SlideShare une entreprise Scribd logo
1  sur  76
Télécharger pour lire hors ligne
Damping with Piezoelectric
Material
Mohammad Tawfik

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Objectives
• General Introduction to smart materials
and structures
• Recognize the nature of piezoelectric
material
• Understand the use of passive shunt
circuits
• Dynamics of structures with shunt
piezoelectric materials
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Smart Structures

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Smart Structures: What?
• Controlled change in properties
– Change in mechanical properties
– Change in geometry
• Energy Converters!
– Mechanical
Electrical (Piezoelectric)
– Heat  Mechanical (SMA)
– Mechanical  Heat (Viscoelastic)
– Etc…

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Smart Structure: Why?
•
•
•
•
•

Vibration Damping
Shape Control
Noise Reduction
Vibration/Damage Sensing
Heat Sensing

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Smart Structures: Classification

Wada, Fanson, and Crawly
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Piezoelectric Materials

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
What is Piezoelectric Material?
• Piezoelectric Material is one that
possesses the property of converting
mechanical energy into electrical energy
and vice versa.

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Piezoelectric Materials
• Mechanical Stresses  Electrical
Potential Field : Sensor (Direct Effect)
• Electric Field  Mechanical Strain :
Actuator (Converse Effect)
Clark, Sounders, Gibbs, 1998

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Conventional Setting

Conductive Pole

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Piezoelectric Sensor
• When mechanical stresses are applied on
the surface, electric charges are
generated (sensor, direct effect).
• If those charges are collected on a
conductor that is connected to a circuit,
current is generated

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Piezoelectric Actuator
• When electric potential (voltage) is applied
to the surface of the piezoelectric material,
mechanical strain is generated (actuator).
• If the piezoelectric material is bonded to a
surface of a structure, it forces the
structure to move with it.

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Other types of Piezo!

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
1-3 Piezocomposites

T 3 =c

E

33

S 3 +e 33 E 3

D 3 =e 33 S 3 + ε

Damping with Piezoelectric Materials
Mohammad Tawfik

S

33

E3

WikiCourses#
http://WikiCourses.WikiSpaces.com
Active Fiber Composites (AFC)
c

eff

11

=c

E

11

+

v p e2
31

(v

C

e

eff

31

p

ε 33+ v ε

=

p

v ε 33 +v ε
ε

Damping with Piezoelectric Materials
Mohammad Tawfik

33

=

33

)

ε 33 e 31
C

eff

S

ε 33 ε

(v

C

S

S

33

33
p

ε 33 + v ε

S

33

)

WikiCourses#
http://WikiCourses.WikiSpaces.com
Applications of Piezoelectric
Materials in Vibration Control

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Collocated Sensor/Actuator

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Self-Sensing Actuator

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Hybrid Control

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Passive Damping / Shunted
Piezoelectric Patches

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Passively Shunted Networks

Resistive

Capacitive
Damping with Piezoelectric Materials
Mohammad Tawfik

Resonant

Switched
WikiCourses#
http://WikiCourses.WikiSpaces.com
Adaptive Structures

Passive Networks
Wada, Fanson, and Crawly
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
How does it work?

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Shunted Piezoelectric Material
(Physical)

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Shunted Piezoelectric Material
(Physical)
•Mechanical energy is
converted to electrical
energy through
piezoelectric effect
•Electric charge is driven
by potential difference
through the circuit
•Energy is dissipated in
the resistance
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Shunted Piezoelectric Material
(Electric)

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Shunted Piezoelectric Material
(Energy)

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Mechanical Impedance /
Viscoelastic Analogy
Resistor Shunt
RES
Z 11 =1−

R-L Shunt

2
k 31

1+iρ3
2

δ
RSP
2
Z 11 =1−k 31 2 2
γ +δ rγ+ δ 2
r =RC ωn (dissipation tuning parameter )
s
γ= ( complex non-dimensional frequency )
ωn
ω
δ= e (resonant shunted piezoelectric frequency tuning parameter )
ωn

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Viscoelastic analogy
• The model of the shunted piezoelectric
patches, in many researches, is reduced
to an equivalent of a viscoelastic patch.
• But Piezoelectric patches are elements
that respond to the total strain rather than
the local strain!

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The Problem With Viscoelastic
Analogy!

Base structure

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Modeling of Piezoelectric
Structures

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Constitutive Relations
• The piezoelectric
effect appears in the
stress strain relations
of the piezoelectric
material in the form of
an extra electric term
• Similarly, the
mechanical effect
appears in the electric
relations
Damping with Piezoelectric Materials
Mohammad Tawfik

S=s 11 T +d 31 E
D=d 31 T 1 +¿33 E
WikiCourses#
http://WikiCourses.WikiSpaces.com
Constitutive Relations
•
•
•
•

‘S’ (capital s) is the strain
‘T’ is the stress (N/m2)
‘E’ is the electric field (Volt/m)
‘s’ (small s) is the compliance; 1/stiffness
(m2/N)
• ‘D’ is the electric displacement, charge per
unit area (Coulomb/m)
• ¿ Electric permittivity (Farade/m)
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The Electromechanical Coupling
• d31 is called the electromechanical
coupling factor (m/Volt)

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Manipulating the Equations
• The electric displacement is
the charge per unit area:
• The rate of change of the
charge is the current:
• The electric field is the
electric potential per unit
length:
Damping with Piezoelectric Materials
Mohammad Tawfik

Q
D=
A
1
I
D= ∫ Idt=
A
As

V
E=
t

WikiCourses#
http://WikiCourses.WikiSpaces.com
Using those relations:
• Using the
relations:
• Introducing the
capacitance:
• Or the electrical
admittance:
Damping with Piezoelectric Materials
Mohammad Tawfik

S =s 11 T +

d 31
t

I = Ad 31 sT 1 +

V
A ∈33 s
t

V

I = Ad 31 sT 1 +CsV
I = Ad 31 sT 1 +YV
WikiCourses#
http://WikiCourses.WikiSpaces.com
For open circuit (I=0)
• We get:
• Using that into the
strain relation:
• Using the
expression for the
electric admittance:
Damping with Piezoelectric Materials
Mohammad Tawfik

V =−

Ad 31 s

S =s 11 T −

(

S =s 11 1−

Y

T1

2
Asd 31

tY
d2
31
¿33 s 11

T1

)

T1

WikiCourses#
http://WikiCourses.WikiSpaces.com
The electromechanical coupling
factor
• Introducing the factor ‘k’:

(

2
S =s 11 1−k 31

)T 1

• ‘k’ is called the electromechanical coupling
factor (coefficient)
• ‘k’ presents the ratio between the mechanical
energy and the electrical energy stored in the
piezoelectric material.
• For the k13, the best conditions will give a value
of 0.4
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Different Conditions
• With open circuit conditions, the stiffness
of the piezoelectric material appears to be
higher (less compliance)

(

2
S =s 11 1−k 31

) T 1 == s

D

T1

• While for short circuit conditions, the
stiffness appears to be lower (more
compliance) S =s T =s E T
11

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Different Conditions
• Similar results could be obtained for the
electric properties; electric properties are
affected by the mechanical boundary
conditions.

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Damping of Structural Vibration
with Piezoelectric Materials and
Passive Electrical Networks
N. W. HAGOOD AND A. VON
FLOTOW
Journal of Sound and Vibration (1991)
146(2), 243-268
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The Constitutive Relations for
Piezoelectric Materials
• The constitutive relation is:
• Where:

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Constitutive relation (cont’d)
• The electric permiativity:
• Electromechanical
coupling:
• Mechanical
compliance:
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Electrical relation
• Into constitutive
relations:
• Where the
capacitance is:

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The Electric admittance
• Introducing the electric admittance:

• Generally; with a shunt circuit:

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The Electromechanical Model

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Remember
• The electric admittance is
the reciprocal of the electric
impedance.

1
Z = EL
Y
EL

• Also, you may have up to
three circuits:

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
From Constitutive Relations
• The voltage may be written as:
• Into the strain equation

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The Electromechanical Compliance
• The Electromechanical
Compliance
• Or
• Where
• Generally:

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The Mi matrices

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Uniaxial Loading Cases
• The compliance:
• Introducing the
electromechanical
coupling coefficient:
• The compliance
becomes:
• For open circuit
conditions
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Uniaxial Loading Cases
• For open circuit, the
compliance becomes:
• A similar expressions for
capacitance in case of
zero stress is:

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Uniaxial Loading Cases
• Introducing the
mechanical impedance:
(Which is the reciprocal
of the compliance)
• We may write the nondimensional mechanical
impedance:

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The Complex Modulus
• Now, let’s reintroduce the complex
modulus of the viscoelastic material:

• Where:

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Resistive Shunt Example

• For the case or resistive shunting, the
resistance and the capacitance are in
parallel 1
1
1
1 RCs+1
Z

EL

=

Z

D

+

Z

Damping with Piezoelectric Materials
Mohammad Tawfik

SU

=Cs+

R

=

R

WikiCourses#
http://WikiCourses.WikiSpaces.com
Resistive Shunt Example
• Recall:
• Using the previous
results:
• Simplifying:

Damping with Piezoelectric Materials
Mohammad Tawfik

ME

2
1−k ij

RES

Z jj =Z jj =

1−k 2
ij

(

RCs
1+ RCs

)

2

RES

Z jj =1−

k ij
1+( 1−k 2 ) RCs
ij

WikiCourses#
http://WikiCourses.WikiSpaces.com
Resistive Shunt Example
• Substituting s=iω and
• Introducing the non-dimensional
parameter ρ=RCω, we get:
Z RES =1−
jj

k2
ij
1+(

• Finally:

2
1−k ij

) ρi

(

RES
Z jj =

=1−

1−

2
k ij

1+(

2 2
1−k ij

)

ρ

ρ

)(

2
k ij

1+ (

Damping with Piezoelectric Materials
Mohammad Tawfik

+

2 2
1−k ij

)

2

2

2
2
k ij ( 1−k ij ) ρi
2 2
1−k ij

1+ (

1+

)

2
k ij

1+ (

ρ2

ρ

1−k 2
ij

)ρ

2

i

WikiCourses#
http://WikiCourses.WikiSpaces.com

)
Resistive Shunt Example
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.1
Damping with Piezoelectric Materials
Mohammad Tawfik

E Current
Eta Current
E von Flotto
Eta von Flotto

1

10
WikiCourses#
http://WikiCourses.WikiSpaces.com
Homework #11
1. Derive the equations for the RL shunt
circuit.
2. Plot the frequency response of
piezoelectric bar with a shunt circuit (R &
RL)

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
RL Shunt Example

• For the case or RL shunting, the resistance and
the inductance are in series and are in parallel
with the capacitance
2
1
1
1
1
LCs + RCs+1
= D + SU =Cs+
=
EL
Ls+ R
Ls+ R
Z
Z
Z
LCs 2 + RCs
Z EL =
LCs 2 + RCs+1
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
RL Shunt Example
• Recall:
• Using the previous
results:
• Simplifying:

Damping with Piezoelectric Materials
Mohammad Tawfik

2

ME

1−k ij

RSP

Z jj =Z jj =
2
1−k ij

Z RSP =
jj

(

LCs 2 + RCs
LCs 2 + RCs+1

1−k 2 ) ( LCs 2 + RCs+1 )
( ij
2

2

1+( 1−k ij ) ( LCs + RCs )
WikiCourses#
http://WikiCourses.WikiSpaces.com

)
RL Shunt Example
• Ignoring (1-k2) in the denominator:
ω2
e
Z RSP =1−k 2
jj
ij

ω2
n
2

2

2

ωe

ωe

s
s
+ 2 RC ω n
+ 2
2
ωn ω n
ωn ωn

Z RSP =1−k 2 2
jj
ij

δ
2

2

γ +δ rγ+δ

Damping with Piezoelectric Materials
Mohammad Tawfik

2

WikiCourses#
http://WikiCourses.WikiSpaces.com
RL Shunt Example
• Using the full
term:

(

( 1−k 2 )
ij
Z RSP =
jj

ω2
e

ω2
e

2

Z RSP =
jj
ωn

ω2
e

s
+ 2 RC
s+ 2
2
ωn
ωn ω n
ωn

(

2
+ ( 1−k ij )
ω2
n

(

( 1−k 2 )
ij

2
ωn
s 2 ωe
+ 2 RC
s
2
ωn
ω n ωn

)
)

Z RSP =
jj
Damping with Piezoelectric Materials
Mohammad Tawfik

ωn
s2
+ RC
s +1
2
ωn
ωe

(

1+( 1−k 2 )
ij

ωn
s2
+ RC
s
2
ωn
ωe

)
)

1−k 2 ) ( γ 2 + δ 2 rγ + δ 2 )
( ij
2

2

2

2

δ + (1−k ij ) ( γ + δ rγ )
WikiCourses#
http://WikiCourses.WikiSpaces.com
RL Shunt Example: Hagood results

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Comparing results

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Modulus of Elasticity
• Recall that:
• And:
• Where:

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Modulus of Elasticity
• Substituting:
• Getting the
stiffness:
• Simplifying:

Damping with Piezoelectric Materials
Mohammad Tawfik

SU
s jj =

SU
E jj =

SU
Z jj

Lj s

Aj

SU
E jj =

=

D
s jj

SU
Z jj

Lj s

D ME
Z jj Z jj L j s

ME

Z jj

Aj

Aj

ME

=

Z jj

s E (1−k 2 )
jj
ij

WikiCourses#
http://WikiCourses.WikiSpaces.com
Finite Element Model

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Recall
• Recall the constitutive
relations of
Piezoelectric materials:

S 1 =s11 T 1 +d 31 E 3
D3 =d 31 T 1 +¿ 33 E 3

1
T 1 = D S 1 −h31 D3
• Rearranging the terms:
s
11

1
E 3 =−h 31 S 1 + S D 3
¿ 33
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Where:
h 31=

d 31

(

2
s11 ∈33 1−k 31
s
¿33=¿ 33 1−k 2
31
D
2
s11=s 11 1−k 31

(
(

Damping with Piezoelectric Materials
Mohammad Tawfik

)

)
)

WikiCourses#
http://WikiCourses.WikiSpaces.com
Potential Energy
• Writing the expression for the potential
energy of the shunted piezoelectric
material:
l
l
1
1
U = ∫ S 1 T 1 Adx+ ∫ D3 E 3 Adx
20
20
l

(

S1

)

l

(

)

D3
1
1
U = ∫ S 1 D −h 31 D 3 Adx+ ∫ D3 −h31 D 3 + S Adx
20
2 0
s11
¿ 33
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The interpolation functions

( ) ()
( ) (
) () ⌊
( )
( )
( ) ()

x
x
u ( x )= 1− u1 +
u 2 = ⌊ N ( x ) ⌋ {u e }
l
l

x
x
e
d x = 1− d 1 +
d 2= N ( x ) ⌋ {d }
l
l

du x
1
1
S1 x =
= − u 1+
u2 = ⌊ N x ( x ) ⌋ {ue }
dx
l
l
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
The Stiffness Matrices
l

1
k e = D ∫ { N x }⌊ N x ⌋ Adx
s 11 0
l

k eD =−h31∫ { N x } ⌊ N ⌋ Adx
l

0

1
k D= S ∫ { N } ⌊ N ⌋ Adx
¿33 0
Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
Kinetic Energy
l

1
2
T = ∫ ρ u Adx
˙
20
l

me = ρA ∫ { N } ⌊ N ⌋ dx
0

Damping with Piezoelectric Materials
Mohammad Tawfik

WikiCourses#
http://WikiCourses.WikiSpaces.com
External Work
l

l

l

˙
¨
˙
W =∫ VDbdx=∫ ( L I + RI ) Dbdx=∫ ( L Q+R Q ) Dbdx
0

0

0

l

¨
˙
¿∫ A ( L D+ R D ) Dbdx
0

l

m D= AbL∫ { N } ⌊ N ⌋ dx
0

Damping with Piezoelectric Materials
Mohammad Tawfik

l

c D= AbR∫ { N } ⌊ N ⌋ dx
0

WikiCourses#
http://WikiCourses.WikiSpaces.com
Element Equation

[

me
0

0
mD

]{ } [ ]{ } [
ue
¨
0
+
¨
De 0

0
cD

Damping with Piezoelectric Materials
Mohammad Tawfik

ue
ke
˙
+
˙
De
k De

k eD
kD

]{ } { }
ue
f
=
0
De

WikiCourses#
http://WikiCourses.WikiSpaces.com

Contenu connexe

Tendances

Velocity & acceleration diagrams
Velocity & acceleration diagramsVelocity & acceleration diagrams
Velocity & acceleration diagrams
sherin_ginige
 
Differences between dc and ac motors presentation
Differences between dc and ac motors presentationDifferences between dc and ac motors presentation
Differences between dc and ac motors presentation
Yonela Ncubela
 

Tendances (20)

UNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKSUNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKS
 
Theory of machines
Theory of machinesTheory of machines
Theory of machines
 
Micro piezo motors
Micro piezo motorsMicro piezo motors
Micro piezo motors
 
Dynamics of Machines: Question bank unitwise from vtu old question papers
Dynamics of Machines: Question bank unitwise from vtu old question papersDynamics of Machines: Question bank unitwise from vtu old question papers
Dynamics of Machines: Question bank unitwise from vtu old question papers
 
Introduction to mechatronics
Introduction to mechatronicsIntroduction to mechatronics
Introduction to mechatronics
 
Theory of machine
Theory of machine Theory of machine
Theory of machine
 
DESIGN AND ANALYSIS OF I.C. ENGINE PISTON AND PISTON-RING USING CATIA AND ANS...
DESIGN AND ANALYSIS OF I.C. ENGINE PISTON AND PISTON-RING USING CATIA AND ANS...DESIGN AND ANALYSIS OF I.C. ENGINE PISTON AND PISTON-RING USING CATIA AND ANS...
DESIGN AND ANALYSIS OF I.C. ENGINE PISTON AND PISTON-RING USING CATIA AND ANS...
 
BASIC MECHANICAL ENGINEERING
BASIC MECHANICAL ENGINEERINGBASIC MECHANICAL ENGINEERING
BASIC MECHANICAL ENGINEERING
 
Unit 1 Introduction & Basics of mechanism
Unit 1 Introduction & Basics of mechanismUnit 1 Introduction & Basics of mechanism
Unit 1 Introduction & Basics of mechanism
 
Introduction to Mechatronics, Sensors and Transducers
Introduction to Mechatronics, Sensors and TransducersIntroduction to Mechatronics, Sensors and Transducers
Introduction to Mechatronics, Sensors and Transducers
 
Unit 5 - Actuators and Mechatronics system Design, Case Study1.pptx
Unit 5 - Actuators and Mechatronics system Design, Case Study1.pptxUnit 5 - Actuators and Mechatronics system Design, Case Study1.pptx
Unit 5 - Actuators and Mechatronics system Design, Case Study1.pptx
 
Class 39 final control elements - actuators
Class 39   final control elements - actuatorsClass 39   final control elements - actuators
Class 39 final control elements - actuators
 
Introduction to theory of machines
Introduction to theory of machinesIntroduction to theory of machines
Introduction to theory of machines
 
Fluid power automation unit 1 introduction
Fluid power automation  unit 1 introductionFluid power automation  unit 1 introduction
Fluid power automation unit 1 introduction
 
Intro to mechatronics
Intro to mechatronicsIntro to mechatronics
Intro to mechatronics
 
COMPUTER AIDED PROCESS PLANNING
COMPUTER AIDED PROCESS PLANNINGCOMPUTER AIDED PROCESS PLANNING
COMPUTER AIDED PROCESS PLANNING
 
Velocity & acceleration diagrams
Velocity & acceleration diagramsVelocity & acceleration diagrams
Velocity & acceleration diagrams
 
FUNDAMENTALS OF CNC & PART PROGRAMMING - UNIT - 4 CAD&M
FUNDAMENTALS OF CNC & PART PROGRAMMING - UNIT - 4 CAD&MFUNDAMENTALS OF CNC & PART PROGRAMMING - UNIT - 4 CAD&M
FUNDAMENTALS OF CNC & PART PROGRAMMING - UNIT - 4 CAD&M
 
Differences between dc and ac motors presentation
Differences between dc and ac motors presentationDifferences between dc and ac motors presentation
Differences between dc and ac motors presentation
 
Introduction to Automation
Introduction to AutomationIntroduction to Automation
Introduction to Automation
 

En vedette (6)

Energy Harvesting - An Introduction
Energy Harvesting - An IntroductionEnergy Harvesting - An Introduction
Energy Harvesting - An Introduction
 
Piezoelectric electric based energy harvesting
Piezoelectric electric based energy harvestingPiezoelectric electric based energy harvesting
Piezoelectric electric based energy harvesting
 
Energy Generation by using PIEZOELECTRIC MATERIALS and It’s Applications.
Energy  Generation by using PIEZOELECTRIC MATERIALS and It’s Applications.Energy  Generation by using PIEZOELECTRIC MATERIALS and It’s Applications.
Energy Generation by using PIEZOELECTRIC MATERIALS and It’s Applications.
 
Piezoelectric Effect
Piezoelectric EffectPiezoelectric Effect
Piezoelectric Effect
 
Piezoelectricity & Its Applications
Piezoelectricity & Its ApplicationsPiezoelectricity & Its Applications
Piezoelectricity & Its Applications
 
Applications of piezoelectricity
Applications of piezoelectricityApplications of piezoelectricity
Applications of piezoelectricity
 

Similaire à Piezoelectric Shunt Damping

Iaetsd electric power generation using piezoelectric crystal
Iaetsd electric power generation using piezoelectric crystalIaetsd electric power generation using piezoelectric crystal
Iaetsd electric power generation using piezoelectric crystal
Iaetsd Iaetsd
 
jaypiezoelectricityanditsapplication-150312073855-conversion-gate01.pdf
jaypiezoelectricityanditsapplication-150312073855-conversion-gate01.pdfjaypiezoelectricityanditsapplication-150312073855-conversion-gate01.pdf
jaypiezoelectricityanditsapplication-150312073855-conversion-gate01.pdf
khoi0209
 
piezoelectricity and its application
piezoelectricity and its application piezoelectricity and its application
piezoelectricity and its application
Jaydeep Saha
 
Advanced mechanics of piezoelectricity
Advanced mechanics of piezoelectricityAdvanced mechanics of piezoelectricity
Advanced mechanics of piezoelectricity
Springer
 

Similaire à Piezoelectric Shunt Damping (20)

Vibration damping using smart materials
Vibration damping using smart materialsVibration damping using smart materials
Vibration damping using smart materials
 
Practical Industrial Electronics for Engineers and Technicians
Practical Industrial Electronics for Engineers and TechniciansPractical Industrial Electronics for Engineers and Technicians
Practical Industrial Electronics for Engineers and Technicians
 
Piezoelectric Materials
Piezoelectric MaterialsPiezoelectric Materials
Piezoelectric Materials
 
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and ElasticityUCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
 
Getting Electric Power For Piezoelectricity
Getting Electric Power For PiezoelectricityGetting Electric Power For Piezoelectricity
Getting Electric Power For Piezoelectricity
 
Piezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act GloballyPiezoelectricity : Think Locally, Act Globally
Piezoelectricity : Think Locally, Act Globally
 
Troubleshooting, Maintenance and Protection of AC Electrical Motors and Drives
Troubleshooting, Maintenance and Protection of AC Electrical Motors and DrivesTroubleshooting, Maintenance and Protection of AC Electrical Motors and Drives
Troubleshooting, Maintenance and Protection of AC Electrical Motors and Drives
 
Iaetsd electric power generation using piezoelectric crystal
Iaetsd electric power generation using piezoelectric crystalIaetsd electric power generation using piezoelectric crystal
Iaetsd electric power generation using piezoelectric crystal
 
energy harvesting though piezo
energy harvesting though piezoenergy harvesting though piezo
energy harvesting though piezo
 
jaypiezoelectricityanditsapplication-150312073855-conversion-gate01.pdf
jaypiezoelectricityanditsapplication-150312073855-conversion-gate01.pdfjaypiezoelectricityanditsapplication-150312073855-conversion-gate01.pdf
jaypiezoelectricityanditsapplication-150312073855-conversion-gate01.pdf
 
piezoelectricity and its application
piezoelectricity and its application piezoelectricity and its application
piezoelectricity and its application
 
I0330267076
I0330267076I0330267076
I0330267076
 
02 Damping - SPC408 - Fall2016
02 Damping - SPC408 - Fall201602 Damping - SPC408 - Fall2016
02 Damping - SPC408 - Fall2016
 
Organic Field Effect Transistor
Organic Field Effect TransistorOrganic Field Effect Transistor
Organic Field Effect Transistor
 
Advanced mechanics of piezoelectricity
Advanced mechanics of piezoelectricityAdvanced mechanics of piezoelectricity
Advanced mechanics of piezoelectricity
 
Electricity from vibration & its impact
Electricity from vibration & its impactElectricity from vibration & its impact
Electricity from vibration & its impact
 
solarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptxsolarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptx
 
Friction Force and its Relationship to the Electrostatic Charges at Interfaces.
Friction Force and its Relationship to the Electrostatic Charges at Interfaces.Friction Force and its Relationship to the Electrostatic Charges at Interfaces.
Friction Force and its Relationship to the Electrostatic Charges at Interfaces.
 
Applied Physics for engineers lecture_1-2.pdf
Applied Physics for engineers lecture_1-2.pdfApplied Physics for engineers lecture_1-2.pdf
Applied Physics for engineers lecture_1-2.pdf
 
Dielectric Properties of Insulating Materials
Dielectric Properties of Insulating MaterialsDielectric Properties of Insulating Materials
Dielectric Properties of Insulating Materials
 

Plus de Mohammad Tawfik

Plus de Mohammad Tawfik (20)

Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073
 
Supply Chain Management 01 - Introduction
Supply Chain Management 01 - IntroductionSupply Chain Management 01 - Introduction
Supply Chain Management 01 - Introduction
 
Supply Chain Management 02 - Logistics
Supply Chain Management 02 - LogisticsSupply Chain Management 02 - Logistics
Supply Chain Management 02 - Logistics
 
Supply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory ManagementSupply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory Management
 
Creative problem solving and decision making
Creative problem solving and decision makingCreative problem solving and decision making
Creative problem solving and decision making
 
Digital content for teaching introduction
Digital content for teaching introductionDigital content for teaching introduction
Digital content for teaching introduction
 
Crisis Management Basics
Crisis Management BasicsCrisis Management Basics
Crisis Management Basics
 
DISC Personality Model
DISC Personality ModelDISC Personality Model
DISC Personality Model
 
Training of Trainers
Training of TrainersTraining of Trainers
Training of Trainers
 
Effective Delegation Skills
Effective Delegation SkillsEffective Delegation Skills
Effective Delegation Skills
 
Train The Trainer
Train The TrainerTrain The Trainer
Train The Trainer
 
Business Management - Marketing
Business Management - MarketingBusiness Management - Marketing
Business Management - Marketing
 
Stress Management
Stress ManagementStress Management
Stress Management
 
Project Management (CAPM) - Integration
Project Management (CAPM) - IntegrationProject Management (CAPM) - Integration
Project Management (CAPM) - Integration
 
Project Management (CAPM) - The Framework
Project Management (CAPM) - The FrameworkProject Management (CAPM) - The Framework
Project Management (CAPM) - The Framework
 
Project Management (CAPM) - Introduction
Project Management (CAPM) - IntroductionProject Management (CAPM) - Introduction
Project Management (CAPM) - Introduction
 
The Creative Individual
The Creative IndividualThe Creative Individual
The Creative Individual
 
Introduction to Wind Energy
Introduction to Wind EnergyIntroduction to Wind Energy
Introduction to Wind Energy
 
Finite Element for Trusses in 2-D
Finite Element for Trusses in 2-DFinite Element for Trusses in 2-D
Finite Element for Trusses in 2-D
 
Future of Drones ITW'16
Future of Drones ITW'16Future of Drones ITW'16
Future of Drones ITW'16
 

Dernier

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Dernier (20)

SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 

Piezoelectric Shunt Damping

  • 1. Damping with Piezoelectric Material Mohammad Tawfik Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 2. Objectives • General Introduction to smart materials and structures • Recognize the nature of piezoelectric material • Understand the use of passive shunt circuits • Dynamics of structures with shunt piezoelectric materials Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 3. Smart Structures Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 4. Smart Structures: What? • Controlled change in properties – Change in mechanical properties – Change in geometry • Energy Converters! – Mechanical Electrical (Piezoelectric) – Heat  Mechanical (SMA) – Mechanical  Heat (Viscoelastic) – Etc… Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 5. Smart Structure: Why? • • • • • Vibration Damping Shape Control Noise Reduction Vibration/Damage Sensing Heat Sensing Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 6. Smart Structures: Classification Wada, Fanson, and Crawly Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 7. Piezoelectric Materials Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 8. What is Piezoelectric Material? • Piezoelectric Material is one that possesses the property of converting mechanical energy into electrical energy and vice versa. Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 9. Piezoelectric Materials • Mechanical Stresses  Electrical Potential Field : Sensor (Direct Effect) • Electric Field  Mechanical Strain : Actuator (Converse Effect) Clark, Sounders, Gibbs, 1998 Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 10. Conventional Setting Conductive Pole Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 11. Piezoelectric Sensor • When mechanical stresses are applied on the surface, electric charges are generated (sensor, direct effect). • If those charges are collected on a conductor that is connected to a circuit, current is generated Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 12. Piezoelectric Actuator • When electric potential (voltage) is applied to the surface of the piezoelectric material, mechanical strain is generated (actuator). • If the piezoelectric material is bonded to a surface of a structure, it forces the structure to move with it. Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 13. Other types of Piezo! Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 14. 1-3 Piezocomposites T 3 =c E 33 S 3 +e 33 E 3 D 3 =e 33 S 3 + ε Damping with Piezoelectric Materials Mohammad Tawfik S 33 E3 WikiCourses# http://WikiCourses.WikiSpaces.com
  • 15. Active Fiber Composites (AFC) c eff 11 =c E 11 + v p e2 31 (v C e eff 31 p ε 33+ v ε = p v ε 33 +v ε ε Damping with Piezoelectric Materials Mohammad Tawfik 33 = 33 ) ε 33 e 31 C eff S ε 33 ε (v C S S 33 33 p ε 33 + v ε S 33 ) WikiCourses# http://WikiCourses.WikiSpaces.com
  • 16. Applications of Piezoelectric Materials in Vibration Control Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 17. Collocated Sensor/Actuator Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 18. Self-Sensing Actuator Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 19. Hybrid Control Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 20. Passive Damping / Shunted Piezoelectric Patches Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 21. Passively Shunted Networks Resistive Capacitive Damping with Piezoelectric Materials Mohammad Tawfik Resonant Switched WikiCourses# http://WikiCourses.WikiSpaces.com
  • 22. Adaptive Structures Passive Networks Wada, Fanson, and Crawly Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 23. How does it work? Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 24. Shunted Piezoelectric Material (Physical) Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 25. Shunted Piezoelectric Material (Physical) •Mechanical energy is converted to electrical energy through piezoelectric effect •Electric charge is driven by potential difference through the circuit •Energy is dissipated in the resistance Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 26. Shunted Piezoelectric Material (Electric) Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 27. Shunted Piezoelectric Material (Energy) Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 28. Mechanical Impedance / Viscoelastic Analogy Resistor Shunt RES Z 11 =1− R-L Shunt 2 k 31 1+iρ3 2 δ RSP 2 Z 11 =1−k 31 2 2 γ +δ rγ+ δ 2 r =RC ωn (dissipation tuning parameter ) s γ= ( complex non-dimensional frequency ) ωn ω δ= e (resonant shunted piezoelectric frequency tuning parameter ) ωn Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 29. Viscoelastic analogy • The model of the shunted piezoelectric patches, in many researches, is reduced to an equivalent of a viscoelastic patch. • But Piezoelectric patches are elements that respond to the total strain rather than the local strain! Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 30. The Problem With Viscoelastic Analogy! Base structure Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 31. Modeling of Piezoelectric Structures Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 32. Constitutive Relations • The piezoelectric effect appears in the stress strain relations of the piezoelectric material in the form of an extra electric term • Similarly, the mechanical effect appears in the electric relations Damping with Piezoelectric Materials Mohammad Tawfik S=s 11 T +d 31 E D=d 31 T 1 +¿33 E WikiCourses# http://WikiCourses.WikiSpaces.com
  • 33. Constitutive Relations • • • • ‘S’ (capital s) is the strain ‘T’ is the stress (N/m2) ‘E’ is the electric field (Volt/m) ‘s’ (small s) is the compliance; 1/stiffness (m2/N) • ‘D’ is the electric displacement, charge per unit area (Coulomb/m) • ¿ Electric permittivity (Farade/m) Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 34. The Electromechanical Coupling • d31 is called the electromechanical coupling factor (m/Volt) Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 35. Manipulating the Equations • The electric displacement is the charge per unit area: • The rate of change of the charge is the current: • The electric field is the electric potential per unit length: Damping with Piezoelectric Materials Mohammad Tawfik Q D= A 1 I D= ∫ Idt= A As V E= t WikiCourses# http://WikiCourses.WikiSpaces.com
  • 36. Using those relations: • Using the relations: • Introducing the capacitance: • Or the electrical admittance: Damping with Piezoelectric Materials Mohammad Tawfik S =s 11 T + d 31 t I = Ad 31 sT 1 + V A ∈33 s t V I = Ad 31 sT 1 +CsV I = Ad 31 sT 1 +YV WikiCourses# http://WikiCourses.WikiSpaces.com
  • 37. For open circuit (I=0) • We get: • Using that into the strain relation: • Using the expression for the electric admittance: Damping with Piezoelectric Materials Mohammad Tawfik V =− Ad 31 s S =s 11 T − ( S =s 11 1− Y T1 2 Asd 31 tY d2 31 ¿33 s 11 T1 ) T1 WikiCourses# http://WikiCourses.WikiSpaces.com
  • 38. The electromechanical coupling factor • Introducing the factor ‘k’: ( 2 S =s 11 1−k 31 )T 1 • ‘k’ is called the electromechanical coupling factor (coefficient) • ‘k’ presents the ratio between the mechanical energy and the electrical energy stored in the piezoelectric material. • For the k13, the best conditions will give a value of 0.4 Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 39. Different Conditions • With open circuit conditions, the stiffness of the piezoelectric material appears to be higher (less compliance) ( 2 S =s 11 1−k 31 ) T 1 == s D T1 • While for short circuit conditions, the stiffness appears to be lower (more compliance) S =s T =s E T 11 Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 40. Different Conditions • Similar results could be obtained for the electric properties; electric properties are affected by the mechanical boundary conditions. Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 41. Damping of Structural Vibration with Piezoelectric Materials and Passive Electrical Networks N. W. HAGOOD AND A. VON FLOTOW Journal of Sound and Vibration (1991) 146(2), 243-268 Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 42. The Constitutive Relations for Piezoelectric Materials • The constitutive relation is: • Where: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 43. Constitutive relation (cont’d) • The electric permiativity: • Electromechanical coupling: • Mechanical compliance: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 44. Electrical relation • Into constitutive relations: • Where the capacitance is: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 45. The Electric admittance • Introducing the electric admittance: • Generally; with a shunt circuit: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 46. The Electromechanical Model Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 47. Remember • The electric admittance is the reciprocal of the electric impedance. 1 Z = EL Y EL • Also, you may have up to three circuits: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 48. From Constitutive Relations • The voltage may be written as: • Into the strain equation Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 49. The Electromechanical Compliance • The Electromechanical Compliance • Or • Where • Generally: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 50. The Mi matrices Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 51. Uniaxial Loading Cases • The compliance: • Introducing the electromechanical coupling coefficient: • The compliance becomes: • For open circuit conditions Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 52. Uniaxial Loading Cases • For open circuit, the compliance becomes: • A similar expressions for capacitance in case of zero stress is: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 53. Uniaxial Loading Cases • Introducing the mechanical impedance: (Which is the reciprocal of the compliance) • We may write the nondimensional mechanical impedance: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 54. The Complex Modulus • Now, let’s reintroduce the complex modulus of the viscoelastic material: • Where: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 55. Resistive Shunt Example • For the case or resistive shunting, the resistance and the capacitance are in parallel 1 1 1 1 RCs+1 Z EL = Z D + Z Damping with Piezoelectric Materials Mohammad Tawfik SU =Cs+ R = R WikiCourses# http://WikiCourses.WikiSpaces.com
  • 56. Resistive Shunt Example • Recall: • Using the previous results: • Simplifying: Damping with Piezoelectric Materials Mohammad Tawfik ME 2 1−k ij RES Z jj =Z jj = 1−k 2 ij ( RCs 1+ RCs ) 2 RES Z jj =1− k ij 1+( 1−k 2 ) RCs ij WikiCourses# http://WikiCourses.WikiSpaces.com
  • 57. Resistive Shunt Example • Substituting s=iω and • Introducing the non-dimensional parameter ρ=RCω, we get: Z RES =1− jj k2 ij 1+( • Finally: 2 1−k ij ) ρi ( RES Z jj = =1− 1− 2 k ij 1+( 2 2 1−k ij ) ρ ρ )( 2 k ij 1+ ( Damping with Piezoelectric Materials Mohammad Tawfik + 2 2 1−k ij ) 2 2 2 2 k ij ( 1−k ij ) ρi 2 2 1−k ij 1+ ( 1+ ) 2 k ij 1+ ( ρ2 ρ 1−k 2 ij )ρ 2 i WikiCourses# http://WikiCourses.WikiSpaces.com )
  • 58. Resistive Shunt Example 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 Damping with Piezoelectric Materials Mohammad Tawfik E Current Eta Current E von Flotto Eta von Flotto 1 10 WikiCourses# http://WikiCourses.WikiSpaces.com
  • 59. Homework #11 1. Derive the equations for the RL shunt circuit. 2. Plot the frequency response of piezoelectric bar with a shunt circuit (R & RL) Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 60. RL Shunt Example • For the case or RL shunting, the resistance and the inductance are in series and are in parallel with the capacitance 2 1 1 1 1 LCs + RCs+1 = D + SU =Cs+ = EL Ls+ R Ls+ R Z Z Z LCs 2 + RCs Z EL = LCs 2 + RCs+1 Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 61. RL Shunt Example • Recall: • Using the previous results: • Simplifying: Damping with Piezoelectric Materials Mohammad Tawfik 2 ME 1−k ij RSP Z jj =Z jj = 2 1−k ij Z RSP = jj ( LCs 2 + RCs LCs 2 + RCs+1 1−k 2 ) ( LCs 2 + RCs+1 ) ( ij 2 2 1+( 1−k ij ) ( LCs + RCs ) WikiCourses# http://WikiCourses.WikiSpaces.com )
  • 62. RL Shunt Example • Ignoring (1-k2) in the denominator: ω2 e Z RSP =1−k 2 jj ij ω2 n 2 2 2 ωe ωe s s + 2 RC ω n + 2 2 ωn ω n ωn ωn Z RSP =1−k 2 2 jj ij δ 2 2 γ +δ rγ+δ Damping with Piezoelectric Materials Mohammad Tawfik 2 WikiCourses# http://WikiCourses.WikiSpaces.com
  • 63. RL Shunt Example • Using the full term: ( ( 1−k 2 ) ij Z RSP = jj ω2 e ω2 e 2 Z RSP = jj ωn ω2 e s + 2 RC s+ 2 2 ωn ωn ω n ωn ( 2 + ( 1−k ij ) ω2 n ( ( 1−k 2 ) ij 2 ωn s 2 ωe + 2 RC s 2 ωn ω n ωn ) ) Z RSP = jj Damping with Piezoelectric Materials Mohammad Tawfik ωn s2 + RC s +1 2 ωn ωe ( 1+( 1−k 2 ) ij ωn s2 + RC s 2 ωn ωe ) ) 1−k 2 ) ( γ 2 + δ 2 rγ + δ 2 ) ( ij 2 2 2 2 δ + (1−k ij ) ( γ + δ rγ ) WikiCourses# http://WikiCourses.WikiSpaces.com
  • 64. RL Shunt Example: Hagood results Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 65. Comparing results Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 66. Modulus of Elasticity • Recall that: • And: • Where: Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 67. Modulus of Elasticity • Substituting: • Getting the stiffness: • Simplifying: Damping with Piezoelectric Materials Mohammad Tawfik SU s jj = SU E jj = SU Z jj Lj s Aj SU E jj = = D s jj SU Z jj Lj s D ME Z jj Z jj L j s ME Z jj Aj Aj ME = Z jj s E (1−k 2 ) jj ij WikiCourses# http://WikiCourses.WikiSpaces.com
  • 68. Finite Element Model Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 69. Recall • Recall the constitutive relations of Piezoelectric materials: S 1 =s11 T 1 +d 31 E 3 D3 =d 31 T 1 +¿ 33 E 3 1 T 1 = D S 1 −h31 D3 • Rearranging the terms: s 11 1 E 3 =−h 31 S 1 + S D 3 ¿ 33 Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 70. Where: h 31= d 31 ( 2 s11 ∈33 1−k 31 s ¿33=¿ 33 1−k 2 31 D 2 s11=s 11 1−k 31 ( ( Damping with Piezoelectric Materials Mohammad Tawfik ) ) ) WikiCourses# http://WikiCourses.WikiSpaces.com
  • 71. Potential Energy • Writing the expression for the potential energy of the shunted piezoelectric material: l l 1 1 U = ∫ S 1 T 1 Adx+ ∫ D3 E 3 Adx 20 20 l ( S1 ) l ( ) D3 1 1 U = ∫ S 1 D −h 31 D 3 Adx+ ∫ D3 −h31 D 3 + S Adx 20 2 0 s11 ¿ 33 Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 72. The interpolation functions ( ) () ( ) ( ) () ⌊ ( ) ( ) ( ) () x x u ( x )= 1− u1 + u 2 = ⌊ N ( x ) ⌋ {u e } l l x x e d x = 1− d 1 + d 2= N ( x ) ⌋ {d } l l du x 1 1 S1 x = = − u 1+ u2 = ⌊ N x ( x ) ⌋ {ue } dx l l Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 73. The Stiffness Matrices l 1 k e = D ∫ { N x }⌊ N x ⌋ Adx s 11 0 l k eD =−h31∫ { N x } ⌊ N ⌋ Adx l 0 1 k D= S ∫ { N } ⌊ N ⌋ Adx ¿33 0 Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 74. Kinetic Energy l 1 2 T = ∫ ρ u Adx ˙ 20 l me = ρA ∫ { N } ⌊ N ⌋ dx 0 Damping with Piezoelectric Materials Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
  • 75. External Work l l l ˙ ¨ ˙ W =∫ VDbdx=∫ ( L I + RI ) Dbdx=∫ ( L Q+R Q ) Dbdx 0 0 0 l ¨ ˙ ¿∫ A ( L D+ R D ) Dbdx 0 l m D= AbL∫ { N } ⌊ N ⌋ dx 0 Damping with Piezoelectric Materials Mohammad Tawfik l c D= AbR∫ { N } ⌊ N ⌋ dx 0 WikiCourses# http://WikiCourses.WikiSpaces.com
  • 76. Element Equation [ me 0 0 mD ]{ } [ ]{ } [ ue ¨ 0 + ¨ De 0 0 cD Damping with Piezoelectric Materials Mohammad Tawfik ue ke ˙ + ˙ De k De k eD kD ]{ } { } ue f = 0 De WikiCourses# http://WikiCourses.WikiSpaces.com