SlideShare une entreprise Scribd logo
1  sur  40
Télécharger pour lire hors ligne
Mod-Arg Form
Mod-Arg Form
y

z = x + iy
y

O

x

x

Modulus
The modulus of a complex number is the
length of the vector OZ
Mod-Arg Form
y

z = x + iy

r z

O

x

Modulus
The modulus of a complex number is the
length of the vector OZ
r 2  x2  y2
r  x2  y2

y
x
Mod-Arg Form
y

z = x + iy
r z

O

x

Modulus
The modulus of a complex number is the
length of the vector OZ
r 2  x2  y2
r  x2  y2

y
x

z  x2  y2
Mod-Arg Form
y

z = x + iy
r z

  arg z
O

x

Modulus
The modulus of a complex number is the
length of the vector OZ
r 2  x2  y2
r  x2  y2

y
x

z  x2  y2
Argument
The argument of a complex number is
the angle the vector OZ makes with the
positive real (x) axis
Mod-Arg Form
y

z = x + iy
r z

  arg z
O

x

Modulus
The modulus of a complex number is the
length of the vector OZ
r 2  x2  y2
r  x2  y2

y
x

z  x2  y2
Argument
The argument of a complex number is
the angle the vector OZ makes with the
positive real (x) axis
 y
arg z  tan  
 x
1

   arg z  
e.g . Find the modulus and argument of 4  4i
e.g . Find the modulus and argument of 4  4i
4  4i  4 2   4 

2

 32
4 2
e.g . Find the modulus and argument of 4  4i
4  4i  4   4 
2

 32
4 2

2

 4
arg4  4i   tan  
 4 
 tan 1  1
1
e.g . Find the modulus and argument of 4  4i
4  4i  4   4 
2

 32
4 2

2

 4
arg4  4i   tan  
 4 
 tan 1  1
1





4
e.g . Find the modulus and argument of 4  4i
4  4i  4   4 
2

 32
4 2

2

 4
arg4  4i   tan  
 4 
 tan 1  1
1





4
Every complex number can be written in terms of its modulus and
argument
e.g . Find the modulus and argument of 4  4i
4  4i  4   4 
2

 32
4 2

2

 4
arg4  4i   tan  
 4 
 tan 1  1
1





4
Every complex number can be written in terms of its modulus and
argument
z  x  iy
 r cos  ir sin 
 r cos  i sin  
e.g . Find the modulus and argument of 4  4i

4  4i  4   4 
2

2

 32
4 2

 4
arg4  4i   tan  
 4 
 tan 1  1
1





4
Every complex number can be written in terms of its modulus and
argument
z  x  iy
 r cos  ir sin 
 r cos  i sin  
The mod-arg form of z is;
z  r cos  i sin  
z  rcis

where; r  z

  arg z
e.g. i  4  4i

e.g. i  4  4i  4 2cis  


 4

e.g. i  4  4i  4 2cis  


 4
ii  3  i

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

 4
2

2

 12

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

 4
2

2

1

2

arg z  tan 1




6

1
3

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

2

1

2

arg z  tan 1


 4
2
 3  i  2cis


6



6

1
3

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

2

arg z  tan 1

1

2



 4
2
 3  i  2cis

 ii  Convert 6cis


6


6

to Cartsian form



6

1
3

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

2

arg z  tan 1

1

2



 4
2
 3  i  2cis

 ii  Convert 6cis
6cis


6



6




6

to Cartsian form

 6(cos





 i sin )
6
6

6

1
3

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

2

arg z  tan 1

1

2



 4
2
 3  i  2cis

 ii  Convert 6cis
6cis


6






6

to Cartsian form

 6(cos





 i sin )
6
6
6
3 1
 6(
 i)
2 2
 3 3  3i

6

1
3
Mod-Arg Relations
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2

NOTE:
Multiplication
rotates z1 by
arg z2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 

NOTE:
Multiplication
rotates z1 by
arg z2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 

 r1r2 cos1   2   i sin 1   2 
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 

 r1r2 cos1   2   i sin 1   2 
 z1 z 2  r1r2

 z1 z 2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 

 r1r2 cos1   2   i sin 1   2 
 z1 z 2  r1r2
arg z1 z 2   1   2

 z1 z 2

 arg z1  arg z 2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 

 r1r2 cos1   2   i sin 1   2 
 z1 z 2  r1r2
arg z1 z 2   1   2

 z1 z 2

 arg z1  arg z 2

NOTE: it follows that;
z1 z 2 z3  z n  z1 z 2 z3  z n
arg z1 z 2 z3  z n   arg z1  arg z 2  arg z3    arg z n
z1
z1
2  
z2 z2

z 
arg 1   arg z1  arg z 2
 z2 
z1
z1
2  
z2 z2

z 
arg 1   arg z1  arg z 2
 z2 
NOTE: it follows that;
z1 z 2
z1 z 2

z3 z 4 z3 z 4
 z1 z 2 
arg

 z z   arg z1  arg z 2  arg z3  arg z 4
 3 4
z1
z1
2  
z2 z2

z 
arg 1   arg z1  arg z 2
 z2 
NOTE: it follows that;
z1 z 2
z1 z 2

z3 z 4 z3 z 4
 z1 z 2 
arg

 z z   arg z1  arg z 2  arg z3  arg z 4
 3 4

3 z  z
n

n

argz n   n arg z
e.g. Find the modulus and argument of z 

5  i  2  i 
3  2i
e.g. Find the modulus and argument of z 
2
2
52  12  2    1
z
32  2 2

5  i  2  i 
3  2i
e.g. Find the modulus and argument of z 
2
2
52  12  2    1
z
32  2 2
26 5

13
 10

5  i  2  i 
3  2i
5  i  2  i 

e.g. Find the modulus and argument of z 
3  2i
2
2
2
2
5  1  2    1
1
2
1
z
2
2
arg z  tan 1    tan 1    tan 1  
 
 
 
3 2
5
  2
 3
26 5

13
 10
5  i  2  i 

e.g. Find the modulus and argument of z 
3  2i
2
2
2
2
5  1  2    1
1
2
1
z
2
2
arg z  tan 1    tan 1    tan 1  
 
 
 
3 2
5
  2
 3
26 5

 1119   153 26  33 41
13
 175 48
 10
5  i  2  i 

e.g. Find the modulus and argument of z 
3  2i
2
2
2
2
5  1  2    1
1
2
1
z
2
2
arg z  tan 1    tan 1    tan 1  
 
 
 
3 2
5
  2
 3
26 5

 1119   153 26  33 41
13
 175 48
 10

Patel: Exercise 4B; evens
Patel: Exercise 4C; 1 to 10 evens
Cambridge: Exercise 1D; 9, 11, 13, 14, 16, 20

Contenu connexe

Tendances

Quantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manualQuantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manualSelina333
 
Indefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution MethodIndefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution MethodScott Bailey
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201Drradz Maths
 
1.3 solving equations t
1.3 solving equations t1.3 solving equations t
1.3 solving equations tmath260
 
Polynomial Function and Synthetic Division
Polynomial Function and Synthetic DivisionPolynomial Function and Synthetic Division
Polynomial Function and Synthetic DivisionElceed
 
【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)Kazuhiro Suga
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
Trigo cheat sheet_reduced
Trigo cheat sheet_reducedTrigo cheat sheet_reduced
Trigo cheat sheet_reducedKyro Fitkry
 
Trig substitution
Trig substitutionTrig substitution
Trig substitutiondynx24
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 T01 04 mod arg relations
X2 T01 04 mod arg relationsX2 T01 04 mod arg relations
X2 T01 04 mod arg relationsNigel Simmons
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equationsriyadutta1996
 
Introduction about Geometric Algebra
Introduction about Geometric AlgebraIntroduction about Geometric Algebra
Introduction about Geometric AlgebraVitor Pamplona
 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201Drradz Maths
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Diamond and box factoring student version
Diamond and box factoring student versionDiamond and box factoring student version
Diamond and box factoring student versionvelmon23
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Compound Inequalities
Compound InequalitiesCompound Inequalities
Compound InequalitiesBitsy Griffin
 

Tendances (20)

Quantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manualQuantum mechanics 1st edition mc intyre solutions manual
Quantum mechanics 1st edition mc intyre solutions manual
 
Indefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution MethodIndefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution Method
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201
 
1.3 solving equations t
1.3 solving equations t1.3 solving equations t
1.3 solving equations t
 
Polynomial Function and Synthetic Division
Polynomial Function and Synthetic DivisionPolynomial Function and Synthetic Division
Polynomial Function and Synthetic Division
 
【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
Trigo cheat sheet_reduced
Trigo cheat sheet_reducedTrigo cheat sheet_reduced
Trigo cheat sheet_reduced
 
Trig substitution
Trig substitutionTrig substitution
Trig substitution
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 T01 04 mod arg relations
X2 T01 04 mod arg relationsX2 T01 04 mod arg relations
X2 T01 04 mod arg relations
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equations
 
lelm501.pdf
lelm501.pdflelm501.pdf
lelm501.pdf
 
Introduction about Geometric Algebra
Introduction about Geometric AlgebraIntroduction about Geometric Algebra
Introduction about Geometric Algebra
 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201
 
Phy_2_Mid_Lecture_3.pdf
Phy_2_Mid_Lecture_3.pdfPhy_2_Mid_Lecture_3.pdf
Phy_2_Mid_Lecture_3.pdf
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Diamond and box factoring student version
Diamond and box factoring student versionDiamond and box factoring student version
Diamond and box factoring student version
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Compound Inequalities
Compound InequalitiesCompound Inequalities
Compound Inequalities
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

X2 t01 04 mod arg form(2013)

  • 2. Mod-Arg Form y z = x + iy y O x x Modulus The modulus of a complex number is the length of the vector OZ
  • 3. Mod-Arg Form y z = x + iy r z O x Modulus The modulus of a complex number is the length of the vector OZ r 2  x2  y2 r  x2  y2 y x
  • 4. Mod-Arg Form y z = x + iy r z O x Modulus The modulus of a complex number is the length of the vector OZ r 2  x2  y2 r  x2  y2 y x z  x2  y2
  • 5. Mod-Arg Form y z = x + iy r z   arg z O x Modulus The modulus of a complex number is the length of the vector OZ r 2  x2  y2 r  x2  y2 y x z  x2  y2 Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis
  • 6. Mod-Arg Form y z = x + iy r z   arg z O x Modulus The modulus of a complex number is the length of the vector OZ r 2  x2  y2 r  x2  y2 y x z  x2  y2 Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis  y arg z  tan    x 1    arg z  
  • 7. e.g . Find the modulus and argument of 4  4i
  • 8. e.g . Find the modulus and argument of 4  4i 4  4i  4 2   4  2  32 4 2
  • 9. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2  32 4 2 2  4 arg4  4i   tan    4   tan 1  1 1
  • 10. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2  32 4 2 2  4 arg4  4i   tan    4   tan 1  1 1   4
  • 11. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2  32 4 2 2  4 arg4  4i   tan    4   tan 1  1 1   4 Every complex number can be written in terms of its modulus and argument
  • 12. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2  32 4 2 2  4 arg4  4i   tan    4   tan 1  1 1   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin  
  • 13. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2 2  32 4 2  4 arg4  4i   tan    4   tan 1  1 1   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is; z  r cos  i sin   z  rcis where; r  z   arg z
  • 14. e.g. i  4  4i
  • 15.  e.g. i  4  4i  4 2cis      4
  • 16.  e.g. i  4  4i  4 2cis      4 ii  3  i
  • 17.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3  4 2 2  12
  • 18.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3  4 2 2 1 2 arg z  tan 1   6 1 3
  • 19.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1   4 2  3  i  2cis  6  6 1 3
  • 20.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 arg z  tan 1 1 2   4 2  3  i  2cis  ii  Convert 6cis  6  6 to Cartsian form  6 1 3
  • 21.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 arg z  tan 1 1 2   4 2  3  i  2cis  ii  Convert 6cis 6cis  6  6   6 to Cartsian form  6(cos    i sin ) 6 6 6 1 3
  • 22.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 arg z  tan 1 1 2   4 2  3  i  2cis  ii  Convert 6cis 6cis  6    6 to Cartsian form  6(cos    i sin ) 6 6 6 3 1  6(  i) 2 2  3 3  3i 6 1 3
  • 24. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2
  • 25. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 NOTE: Multiplication rotates z1 by arg z2
  • 26. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2  NOTE: Multiplication rotates z1 by arg z2
  • 27. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 
  • 28. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2   r1r2 cos1   2   i sin 1   2 
  • 29. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2   r1r2 cos1   2   i sin 1   2   z1 z 2  r1r2  z1 z 2
  • 30. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2   r1r2 cos1   2   i sin 1   2   z1 z 2  r1r2 arg z1 z 2   1   2  z1 z 2  arg z1  arg z 2
  • 31. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2   r1r2 cos1   2   i sin 1   2   z1 z 2  r1r2 arg z1 z 2   1   2  z1 z 2  arg z1  arg z 2 NOTE: it follows that; z1 z 2 z3  z n  z1 z 2 z3  z n arg z1 z 2 z3  z n   arg z1  arg z 2  arg z3    arg z n
  • 32. z1 z1 2   z2 z2 z  arg 1   arg z1  arg z 2  z2 
  • 33. z1 z1 2   z2 z2 z  arg 1   arg z1  arg z 2  z2  NOTE: it follows that; z1 z 2 z1 z 2  z3 z 4 z3 z 4  z1 z 2  arg   z z   arg z1  arg z 2  arg z3  arg z 4  3 4
  • 34. z1 z1 2   z2 z2 z  arg 1   arg z1  arg z 2  z2  NOTE: it follows that; z1 z 2 z1 z 2  z3 z 4 z3 z 4  z1 z 2  arg   z z   arg z1  arg z 2  arg z3  arg z 4  3 4 3 z  z n n argz n   n arg z
  • 35. e.g. Find the modulus and argument of z  5  i  2  i  3  2i
  • 36. e.g. Find the modulus and argument of z  2 2 52  12  2    1 z 32  2 2 5  i  2  i  3  2i
  • 37. e.g. Find the modulus and argument of z  2 2 52  12  2    1 z 32  2 2 26 5  13  10 5  i  2  i  3  2i
  • 38. 5  i  2  i  e.g. Find the modulus and argument of z  3  2i 2 2 2 2 5  1  2    1 1 2 1 z 2 2 arg z  tan 1    tan 1    tan 1         3 2 5   2  3 26 5  13  10
  • 39. 5  i  2  i  e.g. Find the modulus and argument of z  3  2i 2 2 2 2 5  1  2    1 1 2 1 z 2 2 arg z  tan 1    tan 1    tan 1         3 2 5   2  3 26 5   1119   153 26  33 41 13  175 48  10
  • 40. 5  i  2  i  e.g. Find the modulus and argument of z  3  2i 2 2 2 2 5  1  2    1 1 2 1 z 2 2 arg z  tan 1    tan 1    tan 1         3 2 5   2  3 26 5   1119   153 26  33 41 13  175 48  10 Patel: Exercise 4B; evens Patel: Exercise 4C; 1 to 10 evens Cambridge: Exercise 1D; 9, 11, 13, 14, 16, 20