SlideShare une entreprise Scribd logo
1  sur  19
Regional-­‐scale	
  simula/on	
  of	
  wildfire	
  spread	
  
informed	
  by	
  real-­‐/me	
  flame	
  front	
  
observa/ons 	
   	
   	
   	
  	
  
M.	
  Rochoux	
  	
  
B.	
  DelmoAe	
  	
  
B.	
  Cuenot	
  
S.	
  Ricci	
  
A.	
  Trouvé	
  
Wild	
  and	
  Soo/ng	
  Fires	
  –	
  Ref.	
  2C10	
  
34th	
  Interna/onal	
  Symposium	
  on	
  Combus/on	
  
Spain:	
  12,000	
  ha	
  burned	
  
Colorado:	
  80,000	
  ha	
  burned	
  
Need	
  for	
  a	
  predic/ve	
  simulator	
  of	
  fire	
  spread	
  
3	
  
“Regional-­‐scale	
  simula/on	
  of	
  wildfire	
  spread”	
  
Observa*on:	
  	
  
Wildfires	
  feature	
  a	
  front-­‐like	
  geometry	
  	
  
at	
  regional	
  scales	
  	
  
• 	
  scales	
  ranging	
  from	
  meters	
  up	
  to	
  several	
  
kilometers	
  
• 	
  thin	
  flame	
  zone	
  propaga/ng	
  normal	
  to	
  itself	
  
towards	
  unburnt	
  vegeta/on	
  
• 	
  local	
  propaga/on	
  speed	
  of	
  the	
  front	
  called	
  
the	
  rate	
  of	
  spread	
  Г	
  	
  
Burnt	
  
vegeta*on	
  	
  
Unburnt	
  
vegeta*on	
  
Front	
  
Issue:	
  How	
  to	
  accurately	
  describe	
  
the	
  rate	
  of	
  spread	
  Г?	
  	
  	
  	
  
Introduc/on	
  
Rate	
  of	
  
spread	
  Γ	
  
4	
  
Burnt	
  
vegeta*on	
  	
  
Unburnt	
  
vegeta*on	
  
Front	
  
Introduc/on	
  
Rate	
  of	
  
spread	
  Γ	
  
• 	
  Sub-­‐model	
  for	
  the	
  local	
  rate	
  of	
  spread	
  Г	
  (m/s)	
  
• 	
  Level-­‐set-­‐based	
  front	
  propaga/on	
  simulator	
  
“Regional-­‐scale	
  simula/on	
  of	
  wildfire	
  spread”	
  
[Ref.	
  Rothermel	
  (1972),	
  Technical	
  report,	
  US	
  Department	
  of	
  Agriculture,	
  Forest	
  Service]	
  
Γ(x, y) = P

uw(x, y), Mf , Σ, δ

§ 	
  magnitude	
  
§ 	
  direc/on	
  
§ 	
  moisture	
  content	
  Mf	
  
§ 	
  par/cle	
  surface/volume	
  Σ	
  
§ 	
  layer	
  ver/cal	
  thickness	
  δ	
  
Wind	
   Vegeta*on	
  (fuel)	
  
Semi-­‐empirical	
  Rothermel	
  model	
  
Issue:	
  How	
  to	
  properly	
  describe	
  
vegeta*on	
  and	
  wind	
  parameters?	
  
 
↘	
  Aboard	
  a	
  surveillance	
  aircrae	
  	
  
	
  
	
  
↘	
  Assume	
  threshold	
  temperature	
  for	
  fire	
  igni/on	
  (600K)	
  
	
  
5	
  
“Real-­‐/me	
  flame	
  front	
  observa/ons”	
  
Data	
  analysis	
  
	
  
Fire	
  event	
  
detec*on	
  
Data	
  	
  
acquisi*on	
  
Infrared	
  camera	
  at	
  
medium	
  wavelengths	
  
(no	
  gas	
  emission)	
  
Reconstruc/on	
  of	
  fire	
  
front	
  loca/ons	
  
Important:	
  Accoun*ng	
  for	
  
measurement	
  error	
  
5	
  Introduc/on	
  
6	
  
Simula/ons	
  “informed	
  by”	
  measurements	
  
Introduc/on	
  
Why?	
  	
  1	
  -­‐	
  	
  Uncertainty	
  on	
  inputs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Uncertainty	
  on	
  outputs	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2-­‐	
  	
  Find	
  best	
  es/mate	
  of	
  control	
  variables	
  at	
  /me	
  ti	
  given	
  observa/ons	
  for	
  tit	
  ?	
  
Data	
  Assimila*on	
  strategy	
  
oil	
  reservoir	
  
modeling	
  
Resolu*on	
  of	
  an	
  inverse	
  problem	
  y	
  =	
  H(x)	
  
Observa/ons	
  
Boundary	
  condi/ons	
  
Ini/al	
  condi/on	
  
Model	
  parameters	
  
Model	
  outputs	
  Forward	
  model	
  H	
  
Data	
  assimila/on	
  algorithm	
  
-­‐	
  
Control	
  variables	
  
	
  
OBJECTIVE:	
  Develop	
  a	
  data	
  assimila/on	
  strategy	
  	
  
for	
  flame	
  spread	
  applica/ons	
  	
  
tobs,1	
  
tobs,2	
  
error	
  
Which	
  type	
  of	
  observa/ons?	
  
Observa/ons	
  
7	
  1 Data	
  assimila/on	
  algorithm	
   7	
  
Quan*ty	
  of	
  interest:	
  discrete	
  /me-­‐evolving	
  flame	
  front	
  posi/ons	
  yo	
  	
  
R	
  =	
  
Each	
  front	
  point	
  is	
  a	
  random	
  variable	
  
defined	
  by	
  a	
  Gaussian	
  PDF	
  (mean,	
  variance).	
  	
  
Observa*on	
  error	
  covariance	
  matrix	
  
Variance	
  of	
  
one	
  front	
  point	
  
Covariance	
  of	
  a	
  pair	
  
of	
  front	
  points	
  
Observa/ons	
  
8	
  1 Data	
  assimila/on	
  algorithm	
  
Control	
  variables	
   Model	
  outputs	
  Forward	
  model	
  H	
  
8	
  
①  Model	
  parameters	
  
§  Moisture	
  content	
  
§  Fuel	
  surface/volume	
  ra/o	
  
§  Wind	
  velocity	
  magnitude	
  
	
  
②  Model	
  uncertainty	
  
Each	
  model	
  parameter	
  is	
  a	
  random	
  
variable	
  defined	
  by	
  a	
  Gaussian	
  PDF.	
  
-­‐	
  Model	
  propaga*on	
  
-­‐	
  Selec*on	
  of	
  front	
  points	
  
obs.	
   simula*ons	
  
Comparable	
  simulated	
  quan/ty	
  
mean	
  +	
  variance	
  
Error	
  
covariance	
  
matrix	
  B	
  
	
  
1	
  parameter	
  
	
  
	
  
mul/-­‐parameter	
  
	
  
Observa/ons	
  
9	
  1 Data	
  assimila/on	
  algorithm	
  
Control	
  variables	
   Model	
  outputs	
  Forward	
  model	
  H	
  
9	
  
①  Model	
  parameters	
  
§  Moisture	
  content	
  
§  Fuel	
  surface/volume	
  ra/o	
  
§  Wind	
  velocity	
  magnitude	
  
	
  
②  Model	
  uncertainty	
  
Each	
  model	
  parameter	
  is	
  a	
  random	
  
variable	
  defined	
  by	
  a	
  Gaussian	
  PDF.	
  
-­‐	
  Model	
  propaga*on	
  
-­‐	
  Selec*on	
  of	
  front	
  points	
  
Distance	
  observa/on-­‐model	
  simula/on	
  
-­‐	
  
obs.	
   simula*on	
  
distance	
  
Observa/ons	
  
10	
  1 Data	
  assimila/on	
  algorithm	
  
Control	
  variables	
   Model	
  outputs	
  Forward	
  model	
  H	
  
10	
  
-­‐	
  
Data	
  assimila/on	
  algorithm	
  
Model	
  feedback	
  
Model	
  feedback	
   Inverse	
  problem	
  
How?	
  	
  Maximize	
  
Resolu*on	
  of	
  an	
  inverse	
  problem	
  y	
  =	
  H(x)	
  
Pa
(x) = P(x = xt
| y = yo
)
Minimiza/on	
  of	
  a	
  cost	
  func/on	
  
J(x) =
1
2
(x − xb
)T
B−1
(x − xb
) +
1
2
(yo
− H(x))T
R−1
(yo
− H(x))
model	
  error	
   observa*on	
  error	
  
	
  
Gaussian	
  PDFs	
  	
  
	
  
itera*on	
  1	
  	
  
itera*on	
  2	
  	
  
itera*on	
  3	
  	
  
itera*on	
  4	
  
11	
  1 Data	
  assimila/on	
  algorithm	
  	
   11	
  
Extended	
  Kalman	
  Filter	
  (EKF)	
  
	
  
Formula*on	
  of	
  a	
  gain	
  matrix	
  Ki	
  	
  
• 	
  assume	
  linear	
  rela/onship	
  between	
  control	
  
parameters	
  and	
  model	
  outputs	
  
	
  
	
  
	
  
For	
  each	
  data	
  assimila*on	
  cycle	
  i:	
  
Model	
  error	
   Observa*on	
  error	
  
Model	
  Jacobian	
  
solu/on:	
  itera/ve	
  computa/on	
  
of	
  the	
  gain	
  matrix	
  via	
  the	
  
update	
  of	
  the	
  model	
  Jacobian	
  H	
  	
  	
  
xa
i = xb
i + Ki

yo
− H(xb
i )

Ki = BiHT
i

HiBiHT
i + R
−1
12	
  1 Data	
  assimila/on	
  algorithm	
  	
   12	
  
Extended	
  Kalman	
  Filter	
  (EKF)	
  
	
  
Formula*on	
  of	
  a	
  gain	
  matrix	
  Ki	
  	
  
• 	
  assume	
  linear	
  rela/onship	
  between	
  control	
  
parameters	
  and	
  model	
  outputs	
  
	
  
	
  
	
  
For	
  each	
  data	
  assimila*on	
  cycle	
  i:	
  
Model	
  error	
   Observa*on	
  error	
  
Model	
  Jacobian	
  
xa
i = xb
i + Ki

yo
− H(xb
i )

Ki = BiHT
i

HiBiHT
i + R
−1
0 50 100 150 200 250 300 350 400
0.2
0.22
0.24
0.26
0.28
0.3
0.32
0.34
0.36
0.38
0.4
o
(m)
meanoftheanalysis(m.s
1
)
Relation between the mean of the analysis and the observations error with f
=0.05
Observation error (m)
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Observa*on	
  
KalmanFiltersolution(posterior)
Increasing	
  
confidence	
  in	
  
observa*ons	
  
Prior	
   • 	
  interpreta/on:	
  weighted	
  average,	
  with	
  more	
  
weight	
  being	
  given	
  to	
  informa/on	
  with	
  higher	
  
certainty.	
  
Grassland	
  controlled	
  burning	
  
Data	
  provided	
  by	
  Ronan	
  Paugam	
  
hAp://wildfire.geog.kcl.ac.uk/index.php/ronan	
  
	
  
↘	
  Domain	
  of	
  propaga/on:	
  4m	
  x	
  4m	
  
	
  
↘	
  Homogeneous	
  short	
  grass	
  
o 	
  Height:	
  8cm	
  
o 	
  Moisture	
  content:	
  21.7%	
  
↘	
  Wind	
  
o 	
  Mean	
  magnitude:	
  1.3m/s	
  
o 	
  Mean	
  direc/on:	
  307°	
  (N=	
  0°)	
  
↘	
  Mean	
  rate	
  of	
  spread:	
  1.5	
  cm/s	
  
	
  
↘	
  Fire	
  dura/on:	
  350s	
  
	
  
	
  
Condi*ons	
  
13	
  13	
  2 Applica/on	
  case	
   13	
  
	
  Infrared	
  camera	
  aboard	
  a	
  cherry	
  picker:	
  
	
  	
  	
  	
  	
  Wind	
  	
  
Time	
  (s)	
  
Γ(x, y) = P

uw(x, y), Mf , Σ, δ

• 	
  Es/ma/on	
  of	
  2	
  fuel	
  model	
  parameters	
  
Control	
  parameters	
  
Grassland	
  controlled	
  burning	
  
Init.	
  condi/on	
  
t	
  =	
  78s	
  
Assimila/on	
   Forecast	
  
Free	
  run	
  
Op/mal	
  
• 	
  1	
  data	
  assimila/on	
  cycle	
  
Grassland	
  controlled	
  burning	
  
14	
  14	
  2 Applica/on	
  case	
   14	
  
§ 	
  moisture	
  content	
  Mf	
  
§ 	
  par/cle	
  surface/volume	
  Σ	
  
t	
  =	
  50s	
   t	
  =	
  106s	
  
observa/on	
  
(assumed	
  constant	
  over	
  the	
  
fire	
  dura*on)	
  
	
  	
  	
  	
  	
  Wind	
  	
  
(very	
  high	
  observa/on	
  confidence	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  match	
  the	
  observed	
  fronts)	
  	
  
• 	
  2-­‐parameter	
  EKF	
  results:	
  
	
  	
  	
  	
  	
  Wind	
  	
  
• Uncertainty	
  modeling	
  
o Observa/on	
  (camera	
  spa/al	
  
resolu/on):	
  4.7cm	
  
o Model:	
  30%	
  uncertainty.	
  
Grassland	
  controlled	
  burning	
  Grassland	
  controlled	
  burning	
  
15	
  15	
  2 Applica/on	
  case	
   15	
  
Control	
  parameters	
   Prior	
   Solu*on	
  
Moisture	
  content	
  (%)	
   21.7	
   11.0	
  
Fuel	
  part.	
  S/V	
  (m-­‐1)	
   4921	
   13193	
  
Ÿ observa/on	
  
-­‐-­‐	
  free	
  run	
  
-­‐-­‐	
  op/mal	
  
	
  
X	
  (m)	
  
Y	
  (m)	
  
• Comments	
  
o Reduc/on	
  of	
  uncertainty	
  on	
  
simula/on.	
  
o The	
  corrected	
  parameters	
  stay	
  
within	
  a	
  physical	
  range.	
  
• 	
  4-­‐parameter	
  EKF	
  results:	
  
	
  	
  	
  	
  	
  Wind	
  	
  
Grassland	
  controlled	
  burning	
  Grassland	
  controlled	
  burning	
  
16	
  16	
  2 Applica/on	
  case	
   16	
  
Control	
  parameters	
   Prior	
   Solu*on	
  
Moisture	
  content	
  (%)	
   21.7	
   7.1	
  
Fuel	
  part.	
  S/V	
  (m-­‐1)	
   4921	
   7185	
  
Wind	
  magnitude	
  (m/s)	
   1.3	
   0.38	
  
Wind	
  direc/on	
  (°)	
   307	
   300	
  
Ÿ observa/on	
  
-­‐-­‐	
  free	
  run	
  
-­‐-­‐	
  op/mal	
  (4p)	
  
-­‐-­‐	
  op/mal	
  (2p)	
  
	
  
X	
  (m)	
  
Y	
  (m)	
  
• Comments	
  
o More	
  consistent	
  front	
  topology	
  
with	
  respect	
  to	
  the	
  observa/ons.	
  
o Dynamic	
  learning:	
  the	
  value	
  of	
  
the	
  parameters	
  is	
  case-­‐	
  
dependent.	
  
Γ(x, y) = P

uw(x, y), Mf , Σ, δ
• 	
  Predic/ve	
  capability:	
  improve	
  forecast	
  of	
  fire	
  spread	
  
Grassland	
  controlled	
  burning	
  Grassland	
  controlled	
  burning	
  
17	
  17	
  2 Applica/on	
  case	
   17	
  
Init.	
  condi/on	
  
t	
  =	
  78s	
  
Assimila/on	
   Forecast	
  
Op/mal	
  
t	
  =	
  50s	
   t	
  =	
  106s	
  
Observa/on	
  
Y	
  (m)	
  
X	
  (m)	
  
X	
  (m)	
  
Ÿ observa/on	
  
-­‐-­‐	
  free	
  run	
  
-­‐-­‐	
  op/mal	
  (4p)	
  
-­‐-­‐	
  op/mal	
  (2p)	
  
	
  
Y	
  (m)	
  
Step.2	
  -­‐	
  Forecast	
  	
  
Step.1	
  -­‐	
  Correc/on	
  
Data	
  assimila*on	
  for	
  flame	
  spread	
  propaga*on:	
  	
  
Proof	
  of	
  concept	
  
	
  
• 	
  Development	
  of	
  a	
  prototype	
  able	
  to	
  
	
  ↘	
  Achieve	
  a	
  mul/-­‐parameter	
  es/ma/on.	
  
↘	
  Track	
  fire	
  front	
  loca/ons	
  for	
  real	
  and	
  synthe/cal	
  observa/ons.	
  
18	
  Conclusion	
  
Ÿ observa/on	
  
-­‐-­‐	
  free	
  run	
  
-­‐-­‐	
  op/mal	
  (4p) 	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Ongoing	
  research	
  
	
  
• 	
  Ensemble-­‐based	
  approach	
  (Monte-­‐
Carlo	
  combined	
  to	
  data	
  assimila/on).	
  
• 	
  More	
  accurate	
  descrip/on	
  of	
  the	
  PDFs	
  
of	
  the	
  model	
  inputs	
  and	
  outputs.	
  
 
	
  
Thank	
  you	
  for	
  your	
  a9en:on!	
  
	
  
Rochoux	
  et	
  al.	
  (2012),	
  Proc.	
  Combust.	
  Inst.	
  

Contenu connexe

Tendances

Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.ppt
grssieee
 
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
grssieee
 
SPIE_Newsroom_Dubovik_et_al_2014
SPIE_Newsroom_Dubovik_et_al_2014SPIE_Newsroom_Dubovik_et_al_2014
SPIE_Newsroom_Dubovik_et_al_2014
Oleg Dubovik
 
Purpose driven study assessment of effects of sedimentation on the capacity...
Purpose driven study   assessment of effects of sedimentation on the capacity...Purpose driven study   assessment of effects of sedimentation on the capacity...
Purpose driven study assessment of effects of sedimentation on the capacity...
hydrologywebsite1
 
FR4.T05.1.ppt
FR4.T05.1.pptFR4.T05.1.ppt
FR4.T05.1.ppt
grssieee
 
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONSTU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
grssieee
 
VALIDATING SATELLITE LAND SURFACE TEMPERATURE PRODUCTS FOR GOES-R AND JPSS MI...
VALIDATING SATELLITE LAND SURFACE TEMPERATURE PRODUCTS FOR GOES-R AND JPSS MI...VALIDATING SATELLITE LAND SURFACE TEMPERATURE PRODUCTS FOR GOES-R AND JPSS MI...
VALIDATING SATELLITE LAND SURFACE TEMPERATURE PRODUCTS FOR GOES-R AND JPSS MI...
grssieee
 

Tendances (20)

ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
 
Raznjevic, Anja: Comparison of large eddy simulation of a point source methan...
Raznjevic, Anja: Comparison of large eddy simulation of a point source methan...Raznjevic, Anja: Comparison of large eddy simulation of a point source methan...
Raznjevic, Anja: Comparison of large eddy simulation of a point source methan...
 
Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.ppt
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
 
Dinh_BIOMASS_TomoSAR
Dinh_BIOMASS_TomoSARDinh_BIOMASS_TomoSAR
Dinh_BIOMASS_TomoSAR
 
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
 
Kumar, Pramod: Local-scale atmospheric inversion for the estimation of the lo...
Kumar, Pramod: Local-scale atmospheric inversion for the estimation of the lo...Kumar, Pramod: Local-scale atmospheric inversion for the estimation of the lo...
Kumar, Pramod: Local-scale atmospheric inversion for the estimation of the lo...
 
Merging multiple soil moisture products for improving the accuracy in rainfal...
Merging multiple soil moisture products for improving the accuracy in rainfal...Merging multiple soil moisture products for improving the accuracy in rainfal...
Merging multiple soil moisture products for improving the accuracy in rainfal...
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
 
SPIE_Newsroom_Dubovik_et_al_2014
SPIE_Newsroom_Dubovik_et_al_2014SPIE_Newsroom_Dubovik_et_al_2014
SPIE_Newsroom_Dubovik_et_al_2014
 
Assessment of the Usefulness of Egnos Differential Corrections in Conducting ...
Assessment of the Usefulness of Egnos Differential Corrections in Conducting ...Assessment of the Usefulness of Egnos Differential Corrections in Conducting ...
Assessment of the Usefulness of Egnos Differential Corrections in Conducting ...
 
UAS Techniques for Environmental Monitoring
UAS Techniques for Environmental MonitoringUAS Techniques for Environmental Monitoring
UAS Techniques for Environmental Monitoring
 
Purpose driven study assessment of effects of sedimentation on the capacity...
Purpose driven study   assessment of effects of sedimentation on the capacity...Purpose driven study   assessment of effects of sedimentation on the capacity...
Purpose driven study assessment of effects of sedimentation on the capacity...
 
List et al, on rain in italy
List et al, on rain in italyList et al, on rain in italy
List et al, on rain in italy
 
Use of UAS for Hydrological Monitoring
Use of UAS for Hydrological MonitoringUse of UAS for Hydrological Monitoring
Use of UAS for Hydrological Monitoring
 
FR4.T05.1.ppt
FR4.T05.1.pptFR4.T05.1.ppt
FR4.T05.1.ppt
 
Seismic refractionsurveying r4a
Seismic refractionsurveying r4aSeismic refractionsurveying r4a
Seismic refractionsurveying r4a
 
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONSTU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
 
Fire/atmosphere interactions
Fire/atmosphere interactionsFire/atmosphere interactions
Fire/atmosphere interactions
 
VALIDATING SATELLITE LAND SURFACE TEMPERATURE PRODUCTS FOR GOES-R AND JPSS MI...
VALIDATING SATELLITE LAND SURFACE TEMPERATURE PRODUCTS FOR GOES-R AND JPSS MI...VALIDATING SATELLITE LAND SURFACE TEMPERATURE PRODUCTS FOR GOES-R AND JPSS MI...
VALIDATING SATELLITE LAND SURFACE TEMPERATURE PRODUCTS FOR GOES-R AND JPSS MI...
 

Similaire à First step towards data-driven wildfire spread modeling

NONLINEAR MODEL PREDICTIVE CONTROL FOR OPERATION OF A POST COMBUSTION ABSORPT...
NONLINEAR MODEL PREDICTIVE CONTROL FOR OPERATION OF A POST COMBUSTION ABSORPT...NONLINEAR MODEL PREDICTIVE CONTROL FOR OPERATION OF A POST COMBUSTION ABSORPT...
NONLINEAR MODEL PREDICTIVE CONTROL FOR OPERATION OF A POST COMBUSTION ABSORPT...
Modelon
 
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
GIS in the Rockies
 
Sampling-SDM2012_Jun
Sampling-SDM2012_JunSampling-SDM2012_Jun
Sampling-SDM2012_Jun
MDO_Lab
 
Numerical Simulation Slides for NBIL Presentation in Queens university
Numerical Simulation Slides for NBIL Presentation in Queens universityNumerical Simulation Slides for NBIL Presentation in Queens university
Numerical Simulation Slides for NBIL Presentation in Queens university
Yashar Seyed Vahedein
 
3 gain adaptive control applied to a heat exchanger process
3 gain adaptive control applied to a heat exchanger process3 gain adaptive control applied to a heat exchanger process
3 gain adaptive control applied to a heat exchanger process
nazir1988
 
Dynamic Process Modeling
Dynamic Process ModelingDynamic Process Modeling
Dynamic Process Modeling
ahmad bassiouny
 

Similaire à First step towards data-driven wildfire spread modeling (20)

Bayesian Inference for front-tracking problems - 2013 IPDO conference
Bayesian Inference for front-tracking problems - 2013 IPDO conferenceBayesian Inference for front-tracking problems - 2013 IPDO conference
Bayesian Inference for front-tracking problems - 2013 IPDO conference
 
NONLINEAR MODEL PREDICTIVE CONTROL FOR OPERATION OF A POST COMBUSTION ABSORPT...
NONLINEAR MODEL PREDICTIVE CONTROL FOR OPERATION OF A POST COMBUSTION ABSORPT...NONLINEAR MODEL PREDICTIVE CONTROL FOR OPERATION OF A POST COMBUSTION ABSORPT...
NONLINEAR MODEL PREDICTIVE CONTROL FOR OPERATION OF A POST COMBUSTION ABSORPT...
 
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
2013 ASPRS Track, Developing an ArcGIS Toolbox for Estimating EvapoTranspirat...
 
Sampling-SDM2012_Jun
Sampling-SDM2012_JunSampling-SDM2012_Jun
Sampling-SDM2012_Jun
 
Melles
MellesMelles
Melles
 
Master thesis in biorefinery pathways selection using MILP with Integer-Cuts ...
Master thesis in biorefinery pathways selection using MILP with Integer-Cuts ...Master thesis in biorefinery pathways selection using MILP with Integer-Cuts ...
Master thesis in biorefinery pathways selection using MILP with Integer-Cuts ...
 
Upfront Thinking to Design a Better Lab Scale DoE
Upfront Thinking to Design a Better Lab Scale DoEUpfront Thinking to Design a Better Lab Scale DoE
Upfront Thinking to Design a Better Lab Scale DoE
 
Tsyl Zaragoza Maths Fire Jun 2009
Tsyl Zaragoza Maths Fire Jun 2009Tsyl Zaragoza Maths Fire Jun 2009
Tsyl Zaragoza Maths Fire Jun 2009
 
Presentation finale
Presentation finalePresentation finale
Presentation finale
 
2008 IFAC World Congress: Oil and gas production optimization - lost potentia...
2008 IFAC World Congress: Oil and gas production optimization - lost potentia...2008 IFAC World Congress: Oil and gas production optimization - lost potentia...
2008 IFAC World Congress: Oil and gas production optimization - lost potentia...
 
Numerical Simulation Slides for NBIL Presentation in Queens university
Numerical Simulation Slides for NBIL Presentation in Queens universityNumerical Simulation Slides for NBIL Presentation in Queens university
Numerical Simulation Slides for NBIL Presentation in Queens university
 
Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...
 
finland_japan_joint_seminor
finland_japan_joint_seminorfinland_japan_joint_seminor
finland_japan_joint_seminor
 
Nonnegative Matrix Factorization with Side Information for Time Series Recove...
Nonnegative Matrix Factorization with Side Information for Time Series Recove...Nonnegative Matrix Factorization with Side Information for Time Series Recove...
Nonnegative Matrix Factorization with Side Information for Time Series Recove...
 
Uncertainty in simulating biomass yield and carbon-water fluxes from Euro-Med...
Uncertainty in simulating biomass yield and carbon-water fluxes from Euro-Med...Uncertainty in simulating biomass yield and carbon-water fluxes from Euro-Med...
Uncertainty in simulating biomass yield and carbon-water fluxes from Euro-Med...
 
Mine Risk Control
Mine Risk ControlMine Risk Control
Mine Risk Control
 
Evaluation of the extreme and fatigue load measurements at alpha ventus
Evaluation of the extreme and fatigue load measurements at alpha ventusEvaluation of the extreme and fatigue load measurements at alpha ventus
Evaluation of the extreme and fatigue load measurements at alpha ventus
 
Modeling full scale-data(2)
Modeling full scale-data(2)Modeling full scale-data(2)
Modeling full scale-data(2)
 
3 gain adaptive control applied to a heat exchanger process
3 gain adaptive control applied to a heat exchanger process3 gain adaptive control applied to a heat exchanger process
3 gain adaptive control applied to a heat exchanger process
 
Dynamic Process Modeling
Dynamic Process ModelingDynamic Process Modeling
Dynamic Process Modeling
 

Dernier

(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Silpa
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Silpa
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Silpa
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Silpa
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Silpa
 

Dernier (20)

Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 

First step towards data-driven wildfire spread modeling

  • 1. Regional-­‐scale  simula/on  of  wildfire  spread   informed  by  real-­‐/me  flame  front   observa/ons           M.  Rochoux     B.  DelmoAe     B.  Cuenot   S.  Ricci   A.  Trouvé   Wild  and  Soo/ng  Fires  –  Ref.  2C10   34th  Interna/onal  Symposium  on  Combus/on  
  • 2. Spain:  12,000  ha  burned   Colorado:  80,000  ha  burned   Need  for  a  predic/ve  simulator  of  fire  spread  
  • 3. 3   “Regional-­‐scale  simula/on  of  wildfire  spread”   Observa*on:     Wildfires  feature  a  front-­‐like  geometry     at  regional  scales     •   scales  ranging  from  meters  up  to  several   kilometers   •   thin  flame  zone  propaga/ng  normal  to  itself   towards  unburnt  vegeta/on   •   local  propaga/on  speed  of  the  front  called   the  rate  of  spread  Г     Burnt   vegeta*on     Unburnt   vegeta*on   Front   Issue:  How  to  accurately  describe   the  rate  of  spread  Г?         Introduc/on   Rate  of   spread  Γ  
  • 4. 4   Burnt   vegeta*on     Unburnt   vegeta*on   Front   Introduc/on   Rate  of   spread  Γ   •   Sub-­‐model  for  the  local  rate  of  spread  Г  (m/s)   •   Level-­‐set-­‐based  front  propaga/on  simulator   “Regional-­‐scale  simula/on  of  wildfire  spread”   [Ref.  Rothermel  (1972),  Technical  report,  US  Department  of  Agriculture,  Forest  Service]   Γ(x, y) = P uw(x, y), Mf , Σ, δ §   magnitude   §   direc/on   §   moisture  content  Mf   §   par/cle  surface/volume  Σ   §   layer  ver/cal  thickness  δ   Wind   Vegeta*on  (fuel)   Semi-­‐empirical  Rothermel  model   Issue:  How  to  properly  describe   vegeta*on  and  wind  parameters?  
  • 5.   ↘  Aboard  a  surveillance  aircrae         ↘  Assume  threshold  temperature  for  fire  igni/on  (600K)     5   “Real-­‐/me  flame  front  observa/ons”   Data  analysis     Fire  event   detec*on   Data     acquisi*on   Infrared  camera  at   medium  wavelengths   (no  gas  emission)   Reconstruc/on  of  fire   front  loca/ons   Important:  Accoun*ng  for   measurement  error   5  Introduc/on  
  • 6. 6   Simula/ons  “informed  by”  measurements   Introduc/on   Why?    1  -­‐    Uncertainty  on  inputs                      Uncertainty  on  outputs                            2-­‐    Find  best  es/mate  of  control  variables  at  /me  ti  given  observa/ons  for  tit  ?   Data  Assimila*on  strategy   oil  reservoir   modeling   Resolu*on  of  an  inverse  problem  y  =  H(x)   Observa/ons   Boundary  condi/ons   Ini/al  condi/on   Model  parameters   Model  outputs  Forward  model  H   Data  assimila/on  algorithm   -­‐   Control  variables     OBJECTIVE:  Develop  a  data  assimila/on  strategy     for  flame  spread  applica/ons    
  • 7. tobs,1   tobs,2   error   Which  type  of  observa/ons?   Observa/ons   7  1 Data  assimila/on  algorithm   7   Quan*ty  of  interest:  discrete  /me-­‐evolving  flame  front  posi/ons  yo     R  =   Each  front  point  is  a  random  variable   defined  by  a  Gaussian  PDF  (mean,  variance).     Observa*on  error  covariance  matrix   Variance  of   one  front  point   Covariance  of  a  pair   of  front  points  
  • 8. Observa/ons   8  1 Data  assimila/on  algorithm   Control  variables   Model  outputs  Forward  model  H   8   ①  Model  parameters   §  Moisture  content   §  Fuel  surface/volume  ra/o   §  Wind  velocity  magnitude     ②  Model  uncertainty   Each  model  parameter  is  a  random   variable  defined  by  a  Gaussian  PDF.   -­‐  Model  propaga*on   -­‐  Selec*on  of  front  points   obs.   simula*ons   Comparable  simulated  quan/ty   mean  +  variance   Error   covariance   matrix  B     1  parameter       mul/-­‐parameter    
  • 9. Observa/ons   9  1 Data  assimila/on  algorithm   Control  variables   Model  outputs  Forward  model  H   9   ①  Model  parameters   §  Moisture  content   §  Fuel  surface/volume  ra/o   §  Wind  velocity  magnitude     ②  Model  uncertainty   Each  model  parameter  is  a  random   variable  defined  by  a  Gaussian  PDF.   -­‐  Model  propaga*on   -­‐  Selec*on  of  front  points   Distance  observa/on-­‐model  simula/on   -­‐   obs.   simula*on   distance  
  • 10. Observa/ons   10  1 Data  assimila/on  algorithm   Control  variables   Model  outputs  Forward  model  H   10   -­‐   Data  assimila/on  algorithm   Model  feedback   Model  feedback   Inverse  problem   How?    Maximize   Resolu*on  of  an  inverse  problem  y  =  H(x)   Pa (x) = P(x = xt | y = yo ) Minimiza/on  of  a  cost  func/on   J(x) = 1 2 (x − xb )T B−1 (x − xb ) + 1 2 (yo − H(x))T R−1 (yo − H(x)) model  error   observa*on  error     Gaussian  PDFs      
  • 11. itera*on  1     itera*on  2     itera*on  3     itera*on  4   11  1 Data  assimila/on  algorithm     11   Extended  Kalman  Filter  (EKF)     Formula*on  of  a  gain  matrix  Ki     •   assume  linear  rela/onship  between  control   parameters  and  model  outputs         For  each  data  assimila*on  cycle  i:   Model  error   Observa*on  error   Model  Jacobian   solu/on:  itera/ve  computa/on   of  the  gain  matrix  via  the   update  of  the  model  Jacobian  H       xa i = xb i + Ki yo − H(xb i ) Ki = BiHT i HiBiHT i + R −1
  • 12. 12  1 Data  assimila/on  algorithm     12   Extended  Kalman  Filter  (EKF)     Formula*on  of  a  gain  matrix  Ki     •   assume  linear  rela/onship  between  control   parameters  and  model  outputs         For  each  data  assimila*on  cycle  i:   Model  error   Observa*on  error   Model  Jacobian   xa i = xb i + Ki yo − H(xb i ) Ki = BiHT i HiBiHT i + R −1 0 50 100 150 200 250 300 350 400 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 o (m) meanoftheanalysis(m.s 1 ) Relation between the mean of the analysis and the observations error with f =0.05 Observation error (m)                    Observa*on   KalmanFiltersolution(posterior) Increasing   confidence  in   observa*ons   Prior   •   interpreta/on:  weighted  average,  with  more   weight  being  given  to  informa/on  with  higher   certainty.  
  • 13. Grassland  controlled  burning   Data  provided  by  Ronan  Paugam   hAp://wildfire.geog.kcl.ac.uk/index.php/ronan     ↘  Domain  of  propaga/on:  4m  x  4m     ↘  Homogeneous  short  grass   o   Height:  8cm   o   Moisture  content:  21.7%   ↘  Wind   o   Mean  magnitude:  1.3m/s   o   Mean  direc/on:  307°  (N=  0°)   ↘  Mean  rate  of  spread:  1.5  cm/s     ↘  Fire  dura/on:  350s       Condi*ons   13  13  2 Applica/on  case   13    Infrared  camera  aboard  a  cherry  picker:            Wind     Time  (s)  
  • 14. Γ(x, y) = P uw(x, y), Mf , Σ, δ •   Es/ma/on  of  2  fuel  model  parameters   Control  parameters   Grassland  controlled  burning   Init.  condi/on   t  =  78s   Assimila/on   Forecast   Free  run   Op/mal   •   1  data  assimila/on  cycle   Grassland  controlled  burning   14  14  2 Applica/on  case   14   §   moisture  content  Mf   §   par/cle  surface/volume  Σ   t  =  50s   t  =  106s   observa/on   (assumed  constant  over  the   fire  dura*on)            Wind     (very  high  observa/on  confidence                        match  the  observed  fronts)    
  • 15. •   2-­‐parameter  EKF  results:            Wind     • Uncertainty  modeling   o Observa/on  (camera  spa/al   resolu/on):  4.7cm   o Model:  30%  uncertainty.   Grassland  controlled  burning  Grassland  controlled  burning   15  15  2 Applica/on  case   15   Control  parameters   Prior   Solu*on   Moisture  content  (%)   21.7   11.0   Fuel  part.  S/V  (m-­‐1)   4921   13193   Ÿ observa/on   -­‐-­‐  free  run   -­‐-­‐  op/mal     X  (m)   Y  (m)   • Comments   o Reduc/on  of  uncertainty  on   simula/on.   o The  corrected  parameters  stay   within  a  physical  range.  
  • 16. •   4-­‐parameter  EKF  results:            Wind     Grassland  controlled  burning  Grassland  controlled  burning   16  16  2 Applica/on  case   16   Control  parameters   Prior   Solu*on   Moisture  content  (%)   21.7   7.1   Fuel  part.  S/V  (m-­‐1)   4921   7185   Wind  magnitude  (m/s)   1.3   0.38   Wind  direc/on  (°)   307   300   Ÿ observa/on   -­‐-­‐  free  run   -­‐-­‐  op/mal  (4p)   -­‐-­‐  op/mal  (2p)     X  (m)   Y  (m)   • Comments   o More  consistent  front  topology   with  respect  to  the  observa/ons.   o Dynamic  learning:  the  value  of   the  parameters  is  case-­‐   dependent.   Γ(x, y) = P uw(x, y), Mf , Σ, δ
  • 17. •   Predic/ve  capability:  improve  forecast  of  fire  spread   Grassland  controlled  burning  Grassland  controlled  burning   17  17  2 Applica/on  case   17   Init.  condi/on   t  =  78s   Assimila/on   Forecast   Op/mal   t  =  50s   t  =  106s   Observa/on   Y  (m)   X  (m)   X  (m)   Ÿ observa/on   -­‐-­‐  free  run   -­‐-­‐  op/mal  (4p)   -­‐-­‐  op/mal  (2p)     Y  (m)   Step.2  -­‐  Forecast     Step.1  -­‐  Correc/on  
  • 18. Data  assimila*on  for  flame  spread  propaga*on:     Proof  of  concept     •   Development  of  a  prototype  able  to    ↘  Achieve  a  mul/-­‐parameter  es/ma/on.   ↘  Track  fire  front  loca/ons  for  real  and  synthe/cal  observa/ons.   18  Conclusion   Ÿ observa/on   -­‐-­‐  free  run   -­‐-­‐  op/mal  (4p)                                                          Ongoing  research     •   Ensemble-­‐based  approach  (Monte-­‐ Carlo  combined  to  data  assimila/on).   •   More  accurate  descrip/on  of  the  PDFs   of  the  model  inputs  and  outputs.  
  • 19.     Thank  you  for  your  a9en:on!     Rochoux  et  al.  (2012),  Proc.  Combust.  Inst.