SlideShare une entreprise Scribd logo
1  sur  41
Télécharger pour lire hors ligne
Section 3.5
  Inverse Trigonometric
        Functions
                     V63.0121, Calculus I


                     March 11–12, 2009


Announcements
   Get half of your unearned ALEKS points back by March 22
                                            .   .   .   .    .   .
What functions are invertible?



   In order for f−1 to be a function, there must be only one a in D
   corresponding to each b in E.
       Such a function is called one-to-one
       The graph of such a function passes the horizontal line test:
       any horizontal line intersects the graph in exactly one point if at
       all.
       If f is continuous, then f−1 is continuous.




                                                     .   .   .   .    .      .
Outline



   Inverse Trigonometric Functions



   Derivatives of Inverse Trigonometric Functions
      Arcsine
      Arccosine
      Arctangent
      Arcsecant




                                                .   .   .   .   .   .
arcsin

   Arcsin is the inverse of the sine function after restriction to
   [−π/2, π/2].

                                      y
                                      .



                              .       .       .                                 x
                                                                                .
                                                                         s
                                                                         . in
                              π               π
                            −               −
                            .               .
                               2               2




                                                    .    .    .      .    .         .
arcsin

   Arcsin is the inverse of the sine function after restriction to
   [−π/2, π/2].

                                      y
                                      .



                              .       .       .                                 x
                                                                                .
                                                                         s
                                                                         . in
                              π               π
                            −               −
                            .               .
                               2               2




                                                    .    .    .      .    .         .
arcsin

   Arcsin is the inverse of the sine function after restriction to
   [−π/2, π/2].

                                      y
                                      .
                                                   . =x
                                                   y


                              .       .       .                                 x
                                                                                .
                                                                         s
                                                                         . in
                              π               π
                            −               −
                            .               .
                               2               2




                                                    .     .   .      .    .         .
arcsin

   Arcsin is the inverse of the sine function after restriction to
   [−π/2, π/2].

                                      y
                                      .
                                            a
                                            . rcsin

                              .       .       .                                 x
                                                                                .
                                                                         s
                                                                         . in
                              π               π
                            −               −
                            .               .
                               2               2



         The domain of arcsin is [−1, 1]
                               [ π π]
         The range of arcsin is − ,
                                  22

                                                      .   .   .      .    .         .
arccos

   Arccos is the inverse of the cosine function after restriction to [0, π]



                                     y
                                     .


                                                                          c
                                                                          . os
                                       .                  .                      x
                                                                                 .
                                                        π
                                                        .
                                     0
                                     .




                                                    .         .   .   .    .         .
arccos

   Arccos is the inverse of the cosine function after restriction to [0, π]



                                     y
                                     .


                                                                          c
                                                                          . os
                                       .                  .                      x
                                                                                 .
                                                        π
                                                        .
                                     0
                                     .




                                                    .         .   .   .    .         .
arccos

   Arccos is the inverse of the cosine function after restriction to [0, π]



                                     y
                                     .
                                                 . =x
                                                 y

                                                                          c
                                                                          . os
                                       .                  .                      x
                                                                                 .
                                                        π
                                                        .
                                     0
                                     .




                                                    .         .   .   .    .         .
arccos

   Arccos is the inverse of the cosine function after restriction to [0, π]

                                  a
                                  . rccos
                                      y
                                      .


                                                                          c
                                                                          . os
                                           .              .                      x
                                                                                 .
                                                        π
                                                        .
                                         0
                                         .




         The domain of arccos is [−1, 1]
         The range of arccos is [0, π]

                                                    .         .   .   .    .         .
arctan
   Arctan is the inverse of the tangent function after restriction to
   [−π/2, π/2].
                                     y
                                     .




                                      .                                      x
                                                                             .
                              π             π
             3π                                             3π
                            −
           −                .               .
           .                                                .
                              2              2
              2                                               2




                                                                  t
                                                                  . an


                                                   .    .    .       .   .       .
arctan
   Arctan is the inverse of the tangent function after restriction to
   [−π/2, π/2].
                                     y
                                     .




                                      .                                      x
                                                                             .
                              π             π
             3π                                             3π
                            −
           −                .               .
           .                                                .
                              2              2
              2                                               2




                                                                  t
                                                                  . an


                                                   .    .    .       .   .       .
arctan
   Arctan is the inverse of the tangent function after restriction to
                                                           . =x
                                                           y
   [−π/2, π/2].
                                     y
                                     .




                                      .                                      x
                                                                             .
                              π             π
             3π                                             3π
                            −
           −                .               .
           .                                                .
                              2              2
              2                                               2




                                                                  t
                                                                  . an


                                                   .    .    .       .   .       .
arctan
   Arctan is the inverse of the tangent function after restriction to
   [−π/2, π/2].
                                     y
                                     .

                                   π
                                   .                                        a
                                                                            . rctan
                                    2

                                         .                                  x
                                                                            .

                                     π
                                 −
                                 .
                                     2

         The domain of arctan is (−∞, ∞)
                               ( π π)
         The range of arctan is − ,
                                   22
                         π                  π
          lim arctan x = , lim arctan x = −
                         2 x→−∞             2
         x→∞

                                                   .    .    .    .     .       .
Outline



   Inverse Trigonometric Functions



   Derivatives of Inverse Trigonometric Functions
      Arcsine
      Arccosine
      Arctangent
      Arcsecant




                                                .   .   .   .   .   .
Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open
interval containing b = f(a), and

                                                 1
                          (f−1 )′ (b) =   ′ −1
                                          f (f       (b))




                                                            .   .   .   .   .   .
Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open
interval containing b = f(a), and

                                                   1
                            (f−1 )′ (b) =   ′ −1
                                            f (f       (b))


“Proof”.
If y = f−1 (x), then
                                   f(y) = x,
So by implicit differentiation

                        dy        dy    1         1
               f′ (y)      = 1 =⇒    =′     = ′ −1
                        dx        dx  f (y)   f (f (x))



                                                              .   .   .   .   .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                      dy        dy    1           1
                         = 1 =⇒    =       =
              cos y
                      dx        dx   cos y   cos(arcsin x)




                                                .   .   .    .   .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                       dy        dy    1           1
                          = 1 =⇒    =       =
               cos y
                       dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:




                                                     .



                                                 .       .   .   .   .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                       dy        dy    1           1
                          = 1 =⇒    =       =
               cos y
                       dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

                                                             1
                                                             .
                                                                         x
                                                                         .



                                                     .



                                                 .       .       .   .       .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                       dy        dy    1           1
                          = 1 =⇒    =       =
               cos y
                       dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

                                                               1
                                                               .
                                                                           x
                                                                           .


                                                         . = arcsin x
                                                         y
                                                     .



                                                 .         .       .   .       .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                       dy        dy    1           1
                          = 1 =⇒    =       =
               cos y
                       dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:

                                                            1
                                                            .
                                                                        x
                                                                        .


                                                      . = arcsin x
                                                      y
                                                     .√
                                                       . 1 − x2


                                                 .      .       .   .       .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                      dy        dy    1           1
                         = 1 =⇒    =       =
              cos y
                      dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:
                       √
      cos(arcsin x) = 1 − x2                               1
                                                           .
                                                                       x
                                                                       .


                                                     . = arcsin x
                                                     y
                                                    .√
                                                      . 1 − x2


                                                .      .       .   .       .   .
The derivative of arcsin

   Let y = arcsin x, so x = sin y. Then

                      dy        dy    1           1
                         = 1 =⇒    =       =
              cos y
                      dx        dx   cos y   cos(arcsin x)

  To simplify, look at a right
  triangle:
                       √
      cos(arcsin x) = 1 − x2                               1
                                                           .
                                                                       x
                                                                       .
   So
     d                  1
        arcsin(x) = √                                . = arcsin x
                                                     y
                      1 − x2                        .√
     dx
                                                      . 1 − x2


                                                .      .       .   .       .   .
Graphing arcsin and its derivative



                                          1
                                     .√
                                         1 − x2
                                      a
                                      . rcsin


                             .
                       |          |
                       .          .
                      −
                      .1         1
                                 .




                                              .   .   .   .   .   .
The derivative of arccos

   Let y = arccos x, so x = cos y. Then

                     dy        dy     1              1
           − sin y      = 1 =⇒    =         =
                                    − sin y   − sin(arccos x)
                     dx        dx




                                                .   .    .      .   .   .
The derivative of arccos

   Let y = arccos x, so x = cos y. Then

                     dy        dy     1              1
           − sin y      = 1 =⇒    =         =
                                    − sin y   − sin(arccos x)
                     dx        dx

  To simplify, look at a right
  triangle:
                       √
      sin(arccos x) = 1 − x2                                       √
                                                       1
                                                       .
                                                                   . 1 − x2
  So
    d                    1                        . = arccos x
                                                  y
       arccos(x) = − √                        .
                       1 − x2
    dx                                                x
                                                      .


                                                   .       .   .      .   .   .
Graphing arcsin and arccos



       a
       . rccos



                      a
                      . rcsin


            .
      |           |
      .           .
     −
     .1          1
                 .




                                .   .   .   .   .   .
Graphing arcsin and arccos



       a
       . rccos
                                Note
                                                       (π    )
                                                          −θ
                                           cos θ = sin
                                                        2
                      a
                      . rcsin
                                                   π
                                     =⇒ arccos x = − arcsin x
                                                   2
            .                   So it’s not a surprise that their
      |           |
      .           .
     −
     .1          1
                 .              derivatives are opposites.




                                               .    .    .    .     .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                      dy        dy     1
             sec2 y                         = cos2 (arctan x)
                         = 1 =⇒    =
                                     sec2 y
                      dx        dx




                                                 .   .    .     .   .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:




                                                      .



                                                  .       .   .   .   .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:



                                                                      x
                                                                      .



                                                      .
                                                              1
                                                              .


                                                  .       .   .   .       .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:



                                                                         x
                                                                         .


                                                          . = arctan x
                                                          y
                                                      .
                                                              1
                                                              .


                                                  .       .    .   .         .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:


                                                  √
                                                                         x
                                                                         .
                                                  . 1 + x2


                                                          . = arctan x
                                                          y
                                                      .
                                                              1
                                                              .


                                                  .       .    .   .         .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:

                           1
     cos(arctan x) = √
                                                  √
                          1 + x2
                                                                         x
                                                                         .
                                                  . 1 + x2


                                                          . = arctan x
                                                          y
                                                      .
                                                              1
                                                              .


                                                  .       .    .   .         .   .
The derivative of arctan

   Let y = arctan x, so x = tan y. Then

                       dy        dy     1
              sec2 y                         = cos2 (arctan x)
                          = 1 =⇒    =
                                      sec2 y
                       dx        dx

  To simplify, look at a right
  triangle:

                           1
     cos(arctan x) = √
                                                  √
                          1 + x2
                                                                         x
                                                                         .
                                                  . 1 + x2
   So
        d                1
                                                          . = arctan x
                                                          y
           arctan(x) =
                                                      .
                       1 + x2
        dx
                                                              1
                                                              .


                                                  .       .    .   .         .   .
Graphing arctan and its derivative



                           y
                           .

                                                     a
                                                     . rctan

                                                        1
                            .                        x
                                                     .
                                                      1 + x2




                                     .   .   .   .   .     .
Example
                    √
                        x. Find f′ (x).
Let f(x) = arctan




                                          .   .   .   .   .   .
Example
                    √
                        x. Find f′ (x).
Let f(x) = arctan

Solution

                    √              d√
           d                 1            1   1
                                            ·√
                            (√ )2
              arctan x =              x=
                                         1+x 2 x
           dx                   x dx
                         1+
                              1
                       =√        √
                         2 x + 2x x




                                          .   .   .   .   .   .
Recap


                   y′
        y
                   1
               √
    arcsin x
                 1 − x2
                    1      Remarkable that the
    arccos x − √
                  1 − x2   derivatives of these
                   1       transcendental functions
    arctan x
                1 + x2     are algebraic (or even
                    1
              −
    arccot x               rational!)
                 1 + x2
                   1
               √
    arcsec x
              x x2 − 1
                    1
    arccsc x − √
               x x2 − 1


                             .    .    .   .    .     .

Contenu connexe

Tendances

Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
Matthew Leingang
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
Leo Crisologo
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functions
Barbara Knab
 
Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functions
Alexander Nwatu
 

Tendances (20)

Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
 
Chain Rule
Chain RuleChain Rule
Chain Rule
 
Hyperbolic functions dfs
Hyperbolic functions dfsHyperbolic functions dfs
Hyperbolic functions dfs
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
 
Graph of functions
Graph of functionsGraph of functions
Graph of functions
 
Parent Functions
Parent FunctionsParent Functions
Parent Functions
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 
Intermediate Value Theorem
Intermediate Value TheoremIntermediate Value Theorem
Intermediate Value Theorem
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functions
 
Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Differentiation using First Principle - By Mohd Noor Abdul Hamid
Differentiation using First Principle  - By Mohd Noor Abdul HamidDifferentiation using First Principle  - By Mohd Noor Abdul Hamid
Differentiation using First Principle - By Mohd Noor Abdul Hamid
 
Integrals by Trigonometric Substitution
Integrals by Trigonometric SubstitutionIntegrals by Trigonometric Substitution
Integrals by Trigonometric Substitution
 
Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functions
 
Lesson 2 derivative of inverse trigonometric functions
Lesson 2 derivative of inverse trigonometric functionsLesson 2 derivative of inverse trigonometric functions
Lesson 2 derivative of inverse trigonometric functions
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation Rules
 
Continutiy of Functions.ppt
Continutiy of Functions.pptContinutiy of Functions.ppt
Continutiy of Functions.ppt
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 

En vedette

Trigonometric Functions Right Triangles
Trigonometric Functions Right TrianglesTrigonometric Functions Right Triangles
Trigonometric Functions Right Triangles
jrosebus
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)
Fadhel Hizham
 
Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]
indu thakur
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
Debra Wallace
 

En vedette (20)

Math12 lesson5
Math12 lesson5Math12 lesson5
Math12 lesson5
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
 
Trigonometry review slide show
Trigonometry review slide showTrigonometry review slide show
Trigonometry review slide show
 
Trigonometric Functions Right Triangles
Trigonometric Functions Right TrianglesTrigonometric Functions Right Triangles
Trigonometric Functions Right Triangles
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)
 
Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum Vaues
 
Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum Vaues
 
Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of Curves
 
Lesson 13: Linear Approximation
Lesson 13: Linear ApproximationLesson 13: Linear Approximation
Lesson 13: Linear Approximation
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient RulesLesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient Rules
 

Plus de Matthew Leingang

Plus de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 

Dernier

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Dernier (20)

Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 

Lesson 17: Inverse Trigonometric Functions

  • 1. Section 3.5 Inverse Trigonometric Functions V63.0121, Calculus I March 11–12, 2009 Announcements Get half of your unearned ALEKS points back by March 22 . . . . . .
  • 2. What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. . . . . . .
  • 3. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant . . . . . .
  • 4. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . s . in π π − − . . 2 2 . . . . . .
  • 5. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . s . in π π − − . . 2 2 . . . . . .
  • 6. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . =x y . . . x . s . in π π − − . . 2 2 . . . . . .
  • 7. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . a . rcsin . . . x . s . in π π − − . . 2 2 The domain of arcsin is [−1, 1] [ π π] The range of arcsin is − , 22 . . . . . .
  • 8. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . π . 0 . . . . . . .
  • 9. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . π . 0 . . . . . . .
  • 10. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . . =x y c . os . . x . π . 0 . . . . . . .
  • 11. arccos Arccos is the inverse of the cosine function after restriction to [0, π] a . rccos y . c . os . . x . π . 0 . The domain of arccos is [−1, 1] The range of arccos is [0, π] . . . . . .
  • 12. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . π π 3π 3π − − . . . . 2 2 2 2 t . an . . . . . .
  • 13. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . π π 3π 3π − − . . . . 2 2 2 2 t . an . . . . . .
  • 14. arctan Arctan is the inverse of the tangent function after restriction to . =x y [−π/2, π/2]. y . . x . π π 3π 3π − − . . . . 2 2 2 2 t . an . . . . . .
  • 15. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . π . a . rctan 2 . x . π − . 2 The domain of arctan is (−∞, ∞) ( π π) The range of arctan is − , 22 π π lim arctan x = , lim arctan x = − 2 x→−∞ 2 x→∞ . . . . . .
  • 16. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant . . . . . .
  • 17. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) . . . . . .
  • 18. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) “Proof”. If y = f−1 (x), then f(y) = x, So by implicit differentiation dy dy 1 1 f′ (y) = 1 =⇒ =′ = ′ −1 dx dx f (y) f (f (x)) . . . . . .
  • 19. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) . . . . . .
  • 20. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: . . . . . . .
  • 21. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . . . . . . .
  • 22. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . = arcsin x y . . . . . . .
  • 23. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . = arcsin x y .√ . 1 − x2 . . . . . .
  • 24. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . . = arcsin x y .√ . 1 − x2 . . . . . .
  • 25. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . So d 1 arcsin(x) = √ . = arcsin x y 1 − x2 .√ dx . 1 − x2 . . . . . .
  • 26. Graphing arcsin and its derivative 1 .√ 1 − x2 a . rcsin . | | . . − .1 1 . . . . . . .
  • 27. The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = − sin y − sin(arccos x) dx dx . . . . . .
  • 28. The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = − sin y − sin(arccos x) dx dx To simplify, look at a right triangle: √ sin(arccos x) = 1 − x2 √ 1 . . 1 − x2 So d 1 . = arccos x y arccos(x) = − √ . 1 − x2 dx x . . . . . . .
  • 29. Graphing arcsin and arccos a . rccos a . rcsin . | | . . − .1 1 . . . . . . .
  • 30. Graphing arcsin and arccos a . rccos Note (π ) −θ cos θ = sin 2 a . rcsin π =⇒ arccos x = − arcsin x 2 . So it’s not a surprise that their | | . . − .1 1 . derivatives are opposites. . . . . . .
  • 31. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx . . . . . .
  • 32. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: . . . . . . .
  • 33. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: x . . 1 . . . . . . .
  • 34. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: x . . = arctan x y . 1 . . . . . . .
  • 35. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: √ x . . 1 + x2 . = arctan x y . 1 . . . . . . .
  • 36. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: 1 cos(arctan x) = √ √ 1 + x2 x . . 1 + x2 . = arctan x y . 1 . . . . . . .
  • 37. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: 1 cos(arctan x) = √ √ 1 + x2 x . . 1 + x2 So d 1 . = arctan x y arctan(x) = . 1 + x2 dx 1 . . . . . . .
  • 38. Graphing arctan and its derivative y . a . rctan 1 . x . 1 + x2 . . . . . .
  • 39. Example √ x. Find f′ (x). Let f(x) = arctan . . . . . .
  • 40. Example √ x. Find f′ (x). Let f(x) = arctan Solution √ d√ d 1 1 1 ·√ (√ )2 arctan x = x= 1+x 2 x dx x dx 1+ 1 =√ √ 2 x + 2x x . . . . . .
  • 41. Recap y′ y 1 √ arcsin x 1 − x2 1 Remarkable that the arccos x − √ 1 − x2 derivatives of these 1 transcendental functions arctan x 1 + x2 are algebraic (or even 1 − arccot x rational!) 1 + x2 1 √ arcsec x x x2 − 1 1 arccsc x − √ x x2 − 1 . . . . . .