SlideShare une entreprise Scribd logo
1  sur  47
I Made Gatot Karohika ST. MT.
Mechanical Engineering
Udayana university
3 - 2
Introduction
• Treatment of a body as a single particle is not always possible. In
general, the size of the body and the specific points of application of the
forces must be considered.
• Most bodies in elementary mechanics are assumed to be rigid, i.e., the
actual deformations are small and do not affect the conditions of
equilibrium or motion of the body.
• Current chapter describes the effect of forces exerted on a rigid body and
how to replace a given system of forces with a simpler equivalent system.
• moment of a force about a point
• moment of a force about an axis
• moment due to a couple
• Any system of forces acting on a rigid body can be replaced by an
equivalent system consisting of one force acting at a given point and one
couple.
3 - 3
External and Internal Forces
• Forces acting on rigid bodies are
divided into two groups:
- External forces
- Internal forces
• External forces are shown in a
free-body diagram.
• If unopposed, each external force
can impart a motion of
translation or rotation, or both.
3 - 4
Principle of Transmissibility: Equivalent Forces
• Principle of Transmissibility -
Conditions of equilibrium or motion are
not affected by transmitting a force
along its line of action.
NOTE: F and F’ are equivalent forces.
• Moving the point of application of
the force F to the rear bumper
does not affect the motion or the
other forces acting on the truck.
• Principle of transmissibility may
not always apply in determining
internal forces and deformations.
3 - 5
Vector Product of Two Vectors
• Concept of the moment of a force about a point is
more easily understood through applications of
the vector product or cross product.
• Vector product of two vectors P and Q is defined
as the vector V which satisfies the following
conditions:
1. Line of action of V is perpendicular to plane
containing P and Q.
2. Magnitude of V is
3. Direction of V is obtained from the right-hand
rule.
sinQPV 
• Vector products:
- are not commutative,
- are distributive,
- are not associative,
 QPPQ 
  2121 QPQPQQP 
   SQPSQP 
3 - 6
Vector Products: Rectangular Components
• Vector products of Cartesian unit vectors,
0
0
0



kkikjjki
ijkjjkji
jikkijii



• Vector products in terms of rectangular
coordinates
   kQjQiQkPjPiPV zyxzyx


   
 kQPQP
jQPQPiQPQP
xyyx
zxxzyzzy




zyx
zyx
QQQ
PPP
kji


+
3 - 7
Moment of a Force About a Point
• A force vector is defined by its magnitude and
direction. Its effect on the rigid body also depends
on it point of application.
• The moment of F about O is defined as
FrMO 
• The moment vector MO is perpendicular to the
plane containing O and the force F.
• Any force F’ that has the same magnitude and
direction as F, is equivalent if it also has the same line
of action and therefore, produces the same moment.
• Magnitude of MO measures the tendency of the force
to cause rotation of the body about an axis along MO.
The sense of the moment may be determined by the
right-hand rule.
FdrFMO  sin
3 - 8
Moment of a Force About a Point
• Two-dimensional structures have length and breadth but
negligible depth and are subjected to forces contained in
the plane of the structure.
• The plane of the structure contains the point O and the
force F. MO, the moment of the force about O is
perpendicular to the plane.
• If the force tends to rotate the structure
counterclockwise, the sense of the moment vector is out
of the plane of the structure and the magnitude of the
moment is positive.
• If the force tends to rotate the structure clockwise, the
sense of the moment vector is into the plane of the
structure and the magnitude of the moment is negative.
3 - 9
Varignon’s Theorem
• The moment about a give point O of the
resultant of several concurrent forces is equal
to the sum of the moments of the various
moments about the same point O.
• Varigon’s Theorem makes it possible to
replace the direct determination of the
moment of a force F by the moments of two
or more component forces of F.
  



 2121 FrFrFFr
3 - 10
Rectangular Components of the Moment of a Force
     kyFxFjxFzFizFyF
FFF
zyx
kji
kMjMiMM
xyzxyz
zyx
zyxO






The moment of F about O,
kFjFiFF
kzjyixrFrM
zyx
O



 ,
3 - 11
Rectangular Components of the Moment of a Force
The moment of F about B,
FrM BAB

 /
     
kFjFiFF
kzzjyyixx
rrr
zyx
BABABA
BABA





/
     
zyx
BABABAB
FFF
zzyyxx
kji
M 


3 - 12
Rectangular Components of the Moment of a Force
For two-dimensional structures,
 
zy
ZO
zyO
yFxF
MM
kyFxFM




    
    zBAyBA
ZO
zBAyBAO
FyyFxx
MM
kFyyFxxM




3 - 13
Sample Problem 3.1
A 100-lb vertical force is applied to the end of a
lever which is attached to a shaft at O.
Determine:
a) moment about O,
b) horizontal force at A which creates the same
moment,
c) smallest force at A which produces the same
moment,
d) location for a 240-lb vertical force to produce
the same moment,
e) whether any of the forces from b, c, and d is
equivalent to the original force.
3 - 14
Sample Problem 3.1
a) Moment about O is equal to the product of the
force and the perpendicular distance between the
line of action of the force and O. Since the force
tends to rotate the lever clockwise, the moment
vector is into the plane of the paper.
 
  in.12lb100
in.1260cosin.24



O
O
M
d
FdM
inlb1200 OM
3 - 15
Sample Problem 3.1
c) Horizontal force at A that produces the same
moment,
 
 
in.8.20
in.lb1200
in.8.20in.lb1200
in.8.2060sinin.24





F
F
FdM
d
O
lb7.57F
3 - 16
Sample Problem 3.1
c) The smallest force A to produce the same moment
occurs when the perpendicular distance is a
maximum or when F is perpendicular to OA.
 
in.42
in.lb1200
in.42in.lb1200




F
F
FdMO
lb50F
3 - 17
Sample Problem 3.1
d) To determine the point of application of a 240 lb
force to produce the same moment,
 
in.5cos60
in.5
lb402
in.lb1200
lb240in.lb1200






OB
d
d
FdMO
in.10OB
3 - 18
Sample Problem 3.1
e) Although each of the forces in parts b), c), and d)
produces the same moment as the 100 lb force, none
are of the same magnitude and sense, or on the same
line of action. None of the forces is equivalent to the
100 lb force.
3 - 19
Sample Problem 3.4
The rectangular plate is supported by
the brackets at A and B and by a wire
CD. Knowing that the tension in the
wire is 200 N, determine the moment
about A of the force exerted by the
wire at C.
SOLUTION:
The moment MA of the force F exerted
by the wire is obtained by evaluating
the vector product,
FrM ACA


3 - 20
Sample Problem 3.4
SOLUTION:
12896120
08.003.0


kji
M A


     kjiM A

mN8.82mN8.82mN68.7 
   jirrr ACAC

m08.0m3.0 
FrM ACA


 
       
     kji
kji
r
r
FF
DC
DC




N128N69N120
m5.0
m32.0m0.24m3.0
N200
N200



 
3 - 21
Scalar Product of Two Vectors
• The scalar product or dot product between
two vectors P and Q is defined as
 resultscalarcosPQQP 

• Scalar products:
- are commutative,
- are distributive,
- are not associative,
PQQP


  2121 QPQPQQP


  undefined SQP

• Scalar products with Cartesian unit components,
000111  ikkjjikkjjii

   kQjQiQkPjPiPQP zyxzyx


2222
PPPPPP
QPQPQPQP
zyx
zzyyxx




3 - 22
Scalar Product of Two Vectors: Applications
• Angle between two vectors:
PQ
QPQPQP
QPQPQPPQQP
zzyyxx
zzyyxx





cos
cos

• Projection of a vector on a given axis:
OL
OL
PP
Q
QP
PQQP
OLPPP







cos
cos
alongofprojectioncos


zzyyxx
OL
PPP
PP


coscoscos 


• For an axis defined by a unit vector:
3 - 23
Mixed Triple Product of Three Vectors
• Mixed triple product of three vectors,
  resultscalar QPS

• The six mixed triple products formed from S, P, and
Q have equal magnitudes but not the same sign,
     
     SPQQSPPQS
PSQSQPQPS




     
 
zyx
zyx
zyx
xyyxz
zxxzyyzzyx
QQQ
PPP
SSS
QPQPS
QPQPSQPQPSQPS




• Evaluating the mixed triple product,
3 - 24
Moment of a Force About a Given Axis
• Moment MO of a force F applied at the point A
about a point O,
FrMO


• Scalar moment MOL about an axis OL is the
projection of the moment vector MO onto the
axis,
 FrMM OOL

 
• Moments of F about the coordinate axes,
xyz
zxy
yzx
yFxFM
xFzFM
zFyFM



3 - 25
Moment of a Force About a Given Axis
• Moment of a force about an arbitrary axis,
 
BABA
BA
BBL
rrr
Fr
MM








• The result is independent of the point B
along the given axis.
3 - 26
Sample Problem 3.5
a) about A
b) about the edge AB and
c) about the diagonal AG of the cube.
d) Determine the perpendicular distance
between AG and FC.
A cube is acted on by a force P as
shown. Determine the moment of P
3 - 27
Sample Problem 3.5
• Moment of P about A,
 
   
   jiPjiaM
jiPjiPP
jiajaiar
PrM
A
AF
AFA








2
222
  kjiaPM A

 2
• Moment of P about AB,
  kjiaPi
MiM AAB




2
2aPM AB 
3 - 28
Sample Problem 3.5
• Moment of P about the diagonal AG,
 
 
   
 111
6
23
1
2
3
1
3







aP
kji
aP
kjiM
kji
aP
M
kji
a
kajaia
r
r
MM
AG
A
GA
GA
AAG








6
aP
M AG 
3 - 29
Sample Problem 3.5
• Perpendicular distance between AG and FC,
     
0
110
63
1
2


P
kjikj
P
P


Therefore, P is perpendicular to AG.
Pd
aP
M AG 
6
6
a
d 
3 - 30
Moment of a Couple
• Two forces F and -F having the same magnitude,
parallel lines of action, and opposite sense are said
to form a couple.
• Moment of the couple,
 
 
FdrFM
Fr
Frr
FrFrM
BA
BA




sin



• The moment vector of the couple is
independent of the choice of the origin of the
coordinate axes, i.e., it is a free vector that can
be applied at any point with the same effect.
3 - 31
Moment of a Couple
Two couples will have equal moments if
• 2211 dFdF 
• the two couples lie in parallel planes, and
• the two couples have the same sense or
the tendency to cause rotation in the same
direction.
3 - 32
Addition of Couples
• Consider two intersecting planes P1 and
P2 with each containing a couple
222
111
planein
planein
PFrM
PFrM




• Resultants of the vectors also form a
couple
 21 FFrRrM


• By Varigon’s theorem
21
21
MM
FrFrM




• Sum of two couples is also a couple that is equal
to the vector sum of the two couples
3 - 33
Couples Can Be Represented by Vectors
• A couple can be represented by a vector with magnitude
and direction equal to the moment of the couple.
• Couple vectors obey the law of addition of vectors.
• Couple vectors are free vectors, i.e., the point of application
is not significant.
• Couple vectors may be resolved into component vectors.
3 - 34
Resolution of a Force Into a Force at O and a Couple
• Force vector F can not be simply moved to O without modifying its
action on the body.
• Attaching equal and opposite force vectors at O produces no net
effect on the body.
• The three forces may be replaced by an equivalent force vector and
couple vector, i.e, a force-couple system.
3 - 35
Resolution of a Force Into a Force at O and a Couple
• Moving F from A to a different point O’ requires the
addition of a different couple vector MO’
FrMO

'
• The moments of F about O and O’ are related,
 
FsM
FsFrFsrFrM
O
O



 ''
• Moving the force-couple system from O to O’ requires the
addition of the moment of the force at O about O’.
3 - 36
Sample Problem 3.6
Determine the components of the
single couple equivalent to the
couples shown.
SOLUTION:
• Attach equal and opposite 20 lb forces in
the +x direction at A, thereby producing 3
couples for which the moment components
are easily computed.
• Alternatively, compute the sum of the
moments of the four forces about an
arbitrary single point. The point D is a
good choice as only two of the forces will
produce non-zero moment contributions..
3 - 37
Sample Problem 3.6
• Attach equal and opposite 20 lb forces
in the +x direction at A
• The three couples may be represented by
three couple vectors,
  
  
   in.lb180in.9lb20
in.lb240in.12lb20
in.lb540in.18lb30



z
y
x
M
M
M
   
 k
jiM


in.lb180
in.lb240in.lb540


3 - 38
Sample Problem 3.6
• Alternatively, compute the sum of the
moments of the four forces about D.
• Only the forces at C and E contribute to
the moment about D.
   
      ikj
kjMM D


lb20in.12in.9
lb30in.18


   
 k
jiM


in.lb180
in.lb240in.lb540


3 - 39
System of Forces: Reduction to a Force and Couple
• A system of forces may be replaced by a collection of
force-couple systems acting a given point O
• The force and couple vectors may be combined into a
resultant force vector and a resultant couple vector,
   FrMFR R
O

• The force-couple system at O may be moved to O’
with the addition of the moment of R about O’ ,
RsMM R
O
R
O

'
• Two systems of forces are equivalent if they can be
reduced to the same force-couple system.
3 - 40
Further Reduction of a System of Forces
• If the resultant force and couple at O are mutually
perpendicular, they can be replaced by a single force acting
along a new line of action.
• The resultant force-couple system for a system of forces
will be mutually perpendicular if:
1) the forces are concurrent,
2) the forces are coplanar, or
3) the forces are parallel.
3 - 41
Further Reduction of a System of Forces
• System of coplanar forces is reduced to a
force-couple system that is
mutually perpendicular.
R
OMR

and
• System can be reduced to a single force
by moving the line of action of until
its moment about O becomes R
OM
R

• In terms of rectangular coordinates,
R
Oxy MyRxR 
3 - 42
Sample Problem 3.8
For the beam, reduce the system of
forces shown to (a) an equivalent
force-couple system at A, (b) an
equivalent force couple system at B,
and (c) a single force or resultant.
Note: Since the support reactions are
not included, the given system will
not maintain the beam in equilibrium.
SOLUTION:
a) Compute the resultant force for the
forces shown and the resultant
couple for the moments of the
forces about A.
b) Find an equivalent force-couple
system at B based on the force-
couple system at A.
c) Determine the point of application
for the resultant force such that its
moment about A is equal to the
resultant couple at A.
3 - 43
Sample Problem 3.8
SOLUTION:
a) Compute the resultant force and the
resultant couple at A.
       jjjj
FR


N250N100N600N150 
 
 jR

N600
 
       
   ji
jiji
FrM R
A



2508.4
1008.26006.1


 
 kM R
A

mN1880 
3 - 44
Sample Problem 3.8
b) Find an equivalent force-couple system at B
based on the force-couple system at A.
The force is unchanged by the movement of the
force-couple system from A to B.
 jR

N600
The couple at B is equal to the moment about B
of the force-couple system found at A.
     
   kk
jik
RrMM AB
R
A
R
B



mN2880mN1880
N600m8.4mN1880



 kM R
B

mN1000 
3 - 45
Sample Problem 3.10
Three cables are attached to the
bracket as shown. Replace the
forces with an equivalent force-
couple system at A.
SOLUTION:
• Determine the relative position vectors
for the points of application of the
cable forces with respect to A.
• Resolve the forces into rectangular
components.
• Compute the equivalent force,
 FR

• Compute the equivalent couple,
   FrM R
A

3 - 46
Sample Problem 3.10
SOLUTION:
• Determine the relative position
vectors with respect to A.
 
 
 m100.0100.0
m050.0075.0
m050.0075.0
jir
kir
kir
AD
AC
AB






• Resolve the forces into rectangular
components.
 
 N200600300
289.0857.0429.0
175
5015075
N700
kjiF
kji
kji
r
r
F
B
BE
BE
B












  
 N1039600
30cos60cosN1200
ji
jiFD




  
 N707707
45cos45cosN1000
ji
jiFC




3 - 47
Sample Problem 3.10
• Compute the equivalent force,
 
 
 k
j
i
FR




707200
1039600
600707300



 
 N5074391607 kjiR


• Compute the equivalent couple,
 
k
kji
Fr
j
kji
Fr
ki
kji
Fr
FrM
DAD
cAC
BAB
R
A










9.163
01039600
0100.0100.0
68.17
7070707
050.00075.0
4530
200600300
050.00075.0







 
kjiM R
A

9.11868.1730 

Contenu connexe

Tendances

Siklus daya gas
Siklus daya gasSiklus daya gas
Siklus daya gas
Rock Sandy
 
Desai Sistem Kendali dengan root locus
Desai Sistem Kendali dengan root locusDesai Sistem Kendali dengan root locus
Desai Sistem Kendali dengan root locus
Rumah Belajar
 
Laporan Resmi Percobaan Tetes Minyak Milikan
Laporan Resmi Percobaan Tetes Minyak MilikanLaporan Resmi Percobaan Tetes Minyak Milikan
Laporan Resmi Percobaan Tetes Minyak Milikan
Latifatul Hidayah
 
Laporan praktikum fisika dasar kalorimeter joule ani
Laporan praktikum fisika dasar kalorimeter joule aniLaporan praktikum fisika dasar kalorimeter joule ani
Laporan praktikum fisika dasar kalorimeter joule ani
Nurul Hanifah
 
Alat ukur dan_teknik_pengukuran_jilid_2_film_by_tio
Alat ukur dan_teknik_pengukuran_jilid_2_film_by_tioAlat ukur dan_teknik_pengukuran_jilid_2_film_by_tio
Alat ukur dan_teknik_pengukuran_jilid_2_film_by_tio
Raimondus Tabulagatta
 

Tendances (20)

Proses difusi zat padat
Proses difusi zat padatProses difusi zat padat
Proses difusi zat padat
 
gerak dua dan tiga dimensi
gerak dua dan tiga dimensigerak dua dan tiga dimensi
gerak dua dan tiga dimensi
 
Fisika 12 1c
Fisika 12 1cFisika 12 1c
Fisika 12 1c
 
pengukuran tekanan mekanika fluida
pengukuran tekanan mekanika fluidapengukuran tekanan mekanika fluida
pengukuran tekanan mekanika fluida
 
Kumpulan Materi Termodinamika
Kumpulan Materi TermodinamikaKumpulan Materi Termodinamika
Kumpulan Materi Termodinamika
 
Siklus daya gas
Siklus daya gasSiklus daya gas
Siklus daya gas
 
Desai Sistem Kendali dengan root locus
Desai Sistem Kendali dengan root locusDesai Sistem Kendali dengan root locus
Desai Sistem Kendali dengan root locus
 
Laporan Resmi Percobaan Tetes Minyak Milikan
Laporan Resmi Percobaan Tetes Minyak MilikanLaporan Resmi Percobaan Tetes Minyak Milikan
Laporan Resmi Percobaan Tetes Minyak Milikan
 
Contoh soal getaran bebas tanpa redaman
Contoh soal getaran bebas tanpa redamanContoh soal getaran bebas tanpa redaman
Contoh soal getaran bebas tanpa redaman
 
PPT GLB
PPT GLBPPT GLB
PPT GLB
 
Bab 3-struktur-kristal
Bab 3-struktur-kristalBab 3-struktur-kristal
Bab 3-struktur-kristal
 
Hidrodinamika
HidrodinamikaHidrodinamika
Hidrodinamika
 
Modul Elemen Mesin 4
Modul Elemen Mesin 4Modul Elemen Mesin 4
Modul Elemen Mesin 4
 
Laporan praktikum fisika dasar kalorimeter joule ani
Laporan praktikum fisika dasar kalorimeter joule aniLaporan praktikum fisika dasar kalorimeter joule ani
Laporan praktikum fisika dasar kalorimeter joule ani
 
Teori gempa : Analisis resiko Gempa
Teori gempa : Analisis resiko GempaTeori gempa : Analisis resiko Gempa
Teori gempa : Analisis resiko Gempa
 
Fisika inti kelompok 8
Fisika inti kelompok 8Fisika inti kelompok 8
Fisika inti kelompok 8
 
mekanika teknik dinamika jilid 2
mekanika teknik dinamika jilid 2mekanika teknik dinamika jilid 2
mekanika teknik dinamika jilid 2
 
4. difraksi kisi
4. difraksi kisi4. difraksi kisi
4. difraksi kisi
 
Dasar teori
Dasar teoriDasar teori
Dasar teori
 
Alat ukur dan_teknik_pengukuran_jilid_2_film_by_tio
Alat ukur dan_teknik_pengukuran_jilid_2_film_by_tioAlat ukur dan_teknik_pengukuran_jilid_2_film_by_tio
Alat ukur dan_teknik_pengukuran_jilid_2_film_by_tio
 

En vedette

statika struktur diktat
statika struktur diktatstatika struktur diktat
statika struktur diktat
Wayan Yase
 
statika struktur"partikel" teknik mesin
statika struktur"partikel" teknik mesinstatika struktur"partikel" teknik mesin
statika struktur"partikel" teknik mesin
Rudi Wicaksana
 
6161103 4.9 further reduction of a force and couple system
6161103 4.9 further reduction of a force and couple system6161103 4.9 further reduction of a force and couple system
6161103 4.9 further reduction of a force and couple system
etcenterrbru
 
03 rigid-body-27-maret-2014
03 rigid-body-27-maret-201403 rigid-body-27-maret-2014
03 rigid-body-27-maret-2014
Rudi Wicaksana
 
Rigid Body Dynamic
Rigid Body DynamicRigid Body Dynamic
Rigid Body Dynamic
Nabeh Wildan
 
Coordinate system transformation
Coordinate system transformationCoordinate system transformation
Coordinate system transformation
Tarun Gehlot
 
Physics 504 Chapter 9 Uniform Rectilinear Motion
Physics 504 Chapter 9 Uniform Rectilinear MotionPhysics 504 Chapter 9 Uniform Rectilinear Motion
Physics 504 Chapter 9 Uniform Rectilinear Motion
Neil MacIntosh
 
Pengertian dan jenis matriks
Pengertian dan jenis matriksPengertian dan jenis matriks
Pengertian dan jenis matriks
SMKN 9 Bandung
 

En vedette (20)

statika struktur diktat
statika struktur diktatstatika struktur diktat
statika struktur diktat
 
statika struktur"partikel" teknik mesin
statika struktur"partikel" teknik mesinstatika struktur"partikel" teknik mesin
statika struktur"partikel" teknik mesin
 
591 1 statika_struktur (1)
591 1 statika_struktur (1)591 1 statika_struktur (1)
591 1 statika_struktur (1)
 
Statika struktur introduction
Statika struktur introductionStatika struktur introduction
Statika struktur introduction
 
6161103 4.9 further reduction of a force and couple system
6161103 4.9 further reduction of a force and couple system6161103 4.9 further reduction of a force and couple system
6161103 4.9 further reduction of a force and couple system
 
03 rigid-body-27-maret-2014
03 rigid-body-27-maret-201403 rigid-body-27-maret-2014
03 rigid-body-27-maret-2014
 
1D graphs, kinematics, and calculus
1D graphs, kinematics, and calculus1D graphs, kinematics, and calculus
1D graphs, kinematics, and calculus
 
Ravi jet engine u11 me380
Ravi jet engine u11 me380Ravi jet engine u11 me380
Ravi jet engine u11 me380
 
Rigid body
Rigid bodyRigid body
Rigid body
 
1 rectilinear
1 rectilinear1 rectilinear
1 rectilinear
 
Makalah statika
Makalah statikaMakalah statika
Makalah statika
 
Rigid Body Dynamic
Rigid Body DynamicRigid Body Dynamic
Rigid Body Dynamic
 
Coordinate system transformation
Coordinate system transformationCoordinate system transformation
Coordinate system transformation
 
Physics 504 Chapter 9 Uniform Rectilinear Motion
Physics 504 Chapter 9 Uniform Rectilinear MotionPhysics 504 Chapter 9 Uniform Rectilinear Motion
Physics 504 Chapter 9 Uniform Rectilinear Motion
 
Materi 7. kesetimbangan benda tegar statika
Materi 7. kesetimbangan benda tegar statikaMateri 7. kesetimbangan benda tegar statika
Materi 7. kesetimbangan benda tegar statika
 
ElasticSearch at berlinbuzzwords 2010
ElasticSearch at berlinbuzzwords 2010ElasticSearch at berlinbuzzwords 2010
ElasticSearch at berlinbuzzwords 2010
 
Modul 1- mekanika teknik, statika dan mekanika dasar
Modul 1-  mekanika teknik, statika dan mekanika dasarModul 1-  mekanika teknik, statika dan mekanika dasar
Modul 1- mekanika teknik, statika dan mekanika dasar
 
equilibrium-of-rigid-body
equilibrium-of-rigid-bodyequilibrium-of-rigid-body
equilibrium-of-rigid-body
 
Pengertian dan jenis matriks
Pengertian dan jenis matriksPengertian dan jenis matriks
Pengertian dan jenis matriks
 
7 rectilinear motion
7 rectilinear  motion7 rectilinear  motion
7 rectilinear motion
 

Similaire à statika struktur "rigid-body"

Statics of Particles.pdf
Statics of Particles.pdfStatics of Particles.pdf
Statics of Particles.pdf
anbh30
 
16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik
Dedy Wonkso
 
Shear Force And Bending Moment In Beams
Shear Force And Bending Moment In BeamsShear Force And Bending Moment In Beams
Shear Force And Bending Moment In Beams
Amr Hamed
 
Shear Force And Bending Moment In Beams22
Shear Force And Bending Moment In Beams22Shear Force And Bending Moment In Beams22
Shear Force And Bending Moment In Beams22
Amr Hamed
 

Similaire à statika struktur "rigid-body" (20)

Statics of Particles.pdf
Statics of Particles.pdfStatics of Particles.pdf
Statics of Particles.pdf
 
Ch-02 Statics of Particles.ppt
Ch-02 Statics of Particles.pptCh-02 Statics of Particles.ppt
Ch-02 Statics of Particles.ppt
 
force-vectors-1.ppt
force-vectors-1.pptforce-vectors-1.ppt
force-vectors-1.ppt
 
Lecture Statics Moments of Forces
Lecture Statics Moments of ForcesLecture Statics Moments of Forces
Lecture Statics Moments of Forces
 
chapt3.pptx
chapt3.pptxchapt3.pptx
chapt3.pptx
 
chap2_force_systems - Copy.ppt
chap2_force_systems - Copy.pptchap2_force_systems - Copy.ppt
chap2_force_systems - Copy.ppt
 
Structural Analysis- Beam.pdf
Structural Analysis- Beam.pdfStructural Analysis- Beam.pdf
Structural Analysis- Beam.pdf
 
Ch03
Ch03Ch03
Ch03
 
Influence lines (structural analysis theories)
Influence lines (structural analysis theories)Influence lines (structural analysis theories)
Influence lines (structural analysis theories)
 
Gr
GrGr
Gr
 
Principle of Virtual Work in structural analysis
Principle of Virtual Work in structural analysisPrinciple of Virtual Work in structural analysis
Principle of Virtual Work in structural analysis
 
16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik
 
Ch 3_rajib1.pptx
Ch 3_rajib1.pptxCh 3_rajib1.pptx
Ch 3_rajib1.pptx
 
Engineering mechanics gd
Engineering mechanics gdEngineering mechanics gd
Engineering mechanics gd
 
Statics
Statics   Statics
Statics
 
Shear Force And Bending Moment In Beams
Shear Force And Bending Moment In BeamsShear Force And Bending Moment In Beams
Shear Force And Bending Moment In Beams
 
Shear Force And Bending Moment In Beams22
Shear Force And Bending Moment In Beams22Shear Force And Bending Moment In Beams22
Shear Force And Bending Moment In Beams22
 
01_Introducción vigas.pptx
01_Introducción vigas.pptx01_Introducción vigas.pptx
01_Introducción vigas.pptx
 
2 d equilibrium-split
2 d equilibrium-split2 d equilibrium-split
2 d equilibrium-split
 
COPLANNER & NON-CONCURRENT FORCES
COPLANNER & NON-CONCURRENT FORCESCOPLANNER & NON-CONCURRENT FORCES
COPLANNER & NON-CONCURRENT FORCES
 

Plus de Rudi Wicaksana (18)

Teori peluang pertemuan 3
Teori peluang pertemuan 3Teori peluang pertemuan 3
Teori peluang pertemuan 3
 
Himpunan (pertemuan 2)
Himpunan (pertemuan 2)Himpunan (pertemuan 2)
Himpunan (pertemuan 2)
 
Pertemuan 1
Pertemuan 1Pertemuan 1
Pertemuan 1
 
analisa struktur indo
analisa struktur indoanalisa struktur indo
analisa struktur indo
 
Prog komp - turbo pascal
Prog komp - turbo pascalProg komp - turbo pascal
Prog komp - turbo pascal
 
Prog komp - history&algorithm
Prog komp - history&algorithmProg komp - history&algorithm
Prog komp - history&algorithm
 
pancasila sebagai sistem filsafat
pancasila sebagai sistem filsafat pancasila sebagai sistem filsafat
pancasila sebagai sistem filsafat
 
pancasila konteks sejarah indonesia
pancasila konteks sejarah  indonesiapancasila konteks sejarah  indonesia
pancasila konteks sejarah indonesia
 
pengantar pendidikan pancasila
pengantar pendidikan pancasilapengantar pendidikan pancasila
pengantar pendidikan pancasila
 
rumus kimia dan tatanama
rumus kimia dan tatanamarumus kimia dan tatanama
rumus kimia dan tatanama
 
ikatan kimia
ikatan kimiaikatan kimia
ikatan kimia
 
atom kimia universitas
atom kimia universitasatom kimia universitas
atom kimia universitas
 
kimia dasar universitas
kimia dasar universitaskimia dasar universitas
kimia dasar universitas
 
Proyeksi
ProyeksiProyeksi
Proyeksi
 
Ortogonal
OrtogonalOrtogonal
Ortogonal
 
04 turunan
04 turunan04 turunan
04 turunan
 
03 limit dan kekontinuan
03 limit dan kekontinuan03 limit dan kekontinuan
03 limit dan kekontinuan
 
Fisika i dwi budiana
Fisika i dwi budianaFisika i dwi budiana
Fisika i dwi budiana
 

Dernier

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Dernier (20)

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 

statika struktur "rigid-body"

  • 1. I Made Gatot Karohika ST. MT. Mechanical Engineering Udayana university
  • 2. 3 - 2 Introduction • Treatment of a body as a single particle is not always possible. In general, the size of the body and the specific points of application of the forces must be considered. • Most bodies in elementary mechanics are assumed to be rigid, i.e., the actual deformations are small and do not affect the conditions of equilibrium or motion of the body. • Current chapter describes the effect of forces exerted on a rigid body and how to replace a given system of forces with a simpler equivalent system. • moment of a force about a point • moment of a force about an axis • moment due to a couple • Any system of forces acting on a rigid body can be replaced by an equivalent system consisting of one force acting at a given point and one couple.
  • 3. 3 - 3 External and Internal Forces • Forces acting on rigid bodies are divided into two groups: - External forces - Internal forces • External forces are shown in a free-body diagram. • If unopposed, each external force can impart a motion of translation or rotation, or both.
  • 4. 3 - 4 Principle of Transmissibility: Equivalent Forces • Principle of Transmissibility - Conditions of equilibrium or motion are not affected by transmitting a force along its line of action. NOTE: F and F’ are equivalent forces. • Moving the point of application of the force F to the rear bumper does not affect the motion or the other forces acting on the truck. • Principle of transmissibility may not always apply in determining internal forces and deformations.
  • 5. 3 - 5 Vector Product of Two Vectors • Concept of the moment of a force about a point is more easily understood through applications of the vector product or cross product. • Vector product of two vectors P and Q is defined as the vector V which satisfies the following conditions: 1. Line of action of V is perpendicular to plane containing P and Q. 2. Magnitude of V is 3. Direction of V is obtained from the right-hand rule. sinQPV  • Vector products: - are not commutative, - are distributive, - are not associative,  QPPQ    2121 QPQPQQP     SQPSQP 
  • 6. 3 - 6 Vector Products: Rectangular Components • Vector products of Cartesian unit vectors, 0 0 0    kkikjjki ijkjjkji jikkijii    • Vector products in terms of rectangular coordinates    kQjQiQkPjPiPV zyxzyx        kQPQP jQPQPiQPQP xyyx zxxzyzzy     zyx zyx QQQ PPP kji   +
  • 7. 3 - 7 Moment of a Force About a Point • A force vector is defined by its magnitude and direction. Its effect on the rigid body also depends on it point of application. • The moment of F about O is defined as FrMO  • The moment vector MO is perpendicular to the plane containing O and the force F. • Any force F’ that has the same magnitude and direction as F, is equivalent if it also has the same line of action and therefore, produces the same moment. • Magnitude of MO measures the tendency of the force to cause rotation of the body about an axis along MO. The sense of the moment may be determined by the right-hand rule. FdrFMO  sin
  • 8. 3 - 8 Moment of a Force About a Point • Two-dimensional structures have length and breadth but negligible depth and are subjected to forces contained in the plane of the structure. • The plane of the structure contains the point O and the force F. MO, the moment of the force about O is perpendicular to the plane. • If the force tends to rotate the structure counterclockwise, the sense of the moment vector is out of the plane of the structure and the magnitude of the moment is positive. • If the force tends to rotate the structure clockwise, the sense of the moment vector is into the plane of the structure and the magnitude of the moment is negative.
  • 9. 3 - 9 Varignon’s Theorem • The moment about a give point O of the resultant of several concurrent forces is equal to the sum of the moments of the various moments about the same point O. • Varigon’s Theorem makes it possible to replace the direct determination of the moment of a force F by the moments of two or more component forces of F.        2121 FrFrFFr
  • 10. 3 - 10 Rectangular Components of the Moment of a Force      kyFxFjxFzFizFyF FFF zyx kji kMjMiMM xyzxyz zyx zyxO       The moment of F about O, kFjFiFF kzjyixrFrM zyx O     ,
  • 11. 3 - 11 Rectangular Components of the Moment of a Force The moment of F about B, FrM BAB   /       kFjFiFF kzzjyyixx rrr zyx BABABA BABA      /       zyx BABABAB FFF zzyyxx kji M   
  • 12. 3 - 12 Rectangular Components of the Moment of a Force For two-dimensional structures,   zy ZO zyO yFxF MM kyFxFM              zBAyBA ZO zBAyBAO FyyFxx MM kFyyFxxM    
  • 13. 3 - 13 Sample Problem 3.1 A 100-lb vertical force is applied to the end of a lever which is attached to a shaft at O. Determine: a) moment about O, b) horizontal force at A which creates the same moment, c) smallest force at A which produces the same moment, d) location for a 240-lb vertical force to produce the same moment, e) whether any of the forces from b, c, and d is equivalent to the original force.
  • 14. 3 - 14 Sample Problem 3.1 a) Moment about O is equal to the product of the force and the perpendicular distance between the line of action of the force and O. Since the force tends to rotate the lever clockwise, the moment vector is into the plane of the paper.     in.12lb100 in.1260cosin.24    O O M d FdM inlb1200 OM
  • 15. 3 - 15 Sample Problem 3.1 c) Horizontal force at A that produces the same moment,     in.8.20 in.lb1200 in.8.20in.lb1200 in.8.2060sinin.24      F F FdM d O lb7.57F
  • 16. 3 - 16 Sample Problem 3.1 c) The smallest force A to produce the same moment occurs when the perpendicular distance is a maximum or when F is perpendicular to OA.   in.42 in.lb1200 in.42in.lb1200     F F FdMO lb50F
  • 17. 3 - 17 Sample Problem 3.1 d) To determine the point of application of a 240 lb force to produce the same moment,   in.5cos60 in.5 lb402 in.lb1200 lb240in.lb1200       OB d d FdMO in.10OB
  • 18. 3 - 18 Sample Problem 3.1 e) Although each of the forces in parts b), c), and d) produces the same moment as the 100 lb force, none are of the same magnitude and sense, or on the same line of action. None of the forces is equivalent to the 100 lb force.
  • 19. 3 - 19 Sample Problem 3.4 The rectangular plate is supported by the brackets at A and B and by a wire CD. Knowing that the tension in the wire is 200 N, determine the moment about A of the force exerted by the wire at C. SOLUTION: The moment MA of the force F exerted by the wire is obtained by evaluating the vector product, FrM ACA  
  • 20. 3 - 20 Sample Problem 3.4 SOLUTION: 12896120 08.003.0   kji M A        kjiM A  mN8.82mN8.82mN68.7     jirrr ACAC  m08.0m3.0  FrM ACA                  kji kji r r FF DC DC     N128N69N120 m5.0 m32.0m0.24m3.0 N200 N200     
  • 21. 3 - 21 Scalar Product of Two Vectors • The scalar product or dot product between two vectors P and Q is defined as  resultscalarcosPQQP   • Scalar products: - are commutative, - are distributive, - are not associative, PQQP     2121 QPQPQQP     undefined SQP  • Scalar products with Cartesian unit components, 000111  ikkjjikkjjii     kQjQiQkPjPiPQP zyxzyx   2222 PPPPPP QPQPQPQP zyx zzyyxx    
  • 22. 3 - 22 Scalar Product of Two Vectors: Applications • Angle between two vectors: PQ QPQPQP QPQPQPPQQP zzyyxx zzyyxx      cos cos  • Projection of a vector on a given axis: OL OL PP Q QP PQQP OLPPP        cos cos alongofprojectioncos   zzyyxx OL PPP PP   coscoscos    • For an axis defined by a unit vector:
  • 23. 3 - 23 Mixed Triple Product of Three Vectors • Mixed triple product of three vectors,   resultscalar QPS  • The six mixed triple products formed from S, P, and Q have equal magnitudes but not the same sign,            SPQQSPPQS PSQSQPQPS             zyx zyx zyx xyyxz zxxzyyzzyx QQQ PPP SSS QPQPS QPQPSQPQPSQPS     • Evaluating the mixed triple product,
  • 24. 3 - 24 Moment of a Force About a Given Axis • Moment MO of a force F applied at the point A about a point O, FrMO   • Scalar moment MOL about an axis OL is the projection of the moment vector MO onto the axis,  FrMM OOL    • Moments of F about the coordinate axes, xyz zxy yzx yFxFM xFzFM zFyFM   
  • 25. 3 - 25 Moment of a Force About a Given Axis • Moment of a force about an arbitrary axis,   BABA BA BBL rrr Fr MM         • The result is independent of the point B along the given axis.
  • 26. 3 - 26 Sample Problem 3.5 a) about A b) about the edge AB and c) about the diagonal AG of the cube. d) Determine the perpendicular distance between AG and FC. A cube is acted on by a force P as shown. Determine the moment of P
  • 27. 3 - 27 Sample Problem 3.5 • Moment of P about A,          jiPjiaM jiPjiPP jiajaiar PrM A AF AFA         2 222   kjiaPM A   2 • Moment of P about AB,   kjiaPi MiM AAB     2 2aPM AB 
  • 28. 3 - 28 Sample Problem 3.5 • Moment of P about the diagonal AG,          111 6 23 1 2 3 1 3        aP kji aP kjiM kji aP M kji a kajaia r r MM AG A GA GA AAG         6 aP M AG 
  • 29. 3 - 29 Sample Problem 3.5 • Perpendicular distance between AG and FC,       0 110 63 1 2   P kjikj P P   Therefore, P is perpendicular to AG. Pd aP M AG  6 6 a d 
  • 30. 3 - 30 Moment of a Couple • Two forces F and -F having the same magnitude, parallel lines of action, and opposite sense are said to form a couple. • Moment of the couple,     FdrFM Fr Frr FrFrM BA BA     sin    • The moment vector of the couple is independent of the choice of the origin of the coordinate axes, i.e., it is a free vector that can be applied at any point with the same effect.
  • 31. 3 - 31 Moment of a Couple Two couples will have equal moments if • 2211 dFdF  • the two couples lie in parallel planes, and • the two couples have the same sense or the tendency to cause rotation in the same direction.
  • 32. 3 - 32 Addition of Couples • Consider two intersecting planes P1 and P2 with each containing a couple 222 111 planein planein PFrM PFrM     • Resultants of the vectors also form a couple  21 FFrRrM   • By Varigon’s theorem 21 21 MM FrFrM     • Sum of two couples is also a couple that is equal to the vector sum of the two couples
  • 33. 3 - 33 Couples Can Be Represented by Vectors • A couple can be represented by a vector with magnitude and direction equal to the moment of the couple. • Couple vectors obey the law of addition of vectors. • Couple vectors are free vectors, i.e., the point of application is not significant. • Couple vectors may be resolved into component vectors.
  • 34. 3 - 34 Resolution of a Force Into a Force at O and a Couple • Force vector F can not be simply moved to O without modifying its action on the body. • Attaching equal and opposite force vectors at O produces no net effect on the body. • The three forces may be replaced by an equivalent force vector and couple vector, i.e, a force-couple system.
  • 35. 3 - 35 Resolution of a Force Into a Force at O and a Couple • Moving F from A to a different point O’ requires the addition of a different couple vector MO’ FrMO  ' • The moments of F about O and O’ are related,   FsM FsFrFsrFrM O O     '' • Moving the force-couple system from O to O’ requires the addition of the moment of the force at O about O’.
  • 36. 3 - 36 Sample Problem 3.6 Determine the components of the single couple equivalent to the couples shown. SOLUTION: • Attach equal and opposite 20 lb forces in the +x direction at A, thereby producing 3 couples for which the moment components are easily computed. • Alternatively, compute the sum of the moments of the four forces about an arbitrary single point. The point D is a good choice as only two of the forces will produce non-zero moment contributions..
  • 37. 3 - 37 Sample Problem 3.6 • Attach equal and opposite 20 lb forces in the +x direction at A • The three couples may be represented by three couple vectors,          in.lb180in.9lb20 in.lb240in.12lb20 in.lb540in.18lb30    z y x M M M      k jiM   in.lb180 in.lb240in.lb540  
  • 38. 3 - 38 Sample Problem 3.6 • Alternatively, compute the sum of the moments of the four forces about D. • Only the forces at C and E contribute to the moment about D.           ikj kjMM D   lb20in.12in.9 lb30in.18        k jiM   in.lb180 in.lb240in.lb540  
  • 39. 3 - 39 System of Forces: Reduction to a Force and Couple • A system of forces may be replaced by a collection of force-couple systems acting a given point O • The force and couple vectors may be combined into a resultant force vector and a resultant couple vector,    FrMFR R O  • The force-couple system at O may be moved to O’ with the addition of the moment of R about O’ , RsMM R O R O  ' • Two systems of forces are equivalent if they can be reduced to the same force-couple system.
  • 40. 3 - 40 Further Reduction of a System of Forces • If the resultant force and couple at O are mutually perpendicular, they can be replaced by a single force acting along a new line of action. • The resultant force-couple system for a system of forces will be mutually perpendicular if: 1) the forces are concurrent, 2) the forces are coplanar, or 3) the forces are parallel.
  • 41. 3 - 41 Further Reduction of a System of Forces • System of coplanar forces is reduced to a force-couple system that is mutually perpendicular. R OMR  and • System can be reduced to a single force by moving the line of action of until its moment about O becomes R OM R  • In terms of rectangular coordinates, R Oxy MyRxR 
  • 42. 3 - 42 Sample Problem 3.8 For the beam, reduce the system of forces shown to (a) an equivalent force-couple system at A, (b) an equivalent force couple system at B, and (c) a single force or resultant. Note: Since the support reactions are not included, the given system will not maintain the beam in equilibrium. SOLUTION: a) Compute the resultant force for the forces shown and the resultant couple for the moments of the forces about A. b) Find an equivalent force-couple system at B based on the force- couple system at A. c) Determine the point of application for the resultant force such that its moment about A is equal to the resultant couple at A.
  • 43. 3 - 43 Sample Problem 3.8 SOLUTION: a) Compute the resultant force and the resultant couple at A.        jjjj FR   N250N100N600N150     jR  N600              ji jiji FrM R A    2508.4 1008.26006.1      kM R A  mN1880 
  • 44. 3 - 44 Sample Problem 3.8 b) Find an equivalent force-couple system at B based on the force-couple system at A. The force is unchanged by the movement of the force-couple system from A to B.  jR  N600 The couple at B is equal to the moment about B of the force-couple system found at A.          kk jik RrMM AB R A R B    mN2880mN1880 N600m8.4mN1880     kM R B  mN1000 
  • 45. 3 - 45 Sample Problem 3.10 Three cables are attached to the bracket as shown. Replace the forces with an equivalent force- couple system at A. SOLUTION: • Determine the relative position vectors for the points of application of the cable forces with respect to A. • Resolve the forces into rectangular components. • Compute the equivalent force,  FR  • Compute the equivalent couple,    FrM R A 
  • 46. 3 - 46 Sample Problem 3.10 SOLUTION: • Determine the relative position vectors with respect to A.      m100.0100.0 m050.0075.0 m050.0075.0 jir kir kir AD AC AB       • Resolve the forces into rectangular components.    N200600300 289.0857.0429.0 175 5015075 N700 kjiF kji kji r r F B BE BE B                 N1039600 30cos60cosN1200 ji jiFD         N707707 45cos45cosN1000 ji jiFC    
  • 47. 3 - 47 Sample Problem 3.10 • Compute the equivalent force,      k j i FR     707200 1039600 600707300       N5074391607 kjiR   • Compute the equivalent couple,   k kji Fr j kji Fr ki kji Fr FrM DAD cAC BAB R A           9.163 01039600 0100.0100.0 68.17 7070707 050.00075.0 4530 200600300 050.00075.0          kjiM R A  9.11868.1730 