
Mami laudith
 
Script
ScriptScript
Script
 
los peligros del internet.
los peligros del internet.los peligros del internet.
los peligros del internet.
 
Analysis Of Films Using Rivaling
Analysis Of Films Using RivalingAnalysis Of Films Using Rivaling
Analysis Of Films Using Rivaling
 
Afrirpa 2010, Sources, processes and Fate of Environmental Radioactivity
Afrirpa 2010, Sources, processes and Fate of Environmental RadioactivityAfrirpa 2010, Sources, processes and Fate of Environmental Radioactivity
Afrirpa 2010, Sources, processes and Fate of Environmental Radioactivity
 

Similaire à D023031047

TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
BRNSS Publication Hub
 

Similaire à D023031047 (20)

A02402001011
A02402001011A02402001011
A02402001011
 
D025030035
D025030035D025030035
D025030035
 
F023064072
F023064072F023064072
F023064072
 
E028047054
E028047054E028047054
E028047054
 
C024015024
C024015024C024015024
C024015024
 
B02404014
B02404014B02404014
B02404014
 
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
 
B02609013
B02609013B02609013
B02609013
 
Simple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic SystemSimple Exponential Observer Design for the Generalized Liu Chaotic System
Simple Exponential Observer Design for the Generalized Liu Chaotic System
 
A03401001005
A03401001005A03401001005
A03401001005
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...
Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...
Convergence Theorems for Implicit Iteration Scheme With Errors For A Finite F...
 
Common Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative SchemesCommon Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative Schemes
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
Inverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdfInverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdf
 
Paper 7 (s.k. ashour)
Paper 7 (s.k. ashour)Paper 7 (s.k. ashour)
Paper 7 (s.k. ashour)
 
Presentation
PresentationPresentation
Presentation
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 

Dernier

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 

Dernier (20)

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 

D023031047

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-31-47 www.ijmsi.org 31 | P a g e The structure of determining matrices for single-delay autonomous linear neutral control systems Ukwu Chukwunenye Department of Mathematics,University of Jos, P.M.B 2084 Jos, Plateau State, Nigeria. ABSTRACT: This paper derived and established the structure of determining matrices for single – delay autonomous linear neutral differential systems through a sequence of lemmas, theorems and corollaries and the exploitation of key facts about permutations. The proofs were achieved using ingenious combinations of summation notations, the multinomial distribution,change of variables technique and compositions of signum and max functions. The paper also pointed out some induction pitfalls in the derivation of the main results. The paper has extended the results on single–delay models, with more complexity in the structure of the determining matrices. KEYWORDS: Delay, Determining, Neutral, Structure, Systems. I. INTRODUCTION The importance of determining matrices stems from the fact that they constitute the optimal instrumentality for the determination of Euclidean controllability and compactness of cores of Euclidean targets. See Gabasov and Kirillova (1976) and Ukwu (1992, 1996 and 2013a). In sharp contrast to determining matrices, the use of indices of control systems on the one hand and the application of controllability Grammians on the other, for the investigation of the Euclidean controllability of systems can at the very best be quite computationally challenging and at the worst, mathematically intractable. Thus, determining matrices are beautiful brides for the interrogation of the controllability disposition of single-delay neutral control systems. See (Ukwu 2013a). However up-to-date review of literature on this subject reveals that there is currently no correct result on the structure of determining matrices for single-delay neutral systems. This could be attributed to the severe difficulty in identifying recognizable mathematical patterns needed for inductive proof of any claimed result and induction pitfalls in the derivation of determining matrices. This paper establishes valid expressions for the determining matrices in this area of acute research need. II. ON DETERMINING MATRICES AND CONTROLLABILITY OF SINGLE-DELAY AUTONOMOUS NEUTRAL CONTROL SYSTEMS We consider the class of neutral systems:      1 0 1( ) ( ) ( ) , 0 (1) d x t A x t h A x t A x t h Bu t t dt        where A A A1 0 1, , are n n constant matrices with real entries and B is an n m constant matrix with the real entries. The initial function  is in   , 0 , n C h R equipped with sup norm. The control u is in   10, , n L t R . Such controls will be called admissible controls.      1 for, 0,n x t x t h t t  R . If   1 , , n x C h t  R , then for  t t 0 1, we define   , 0 , n t C hx   R by      x s x t s s ht    , , 0 . 2.1 Existence, Uniqueness and Representation of Solutions If A 1 0 and  is continuously differentiable on  , 0h , then there exists a unique function  : ,x h  which coincides with  on  , 0h , is continuously differentiable and satisfies (1) except possibly at the points
  • 2. The structure of determining matrices for single-delay… www.ijmsi.org 32 | P a g e ; 0,1, 2,...jh j  . This solution x can have no more derivatives than  and continuously differentiable if and only if the relation:        1 0 1 0 (0) 0 (2)A h A A h Bu           is satisfied. See Bellman and Cooke (1963) and theorem 7.1 in Dauer and Gahl (1977) for complete discussion on existence, uniqueness and representations of solutions of (1). 2.2 Preliminaries on the Partial Derivatives ( , ) , 0,1, k k X t k       Let  t t, ,  0 1 for fixed t, let     t, be the unique function satisfying the matrix differential equation:           1 0 1 , , , , (3) subject to: ; (4) , = 0, 0 , ; 0,1,..., n t t h A t A t h A I t t t t t jh j                                     By Tadmore (1984 , p. 80),  ,t    is analytic on   1 , , 0,1,....t j h t jh j    and hence  , ist C     on these intervals. The left and right-hand limits of  ,t    exist at   t jh , so that  ,t  is of bounded variation on each compact interval. Cf. Banks and Jacobs (1973), Banks and Kent (1972) and Hale (1977). We maintain the notation         k k t t, , ,  as in the double-delay systems. 2.3 Investigation of the Expressions and Structure of Determining Matrices for System (1) In this section we establish the expressions and the structure of the determining matrices for system (1), as well as their relationships with ( ) ( , )k X t  through a sequence of lemmas, theorems and corollaries and the exploitation of key facts about permutations. The process of obtaining necessary and sufficient conditions for the Euclidean controllability of (1) in chapter four will be initiated in the rest of chapter three as follows: i. Obtaining a workable expression for the determining matrices of (1):   1 for : 0, 1, 2,.. (5)k Q jh j t jh k   ii.Showing that:        1 1 , 1 (6) kk k t jh t Q jh    for j t jh k: , , , ,....,1 0 0 1 2   iii.Showing that  Q t 1 is a linear combination of:        0 1 1 , ,..., , 0, ,...., 1 (7)n Q s Q s Q s s h n h   We now define the determining equation of the n n matrices,  Q sk . For every integer k and real number s, define  Q sk by:        1 0 1 1 1 (8)k k k k Q s A Q s h A Q s A Q s h        for k s h h 0 1 0 2, ,...; , , ,..... subject to  Q In0 0  , the n n identity matrix and   0 for 0 or 0k Q s k s   . 2.4 Preliminary Lemma on Determining matrices ( ),kQ s sR In (1), assume that A 1 0, then for j k,  1, i.  Q Ak k 0 0
  • 3. The structure of determining matrices for single-delay… www.ijmsi.org 33 | P a g e ii.  Q jh A j 0 1  iii.      Q h A A A A A A Ak k r k k r r        0 1 0 1 0 1 1 1 0 0 iv.       Q jh A A A A A A Aj r j r j r 1 1 0 0 1 1 0 1 1 1 1            v.      1 1 0, 1 kk k t t A    vi.    1 1, 0 k t t   vii.  1 1 1, j t jh t A   Remarks: Notice that Ar 0 can switch places with   Ak r 0 1  in (iii); similarly for Ar 1 and   A j r    1 1 in (iv), since r and  1k r  have the same range for fixed k; similarly in (iv), r and  1j r  have the same range for fixed j. Proof i.From (8) we have           Q A Q h A Q A Q h A Q k k k k k 0 0 0 0 0 1 0 1 1 1 0 1             Now,    Q A Q A I An1 0 0 0 00 0   . Assume that  Q Ak k 0 0 for some k  1. Then,             1 1 1 0 1 1 0 0 1 0 by the induction hypotheses 0 0 0 0 0k k k k k k k Q A Q h A Q A Q h A Q A A A               Hence,  Q Ak k 0 0 for all k  12, ,.....; this proves (i).              0 1 0 0 1 1 1 1 0 ii 1 1 1 0 0 Q jh A Q j h A Q jh A Q j h A Q j h              Hence,    Q h A Q A0 1 0 10   The rest of the proof is by the principle of mathematical induction: Assume that  0 1 for some 1 j Q jh A j   . Then              Q j h A Q jh A Q j h A Q j h A Q jh A A Aj j 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0                    , by induction hypothesis. So  0 1 for 1, 2,...... j Q jh A j   iii From (8),      1 1 1 0 0 1 0 1 0 0 1 1 ( ) 0 0 . Q h A Q A Q h A Q A A A A A          . Plugging in the right-hand side of iii yields     1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 ( ) r r r Q h A A A A A A A A A A A A               . Therefore the formula (iii) is valid for k  1. Assume the validity of (iii) for some k  1. Now
  • 4. The structure of determining matrices for single-delay… www.ijmsi.org 34 | P a g e                   Q h A Q A Q k A Q A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A k k k k k k r k k r r k k r k k r r k k r k k r                                            1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0                        1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 A A A A A A A A A A A A A A Q h r k k k k r k k r r k . Therefore (iii) is true for k  1 and so true for k  1 2, ,..... iv  Q h A A A A A1 0 1 1 0 1    . Plug in the right-hand side of (iv) to obtain  A A A A A A A A A A A A         1 0 1 0 0 1 1 1 0 1 0 0 1 1 It follows that (iv) is true for 1.j  Assume that (iv) is valid for some j  1. Now                         1 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 11 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 by the induction hypothesis 1 1 j j rj r r j j j j rj r j r j j r j r Q j h A Q jh A Q j h A Q jh A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A                                                                1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 r r j r r j j r j r r A A A A A A A A A A A A Q j h                     So, the formula (iv) is valid for j  1. This completes the proof that (iv) holds for all j  1 2, ,... v. For k  1,                    1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 , , 0. 0 , , , , k t t t t t t t t t t A t h t A h t A A A A                                         by (3), noting that for  sufficiently close to t h t1 1,   ; so  t h t1 1   . Assume that      1 1 0, 1 kk k t t A    for some k  1. Then                         1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 , , ( , ) , , 1 0 0 1 k k t k k k k kk k X t t X t X t t A X t h t A X t h t A A A A                                 Therefore,      1 1 0, for all 1, 2,... kk X t t A k    .
  • 5. The structure of determining matrices for single-delay… www.ijmsi.org 35 | P a g e        1 1 1 1 1 1 lim vi. , , 0 k k t t t h X t t X t         , since   t1 vii Let j be a nonnegative integer such that t jh1 0  . We integrate (3) and apply (4). Thus            1 1 1 1 1 1 0 1 10 0 , , , , t jh t jh X t X h t A d X t A X h t A d                           Hence,                 1 1 1 1 1 1 1 1 1 1 0 1 10 , 1 , 0, , , , t jh t jh t t j h t A t h t A t A h t A d                           Similarly                1 1 1 1 1 1 1 1 1 ( ) 1 0 1 10 1, 1 0, , , , , , t jh X t jh t X t t j h t X t h t A t A h t A d A                      Therefore                      1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 , , 0, , , , , t jh t jh X t jh t X t j h t A X t jh t X t j h t A X t A X h t A d                                 since  lim 0 0 a a f t dt        , for any bounded integrable function f, and    1 0 1 1, ,t A h t A       is bounded and integrable. Therefore we have deduced that              1 1 1 1 1 1 1 1 1 1 1, , , ,X t jh t X t jh t X t j h t X t j h t A                 for any 1j  , j integer. For j  1, we have          1 1 1 1 1 1 1 1 1 1 1, , , , nX t h t X t h t X t t X t t A I A A                 by (vi). The rest of the proof is by induction on j. Assume the validity of (vii) for j  1,..., p for some p  1. Then                  1 1 1 1 1 1 1 1 1 1 1 1 1 1 , 1 , 1 , , , p X t p h t X t p h t X t p h t X t ph t X t ph t A A A                        by the induction hypothesis. So    1 1 1 11 , p t p h t A      and hence (vii) is valid. 2.5 Lemma on 1 ( ) and ( )k Q h Q jh as sums of products of permutations For any nonnegative integers and ,j k (i) 1 11 1 11 1(1),0( ) 0( 1),1(1)( , , ) ( , , ) ( ) k k k k k k k v v v v v v P v v P Q h A A A A           (ii) 1 1 1 1 1 11( ),0(1) 1( 1), 1(1) 1 ( , , ) ( , , ) ( ) jj jj j j v v v v v v P v v P Q jh A A A A            Proof of (i)
  • 6. The structure of determining matrices for single-delay… www.ijmsi.org 36 | P a g e By lemma 2.4,         1 1 0 1 0 1 0 1 1 0 0 0 and k k rj k r k r Q jh A Q h A A A A A A A                1 1 2 1 1 1(1),0(0) 1 2 11(1),0(1) 0(1 1),1(1) 0 1 1 1 0 1 1 0 1 0 1 1 0 1 ( , ) 0, 1, ; 0 1 ; v v v v v P v v P v P k j Q h A rhs A A k Q h A A A A A rhs A A A A A A A A                                So, the lemma is valid for {0,1}.k  Assume the validity of the lemma for 2 ,k p  for some integer p . Then,       1 1 0 1 0 1 1 0 0 0 p p rp r p r Q h A A A A A A A          1 1 1 1 1 11(1),0( ) 0( 1),1(1)( , , ) ( , , ) p pp p p pv v v v v P v v P vA A A A                           1 1 0 1 1 0 0 0 1 1 1 1 11 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 (1 ) 0 1 0 0 1 1 0 0 0 1 (1 0 1 0 0 Now p p p rp r r p p p r r r p p p p r r r p p p p r r r p p p r A A A A A A A A Q h A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A                                                             1 1 0 ) 1 1 0 0 0 r r p A A AA A A A A         0 1 1 0 1 0 1 1 1 1 1 1 11(1),0( ) 0( 1),1(1) 1 1 1 1 1 11(1),0( ) 0( 1),1(1) 1 0 0 ( , , ) ( , , ) 1 0 0 ( , , ) ( , , ) pp pp p p pp pp p p p p v v v v v v P v v P p p v v v v v v P v v P A A A A A A A A A A A A A A A A A A A                                            0 11 2 1 2 1(1),0( 1) 1 2 1 2 1(1),0( 1) ( , , )( , , ) (with a leading ) (with a leading ) p p p p p p v v v v P v v v v P A AA AA A              0 11 1 1 1 1 1 1 10( 1 1),1(1) 0( 1 1),1(1)( , , ) ( , , ) (with a leading ) (with a leading )p p p pp p v v v v v v P v v P A A A A A A               1 2 1 1 1 2 1 11(1),0( 1) 0( ),1(1)( , , ) ( , , ) p p p pp p v v v v v v P v v P A A A A            Therefore, part (i) of the lemma is valid for 1k p  , and hence valid for every nonnegative integer k . Proof of (ii) Using similar reasoning (ii) can be established by induction; but let us do it differently by using the expression for 1 ( )Q jh from lemma 2.4.
  • 7. The structure of determining matrices for single-delay… www.ijmsi.org 37 | P a g e       1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 j j r r j j r r r r j r j r j r Q jh A A A A A A A A A A A A A                           1 1 1 1 1 11( ),0(1) 1( 1),1(1)( , , ) ( , , ) ,jj jj j j v v v v v v P v v P A A A A            noting that in the first summation over r 0A occupies positions 1,2, , 1j  for 0,1, ,r j  respectively. 0A leads only once and trails only once.; in the second summation 1A occupies positions 1,2, , j for 0,1, , 1r j  respectively. 1A leads only once and trails only once. Remarks: Observe that 1 ( )Q jh may be deduced from ( )k Q h by (a) replacing k by j in the expression for ( )k Q h (b) interchanging -1 and 0 in the expression for ( )k Q h (c) replacing 0 by -1 in the summations or permutations involving only the indices 0 and 1. 2.6 Lemma on 1( , )X t    of uncontrolled part of (1) 1 (1) 1 1 1 1 1 0 0 1 (1) 1 1 1 1 1 0 0 1 (1) 1 1 1 1 1 0 0 (i) (( ) , ) (( ( ( )) ) , ) (ii) (( ) , ) (( ( ( )) ) , ) (iii) ( , ) ( ( ( )) ), ) j r i r i j r i r i j r i r i X t jh t X t j r i h t A A X t jh t X t j r i h t A A X t jh t X t j r i h t A A                                                       Proof of (i) (1) (1) 1 1 1 1 0 1 1 1 1 1 1 (1) 1 1 1 1 1 0 1 1 1 1 (1) 2 1 1 1 ( ,( ) ) (( ) , ) (( ( 1) ) , ) (( ( 1) ) , ) (( ( 1) ) , ) [ (( ( 1) ) , ) (( ( 2) ) , ) ] (( ( 2) ) , ) X t t jh X t jh t A X t j h t A X t j h t A X t j h t A X t j h t A X t j h t A A X t j h t A                                   (1) (1) 1 1 0 1 1 0 1 0 1 (By(v)of lemma 2.4) 0 lhs ( , ) rhs; 1 lhs (( ) , ) (( ) , ) j X t t A j X t h t X t h t A A A A                    1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 Let us examine yield yield Sum the results for these contingencies to get yield yield (( (1 ( )) ) , ) ; 0, 0 ( ( ,( ) ) 0, 1 ( ( , ) ; 1, 0 ; 1, 1 0. r i r i X t r i h t A A r i X t t h A r i X t t A A r i A A r i                                  1 1 1 1 1 1 1 0 1 0 1 0 0 (( (1 ( )) ) , ) ( (( ) , )r i r i X t r i h t A A X t h t A A A A                     So, the lemma is valid for 1j  . Let us explore 2j  . (1) (1) 1 1 0 1 1 1 1 2 1 0 1 1 1 0 1 1 1 0 1 2 lhs (( 2 ) , ) (( 2 ) , ) (( ) , ) (( ) , ) (( 2 ) , ) (( ) , ) (( ) , ) j X t h t X t h t A X t h t A X t h t A X t h t A X t h t A X t h t A A A A A A                               
  • 8. The structure of determining matrices for single-delay… www.ijmsi.org 38 | P a g e 2 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 2 0 1 Let us examine yield yield yield yield yield y (( (2 ( )) ) , ) ; 0, 0 ( (( 2 ) , ) 0, 1 ( (( ) , ) ; 1, 0 ( (( ) , ) ; 1, 1 ; 2, 0 ; 2, 0 r i r i X t r i h t A A r i X t h t A r i X t h t A r i X t h t A A r i A A r i A A r i                                          2 1 1 1 1 0 0 2 1 1 0 1 1 1 1 1 0 1 1 1 0 1 ield Sum the results for these contingencies to get 0. (( (2 ( )) ) , ) ( (( 2 ) , ) ( (( ) , ) ( (( ) , ) . r i r i X t r i h t A A X t h t A X t h t A X t h t A A A A A A                               So, (i) of the lemma is valid for {0,1,2}.j  Assume that (i) of the lemma is valid for 3 , for some integer .j n n  Then 1 (1) 1 1 1 1 1 0 0 by the induction hypothesis.(( ) , ) (( ( ( )) ) , ) , n r i r i X t nh t X t n r i h t A A                  (1) 1 1 1 1 0 1 1 1 (1) 1 1 1 1 (1) 1 1 1 1 1 0 1 1 1 1 1 1 0 0 Now, (( ( 1) ) , ) (( ( 1) ) , ) (( ) , ) (( ) , ) (( ) , ) (( ( 1 ) ) , ) (( ( ( )) ) , ) (( ( 1 i i n r i r i X t n h t X t n h t A X t nh t A X t nh t A X t nh t A X t n i h t A X t n r i h t A A X t n                                                  1 1 0 ) ) , ) i i i h t A   1 1 1 1 1 0 0 as desired. So (i) is true for ,and hence valid for all . (( ( 1 ( )) ) , ) , n r i r i j n j X t n r i h t A A                    Proof of (ii) (1) (1) 1 1 1 1 0 1 1 1 1 1 1 (1) 1 1 1 1 1 0 1 1 1 1 (1) 2 1 1 1 (( ) , ) (( ) , ) (( ( 1) ) , ) (( ( 1) ) , ) (( ( 1) ) , ) [ (( ( 1) ) , ) (( ( 2) ) , ) ] (( ( 2) ) , ) X t jh t X t jh t A X t j h t A X t j h t A X t j h t A X t j h t A X t j h t A A X t j h t A                                   (1) 1 1 (1) (1) 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 lhs ( , ) 0 rhs; 1 lhs (( ) , ) (( ) , ) ( , ) ( , ) (( ) , ) 0 0 j X t t j X t h t X t h t A X t t A X t t A X t h t A                          
  • 9. The structure of determining matrices for single-delay… www.ijmsi.org 39 | P a g e 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 Let us examine yield yield yield yield Sum the results for these contingenc (( (1 ( )) ) , ) ; 0, 0 ( ( ,( ) , ) 0, 1 ( ( , ) 0; 1, 0 ( , ) 0; 1, 1 0. r i r i X t r i h t A A r i X t t h t A r i X t t A r i X t t A A r i                                  1 1 1 1 1 1 1 0 0 0 ies to get (( (1 ( )) ) , ) ( (( ) , )r i r i X t r i h t A A X t h t A                   So, (ii) of the lemma is valid for 1j  . Let us explore 2j  . (1) (1) 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 (1) 2 1 1 1 0 1 1 2 lhs (( 2 ) , ) (( 2 ) , ) (( ) , ) (( ) , ) (( 2 ) , ) (( ) , ) (( ) , ) ( , ) ( , ) (( 2 ) , ) (( ) , ) (( ) , j X t h t X t h t A X t h t A X t h t A X t h t A X t h t A X t h t A A X t t A A X t t A X t h t A X t h t A X t h t                                            1 0 1)A A 2 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 Let us examine yield yield yield yield yield yield Sum (( (2 ( )) ) , ) ; 0, 0 ( (( 2 ) , ) ; 0, 1 ( (( ) , ) ; 1, 0 ( (( ) , ) ; 1, 1 0; 2, 0 0; 2, 1 0. r i r i X t r i h t A A r i X t h t A r i X t h t A r i X t h t A A r i r i r i                                      2 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 the results for these contingencies to get (( (2 ( )) ) , ) ( (( 2 ) , ) ( (( ) , ) ( (( ) , ) . r i r i X t r i h t A A X t h t A X t h t A X t h t A A                           So, (ii) of the lemma is valid for {0,1,2}.j  Assume that (ii) of the lemma is valid for 3 , for some integer .j n n  Then 1 (1) 1 1 1 1 1 0 0 by the induction hypothesis.(( ) , ) (( ( ( )) ) , ) , n r i r i X t nh t X t n r i h t A A                  (1) 1 1 1 1 0 1 1 1 (1) 1 1 1 1 (1) 1 1 1 1 1 0 1 1 1 1 1 1 0 0 Now, (( ( 1) ) , ) (( ( 1) ) , ) (( ) , ) (( ) , ) (( ) , ) (( ( 1 ) ) , ) (( ( ( )) ) , ) (( ( 1 i i n r i r i X t n h t X t n h t A X t nh t A X t nh t A X t nh t A X t n i h t A X t n r i h t A A X t n                                                  1 1 0 ) ) , ) i i i h t A   1 1 1 1 1 0 0 as desired. So (ii) is true for 1,and hence true for all (( ( 1 ( )) ) , ) , . n r i r i j nX t n r i h t A A j                     Proof of (iii) The proof follows by noting that (1) (1) (1) 1 1 1 1 1 1( , ) (( ) , ) (( ) , )X t jh t X t jh t X t jh t        and then using (i) and (ii) to deduce that
  • 10. The structure of determining matrices for single-delay… www.ijmsi.org 40 | P a g e 1 (1) 1 1 1 1 1 1 1 0 0 1 1 ( ) 1 1 1 1 1 0 0 0 0 ( ,( )) (( ( ( )) ) , ) (( ( ( )) ) , ) (( ( ( )) ), ) j r i r i j j r j r i r i i r i r i X t t jh X t j r i h t X t j r i h t A A X t j r i h t A A A A A                                                         2.7 Lemma on ( ) 1 1( ,(( ))k X t t jh  recursions 1 ( ) ( 1) 1 1 1 1 1 0 0 ( , ) (( ( ( )) ), ) j k k r i r i X t jh t X t j r i h t A A                  Proof 1 ( ) ( 1) 1 1 0 1 1 0 ( 1) ( 1) 1 1 1 1 0 1 1 1 0 0 0 (by lemma 2.4) If 0,then 0; lhs ( , ) ( 1) ,rhs ( , ) ( , ) ( , ) ( 1)( 1) 0 ( 1) k k k k i i k k k k k k j r X t t A X t ih t A X t t A X t h t A A A A                                 ( ) ( 1) ( 1) 1 1 1 1 1 0 1 1 1 ( ) ( 1) 1 1 1 1 1 1 1 0 0 1 ( 1) 1 1 0 1 1 1 0 0 If 1, then using lemma 2.4, lhs ( (1 1) , ) ( , ) ( , ) ( (1 1) , ) ( , ) ( 1) ( 1) [ ( , ) ( 1) k k k k k k k k k k k k j X t h t A X t h t A X t t A X t h t A X t h t A A A A A X t h t A A                                         1 (by 2.4).A 1 ( 1) 1 1 1 0 0 ( 1) 0 ( 1) ( 1) 1 ( 1) 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 ( 1) 1 1 1 1 1 0 0 1 0 Rhs (( ( ( )) ), ) (( ), ) ( , ) ( , ) ( , ) (( ), ) ( 1) ( 1) j k r i r i k k k k k k k k k X t j r i h t A A X t h t A A X t t A X t t A A X t h t A A X t h t A A A A                                                       1 1 0 1 ( 1) 1 1 0 1 1 1 0 0 1 0 ( 1) (( ), ) ( 1)k k k k k A A A A X t h t A A A                   So, lhs = rhs. Therefore the lemma is valid for j = 1. Assume the validity of the lemma for 2 j m  for some integer m . 1 ( ) ( 1) 1 1 1 1 1 0 0 Then (( ), ) (( ( ( )) ), ) m k k r i r i X t mh t X t m r i h t A A                  ( ) 1 1 ( 1) ( 1) 1 1 0 1 1 1 ( ) 1 1 1 1 1 ( 1) ( 1) 1 1 1 1 1 1 0 0 0 Now (( ( 1) ), ) (( ( 1) ), ) ( , ) ( , ) (( ( 1 ) ), ) (( ( ( )) , ) k k k k m k k r i i i r i X t m h t X t m h t A X t mh t A X t mh t A X t m i h t A X t m r i h t A A                                            1 1 1 ( 1) ( 1) 1 1 1 1 1 1 1 0 1 0 (( ( 1 ) ), ) (( ( ( 1 )) , ) m k k r i i i r i X t m i h t A X t m r i h t A A                             1 1 1 ( 1) ( 1) 1 1 1 1 1 0 0 0 1 1 1 ( 1) ( 1) 1 1 1 1 1 0 0 0 (( ( 1 ) ), ) (( ( 1 ( )) , ) (( ( 1 ) ), ) (( ( 1 ( )) , ) m k k r i i i r i m k k r i i i r i X t m i h t A X t m r i h t A A X t m i h t A X t m r i h t A A                                                    
  • 11. The structure of determining matrices for single-delay… www.ijmsi.org 41 | P a g e (We used the change of variables 1r r  in the r  summand, 1r r  in the limits).r  So the lemma is valid for 1j m  . This completes the desired proof. The following major theorem gives explicit computable expressions for ( ),k Q jh based on painstakingly and rigorously observed ( )k Q jh patterns for various ,j k contingencies. III. THEOREM ON EXPLICIT COMPUTABLE EXPRESSION FOR DETERMINING MATRICES OF (1) Let andj k be nonnegative integers. If 1, thenj k  1 1 1 1 1 1 11( ),0( ) 1( ),1( ) 1 1( ),0( ),1( ) ( , , ) ( , , ) ( , , ) Q ( ) j r k k v r j jj k j k j k k j r r j k r k r v v j kv v v v P v v P v v P v jh A A A A A A                             1 1 1 11( ),0( ) 0( ),1( ) 1 1 1( ),0( ),1( ) ( , , ) ( , , ) 1 1 ( , , ) If 1, then Q ( )k j k k j k j k k k j j k r k r r r k j j r v v v v v v P v v P j v v r v v P k j jh A A A A A A                               Proof Case j k . 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 ( 1) If 0, then ( ) (0) , by ( 4); 0 ( ) ( ) (by (ii) of lemma 2.4). 1, 1 ( ) ( ) ( ) ,(by (iv) of lemma 2.4) k n k j j r k r j j r r j r j r j r j k Q jh Q I k Q jh Q jh A j k Q jh Q jh A A A A A A A A A A A A A                                     1 1 1 0 1 1 1 1 1( 1),1(1)1 1 1( ),0(1) ( 1) ( , , )( , , ) j r jj j jj j j r v v v v v v Pv v P A A A A A A                  1 3 1 2 1 2 11 3 2 1 2 0 1 1 1 1 1 0 0 1 1 3 1 21(1),0(2) 0(1),1(1) 1 3 1 2 1 21(2),0(1) 1(1),1(1) 1(1),0( ( , , ) ( , ) ( , , ) ( , ) ( , ) If 2, then ( ) (2 ) ( ) (2 ) ( )k v v v v v v vv v v v P v v P v v P v v P v v P j k Q jh Q h A Q h A Q h A Q h A A A A A A A A A A A A A A                                2 11 11) 1(1) v v v P A A A    1 4 1 3 1 4 1 2 1 2 2 1 2 1 1 1 4 1 31(2),0(2) 1(1),0(1),1(1) 1 4 1 2 1 21(2),0(2) 1(2 2),1(2) 1( ),0( ),1(2 ) ( , , ) ( , , ) ( , , ) ( , ) ( , , ) r v v v v v v r r s r r r v v v v v v P v v P v v P v v P v v P A A A A A A A A A A A                                   Therefore the theorem is valid for , {0, 1, 2}.j k  In particular it is valid for 0 2.k j   1 The cases : ( ) and ( ) have been established already. We need only prove the remaining cases.k Q jh Q h
  • 12. The structure of determining matrices for single-delay… www.ijmsi.org 42 | P a g e Case :j k Assume that the theorem is valid for all pairs of triples , , ( ); , , ( ) for which ,for some 3, and 2.k k j k Q jh j k Q jh j k j k j k         Then apply the induction principle to the right-hand side of the determining equation: 0 1 1 1 1 ([ 1] ) ([ 1] ) ( ) ( ),noting that 1 , 1 1, 1. k k k k Q j h A Q j h A Q jh A Q jh j k j k j k j k                  , Therefore: 1 1 1 1 1 1 1 1 11( 1),0( 1) 1( 1 ( 1)),1( 1) 1 1 1 1( 1 ( 1),0( ),1( 1 ) 1 1 1( 0 0 1 1 0 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) Q ([ 1] ) j jj k jj k j k j k k j r j r r j k r k r j k j k v k v r v v v v v v v v P v v P v v v P v v v P j h A A A A A A A A A A A A A A A                                                  1 1 1 1 1( ),0( 1) ( 1)),1( 1) 1 1 11( ),0( ) 1( ),1( ) 1 1 1 1 1 1 1 1 1( ( 1),0( ),1( 1 ) 1 ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) j r j k j k j k k jj k jj k j k j k k k r v v s v j r r j k r k r j r j r v v P v v v v v P v v P v v v P v v v A A A A A A A A A A A A                                                   1 1 1( ),0( ),1( ) k r r j k r k rP                           1 1 11 1 1 1 11( 1),0( ) 1( 1 ),1( ) 1 1 1 1 1( 2 ),0( ),1( 1 ) 0 1 { 1,1} 0 01 1 1 1 1( 2 ),1( 1) ( , , ) ( , , ) ( , , )( , , ) (9) (10) jj k iL iL j jj k j k k j r r j k r k r i i r j j r j j k k v v v v v v P v v P v v v v P v v v v P A A A A A A A A A A                                                1 2 1 2 1 1 1 1 1 1 1 1 1 11 1( ),0( 1) 1( 1 ),0( ),1( 1 ) 1 1 1( ),0( ),1( ) ( , , ) ( , , ) ( , , ) (11) (12) k k r k r j rj k j rj k j k r j k r k r j r j r r j k r k r vv v v v v P v v P v v v v P A A A A A A A A A                                             1 1 11 1 1 1 11( 1),0( ) 1( 1 ),1( )( , , ) ( , , ) The expression 9 yields: (13)jj k j jj k j k k v v v v v v P v v P A A A A               1 1 1 1 1( 1 ),0( ),1( ) 1 1 ( , , ) The expression: is immediate from (12) (14)j r L j r r j k r k r k r v v v v P A A                
  • 13. The structure of determining matrices for single-delay… www.ijmsi.org 43 | P a g e   1 1 1 1 1 1 1 11( 2 ),1( 1) 1( 2 ),0( ),1( 1 ) 1 1 1 1 2 0 0 1 0 ( , , ) ( , , ) ( , , ) We use the change of variables technique in the expression 10 to get: (15)j j r j j rj k k r j k r k r j j k r v v v v v v P v v P v v v v A A A A A A A A A                                1 1 1 1 1 11( 2 ),1( 1) 1( 1 2 ),0( 1),1( 1 ( 1)) 1 1 1 1 1 1 1 1 1 11( 2 ),1( 1) 1( 1 ),0( 1),1( ) 1 0 2 1 0 0 2 ( , , ) ( , , ) ( , , ) j r j rj k k r j k r k r j j r j j rj k k r j k r k r k r k r v v P v v P v v v v v v P v v P A A A A A A A A A                                                          1 1 1 1 1 1 1 1 1 11( 2 ),1( 1) 1( 1 ),0( 1),1( ) 1 1 1 1 1 1 1 1 1 1 1 1 1 11(1 1 ),0(1 1),1( 1) 1 0 0 1 0 0 ( , , ) ( , , ) ( , , ) ( , , ) j j r j j rj k k r j k r k r j j r j j rj k k k v r v v v v v P v v P v v v v v v P v v P A A A A A A A A A A A A                                                        1( 1 ),0( 1),1( ) 1 1 0 1 1 1( 1 ),0( ),1( ) 1 1 1 1 ( , , ) (16) r j k r k r j r L j r r j k r k r k r k r v v v v P A A                              11 1 1 11 1( ),0( 1) 1( 1 ),0( ),1( 1 ) 1 1 1 1 1( ),0( 1) 2 1 1 1 1 1 1 ( , , ) ( , , ) ( , , ) We are left with expression 11 , which yields: (17)j rj k j rj k j k r j k r k r jj k j k j k k v v r v v v v P v v P v v v v v P v A A A A A A A A A A A A                                     1 1( 1 ),0( ),1( 1 ) 1 1 1 11( 1 1 ),0( 1),1( 1 ( 1)) 1( 1 ),0( ),1( 1 ) 1 1 1 1 1( 1 1 1 1 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) r j r r j k r k r j r j r j r j rk j k k k k r j k r k r j r j r r j k r k r v v P v v v v v v P v v P v v v v P A A A A A A A A                                                         1 ),0( ),1( ) 1 1 (18) L k r k r k r       The resulting expressions (13), (14), (16) and (18) add up to yield: 11 1 1 1 1 11 1( 1),0( ) 1( 1 ),1( ) 1 1 1 1( 1 ),0( ),1( ) ( , , ) ( , , ) ( , , ) Q ([ 1] ) (19) j k j k v v k r jj k j k j k k j r j r r j k r k r v v v v v P v v P v v v P j h A A A A A A                                     This concludes the inductive proof for the case .j k We proceed to furnish the inductive proof for the case .k j Theorem 3 is already proved for , {1,2,3,4.}, .j k k j  Therefore the theorem is valid for , {0, 1, 2, 3,4}.j k  Assume that the theorem is valid for all pairs of triples , , ( ); , , ( ) for which ,for some 3, and 4.k k j k Q jh j k Q jh j k j k j k         Then apply the induction principle to the right-hand side of the determining equation:
  • 14. The structure of determining matrices for single-delay… www.ijmsi.org 44 | P a g e 1 0 1 1 1 ( ) ( ) ([ 1] ) ([ 1] ),noting that k 1 , 1 1, 1. Therefore: k k k k Q jh A Q jh A Q j h A Q j h j k j k j k j                  1 1 1 11( ),0( ) 0( )),1( ) 1 1 1( ),0( ),1( ) 1 11 1 1 11 0( ( 1)),1( 1) 1 0 0 1 0 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) Q ( ) kj k j k j k k k j j k r j r r r k j j r j k k jj k k j j k v v v j r v v v P v v P v v v v P v v v v v v v v P jh A A A A A A A A A A A A A A A                                             1( 1),0( ) 1 1 1( ),0( ( 1)),1( 1 ) 1 1 1 1 11( 1),0( 1) 0( 1 ( 1)),1( 1) 1 1 1 1 1( ),0( 1 1 1 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) j k k r k r r r k j j r j k k jj k j k k j j k r k r r r j r r P v v v v P v v v v v v P v v P v v v v P A A A A A A A A A A A A                                                     1 ( 1)),1( 1 ) 2 1 k j j r j r                            1 11 1 1 1 11 1( ),0( 1) 0( 1 ),1( ) 1 1 1( ),0( ),1( ) 1 1 1 1 1( 1),0( ) 0 1 1 0 1 0 1 1 1 ( , , ) ( , , ) ( , , ) ( , , ) (20) (21) j k k iL iL jj k j k k j j k r k r r r k j j r j k j k j k i i j r v v v v v v P v v P v v v v P v v v v P A A A A A A A A A A A A                                                 1 1 1( ),0( 1 ),1( 1 ) 1 12 1 1 11 0( 2 ),0( 1) 1 1( ),0( 2 ),1( 1 ) 2 1 2 1 1 1 ( , , ) ( , , ) ( , , ) (22) (23) k r k r r r k j j r k j k r k k j j k r r r k j j r j r j r v v v v P v v v v v v P v v P A A A A A A A                                                 1 1 11 1 1 1 11( ),0( 1) 0( 1 ),1( )( , , ) ( , , ) The expression 20 yields: (24)jj k j jj k k j j v v v v v v P v v P A A A A              1 1 1 1 0 1 1 1( ),0( 1 ),1( )( , , ) The expression: is immediate from (21) (25) j r k r L k r r r k j j r v v v v P A A               
  • 15. The structure of determining matrices for single-delay… www.ijmsi.org 45 | P a g e 2 1 1 1 1 1 11 1 11 1( 1),0( ) 1( ),0( 1 ),1( 1 ) 1 1 1 1 1( 1),0( ( , , ) ( , , ) ( , , ) We use the addition and subtraction technique in (22) to get: = j r j k k r j k j k k r r r k j j r j k j k j v v v v v v P v v P v v v v P A A A A A A A A A                                    1 1 1 1 1 1 1 1 1) 1( ),0( 1 ),1( 1 ) 1 1 1 1( 1),0( 1 1 ),1( 1 ( 1)) 1 1 1 1 1( ),0( 1 ),1( ) ( , , ) ( , , ) ( , , ) (26) j r j r k r k k r r r k j j r k j k j j j k j j j k r L k r r r k j j r v v v v v P v v v P v v v v P A A A A A A A A                                                   We are left with expression (23), which, using the change of variables technique yields: 1 1 1 1 1 1( 1),0( 1 2 1 1 1 1 1 1 12 1 1 11 0( 2 ),0( 1) 1 1( ),0( 2 ),1( 1 ) 2 1 1 1 1 0( 2 ),0( 1) ( , , ) ( , , ) ( , , ) ( , , ) = k r r r k j r k j k r k k j j k r r r k j j r k j k r k k j j v v v v P v v v v v v P v v P v v v v P A A A A A A A A A A A A                                                          2 ),1( 1 ( 1)) 1 12 1 1 1 1( 1),0( 1 2 ),1( 1 ( 1)) 1 1 2 1 1 1 1 1 1 1 1 1 0( 2 ),0( 1) 1 1 1 1 1 1 1 1(1 1),0(1 1 2 ),1 ( , , )( , , ) ( , , ) j j r k j k r r r k j j r j r j r k r k k j j k k k j v v v v v P v v v v P v v v P A A A A A A A A A                                                           1 1 ( 1 (1 1)) 1 1 1 1 1 1( ),0( 1 ),1( )( , , ) (27) j r j k r L k r r r k j j r v v v v P A A                      The resulting expressions (24), (25), (26) and (27) add up to yield: 1 1 1 1 1 11 1( ),0( 1) 1 0( 1 ),1( ) 1 1 1 1 1( ),0( 1 ),1( ) 1 1 ( , , ) ( , , ) ( , , ) Q ( ) (28) k j k k j k j k k k j j k r j r r r k j j r j r v v v v v v P v v P v v v v P jh A A A A A A                                      This concludes the inductive proof for the case , completing the proof of the theorem.k j The cases andj k k j  , in the preceding theorem can be unified by using a composition of the max and the signum functions as follows: IV. INDUCTION PITFALLS IN THE DERIVATION OF THE DETERMINING MATRICES In the development of ( )kQ jh for the single – delay neutral system (1) we had proposed, based on the observed pattern for ( )k Q jh for 0 min{ , } 2,j k  that for 1,j k 
  • 16. The structure of determining matrices for single-delay… www.ijmsi.org 46 | P a g e 1 1 1 1 1 1 11( ),0( ) 1( ),1( ) 1 1 2 1( ),0( ),1( ) ( , , ) ( , , ) ( , , ) Q ( ) ; 1 ; 2 jk k k r r s j k jj k j k j k k j r r j k s r j k r s v vv v v v P v v P v v v v P jh k A A k A A A A                                  and for 1,k j  1 1 1 1 1 1 0( ),1( ) 2 1 1 1( ),0( ) 1 2 1( ),0( ),1( ) ( , , )( , , ) ( , , ) ; 1 ; 2 Q ( ) j j r v r s k k j j r k j s vk j k k j k j k r k j s r r k j s v v P v v v v v v P v v P j A A j jh A A A A                                This formula is valid for all , :1 min{ , } 2.j k j k  However it turns out to be false for all , :min{ , } 3.j k j k  This revelelation came to the fore following the discovery of some fallacy in the proof of the expressions for ( ),kQ jh which could never be overcome; it became imperative to examine 3 (3 )Q h from the determining equations for ( ).kQ jh The formula was found to be inconsistent with the true result from the determining equations. Therefore the formula had to be abandoned after so much effort. Further long and sustained research effort led to the conjecture 1 1 1 1 1( ),1( ) 1 1 2 1( ),0( ),1( ) 1 1 2 1( ),0( ),1( ) 1 1 1 1( ),0( ) ( , , ) ( , , ) ( , , ) ( , , ) Q ( ) ; 1 ; 2, , ; 2 k k k r r s j j j k k j r r j k s r j k r s j r r j k s r j k r s j k j k j k v v P v v v v P v v v v P v v v v v v P jh k A A k j k A A j k A A A A                                                1 1 max{1, 1 2 } k k r r s k r                as well as the analogous expression for ( )k Q jh for 1.k j  The formula was found to be valid for , :1 min{ , } 2,j k j k  as in the aborted formula. Furthermore 3 (3 )Q h obtained from the postulated formula agreed with the corresponding result (sum of 63 permutation products) obtained directly from the determining equations. Unfortunately, the proof for arbitrary j and k could not push through; there was no way to apply induction on the lower limit for s, not to talk of dealing with the piece–wise nature of the third component summations. Above pitfalls provided object lessons that integer–based mathematical claims should never be accepted without error-free proofs by mathematical induction. There is no other way to ascertain that a pattern will persist –no matter the number of terms for which it has remained valid. V. CONCLUSION The results in this article bear eloquent testimony to the fact that we have comprehensively extended the previous single-delay result by Ukwu (1992) together with appropriate embellishments through the unfolding of intricate inter–play multiple summations and permutation objects in the course of deriving the expressions for the determining matrices. By using the change of variables technique, deft application of mathematical induction principles and careful avoidance of some induction pitfalls, we were able to obtain the structure of the determining matrices for the single–delay neutral control model, without which the computational investigation of Euclidean controllability would be impossible.
  • 17. The structure of determining matrices for single-delay… www.ijmsi.org 47 | P a g e REFERENCES [1] Gabasov, R. and Kirillova, F. The qualitative theory of optimal processes ( Marcel Dekker Inc., New York, 1976). [2] Ukwu, C. Euclidean controllability and cores of euclidean targets for differential difference systems Master of Science Thesis in Applied Math. with O.R. (Unpublished), North Carolina State University, Raleigh, N. C. U.S.A., 1992. [3] Ukwu, C. An exposition on Cores and Controllability of differential difference systems, ABACUS, Vol. 24, No. 2, 1996, pp. 276- 285. [4] Ukwu, C. On determining matrices, controllability and cores of targets of certain classes of autonomous functional differential systems with software development and implementation. Doctor of Philosophy Thesis, UNIJOS, 2013a (In progress). [5] Bellman, R. and Cooke, K. Differential-difference equations. Acad. Press, New York, (1963). [6] Dauer, J. P. and Gahl, R. D. Controllability of nonlinear delay systems. J.O.T.A. Vol. 21, No. 1, January (1977). [7] G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous controls. J. Differential equations, ,Vol. 51, No. 2, 1984,Pp. 151-181. [8] Banks, H. T. and Jacobs, M. An attainable sets approach to optimal control of functional differential equations with function space terminal conditions. Journal of differential equations, 13, 1973, 121- 149. [9] Banks, H. T. and Kent G. A. Control of functional differential equations of retarded and neutral type to targets in function space, SIAM J. Control, Vol. 10, November 4, 1972. [10] Hale, J. K. Theory of functional differential equations. Applied Mathematical Science, Vol. 3, 1977, Springer-Verlag, New York.