SlideShare une entreprise Scribd logo
1  sur  40
Télécharger pour lire hors ligne
Mod-Arg Form
Mod-Arg Form
y

z = x + iy
y

O

x

x

Modulus
The modulus of a complex number is the
length of the vector OZ
Mod-Arg Form
y

z = x + iy

r z

O

x

Modulus
The modulus of a complex number is the
length of the vector OZ
r 2  x2  y2
r  x2  y2

y
x
Mod-Arg Form
y

z = x + iy
r z

O

x

Modulus
The modulus of a complex number is the
length of the vector OZ
r 2  x2  y2
r  x2  y2

y
x

z  x2  y2
Mod-Arg Form
y

z = x + iy
r z

  arg z
O

x

Modulus
The modulus of a complex number is the
length of the vector OZ
r 2  x2  y2
r  x2  y2

y
x

z  x2  y2
Argument
The argument of a complex number is
the angle the vector OZ makes with the
positive real (x) axis
Mod-Arg Form
y

z = x + iy
r z

  arg z
O

x

Modulus
The modulus of a complex number is the
length of the vector OZ
r 2  x2  y2
r  x2  y2

y
x

z  x2  y2
Argument
The argument of a complex number is
the angle the vector OZ makes with the
positive real (x) axis
 y
arg z  tan  
 x
1

   arg z  
e.g . Find the modulus and argument of 4  4i
e.g . Find the modulus and argument of 4  4i
4  4i  4 2   4 

2

 32
4 2
e.g . Find the modulus and argument of 4  4i
4  4i  4   4 
2

 32
4 2

2

 4
arg4  4i   tan  
 4 
 tan 1  1
1
e.g . Find the modulus and argument of 4  4i
4  4i  4   4 
2

 32
4 2

2

 4
arg4  4i   tan  
 4 
 tan 1  1
1





4
e.g . Find the modulus and argument of 4  4i
4  4i  4   4 
2

 32
4 2

2

 4
arg4  4i   tan  
 4 
 tan 1  1
1





4
Every complex number can be written in terms of its modulus and
argument
e.g . Find the modulus and argument of 4  4i
4  4i  4   4 
2

 32
4 2

2

 4
arg4  4i   tan  
 4 
 tan 1  1
1





4
Every complex number can be written in terms of its modulus and
argument
z  x  iy
 r cos  ir sin 
 r cos  i sin  
e.g . Find the modulus and argument of 4  4i

4  4i  4   4 
2

2

 32
4 2

 4
arg4  4i   tan  
 4 
 tan 1  1
1





4
Every complex number can be written in terms of its modulus and
argument
z  x  iy
 r cos  ir sin 
 r cos  i sin  
The mod-arg form of z is;
z  r cos  i sin  
z  rcis

where; r  z

  arg z
e.g. i  4  4i

e.g. i  4  4i  4 2cis  


 4

e.g. i  4  4i  4 2cis  


 4
ii  3  i

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

 4
2

2

 12

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

 4
2

2

1

2

arg z  tan 1




6

1
3

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

2

1

2

arg z  tan 1


 4
2
 3  i  2cis


6



6

1
3

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

2

arg z  tan 1

1

2



 4
2
 3  i  2cis

 ii  Convert 6cis


6


6

to Cartsian form



6

1
3

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

2

arg z  tan 1

1

2



 4
2
 3  i  2cis

 ii  Convert 6cis
6cis


6



6




6

to Cartsian form

 6(cos





 i sin )
6
6

6

1
3

e.g. i  4  4i  4 2cis  


 4
ii  3  i
z

 3

2

arg z  tan 1

1

2



 4
2
 3  i  2cis

 ii  Convert 6cis
6cis


6






6

to Cartsian form

 6(cos





 i sin )
6
6
6
3 1
 6(
 i)
2 2
 3 3  3i

6

1
3
Mod-Arg Relations
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2

NOTE:
Multiplication
rotates z1 by
arg z2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 

NOTE:
Multiplication
rotates z1 by
arg z2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 

 r1r2 cos1   2   i sin 1   2 
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 

 r1r2 cos1   2   i sin 1   2 
 z1 z 2  r1r2

 z1 z 2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 

 r1r2 cos1   2   i sin 1   2 
 z1 z 2  r1r2
arg z1 z 2   1   2

 z1 z 2

 arg z1  arg z 2
Mod-Arg Relations
1 z1 z2  z1 z2
arg z1 z 2   arg z1  arg z 2
Proof: let z1  r1cis1 and z 2  r2 cis 2

NOTE:
Multiplication
rotates z1 by
arg z2

z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2 
 r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2 

 r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 

 r1r2 cos1   2   i sin 1   2 
 z1 z 2  r1r2
arg z1 z 2   1   2

 z1 z 2

 arg z1  arg z 2

NOTE: it follows that;
z1 z 2 z3  z n  z1 z 2 z3  z n
arg z1 z 2 z3  z n   arg z1  arg z 2  arg z3    arg z n
z1
z1
2  
z2 z2

z 
arg 1   arg z1  arg z 2
 z2 
z1
z1
2  
z2 z2

z 
arg 1   arg z1  arg z 2
 z2 
NOTE: it follows that;
z1 z 2
z1 z 2

z3 z 4 z3 z 4
 z1 z 2 
arg

 z z   arg z1  arg z 2  arg z3  arg z 4
 3 4
z1
z1
2  
z2 z2

z 
arg 1   arg z1  arg z 2
 z2 
NOTE: it follows that;
z1 z 2
z1 z 2

z3 z 4 z3 z 4
 z1 z 2 
arg

 z z   arg z1  arg z 2  arg z3  arg z 4
 3 4

3 z  z
n

n

argz n   n arg z
e.g. Find the modulus and argument of z 

5  i  2  i 
3  2i
e.g. Find the modulus and argument of z 
2
2
52  12  2    1
z
32  2 2

5  i  2  i 
3  2i
e.g. Find the modulus and argument of z 
2
2
52  12  2    1
z
32  2 2
26 5

13
 10

5  i  2  i 
3  2i
5  i  2  i 

e.g. Find the modulus and argument of z 
3  2i
2
2
2
2
5  1  2    1
1
2
1
z
2
2
arg z  tan 1    tan 1    tan 1  
 
 
 
3 2
5
  2
 3
26 5

13
 10
5  i  2  i 

e.g. Find the modulus and argument of z 
3  2i
2
2
2
2
5  1  2    1
1
2
1
z
2
2
arg z  tan 1    tan 1    tan 1  
 
 
 
3 2
5
  2
 3
26 5

 1119   153 26  33 41
13
 175 48
 10
5  i  2  i 

e.g. Find the modulus and argument of z 
3  2i
2
2
2
2
5  1  2    1
1
2
1
z
2
2
arg z  tan 1    tan 1    tan 1  
 
 
 
3 2
5
  2
 3
26 5

 1119   153 26  33 41
13
 175 48
 10

Patel: Exercise 4B; evens
Patel: Exercise 4C; 1 to 10 evens
Cambridge: Exercise 1D; 9, 11, 13, 14, 16, 20

Contenu connexe

Tendances (20)

Lesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolution
 
parabola class 12
parabola class 12parabola class 12
parabola class 12
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
1576 parabola
1576 parabola1576 parabola
1576 parabola
 
Integral Domains
Integral DomainsIntegral Domains
Integral Domains
 
Hyperbola
HyperbolaHyperbola
Hyperbola
 
Translating standard form into vertex form if a=1
Translating standard form into vertex form if a=1Translating standard form into vertex form if a=1
Translating standard form into vertex form if a=1
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
U unit3 vm
U unit3 vmU unit3 vm
U unit3 vm
 
05 calcolo differenziale 2017 imes
05 calcolo differenziale 2017 imes05 calcolo differenziale 2017 imes
05 calcolo differenziale 2017 imes
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
Lesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesLesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinates
 
Complex integration
Complex integrationComplex integration
Complex integration
 
Partial Derivatives.pdf
Partial Derivatives.pdfPartial Derivatives.pdf
Partial Derivatives.pdf
 
Indeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleIndeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital Rule
 
Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fraction
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Parabola
ParabolaParabola
Parabola
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

X2 t01 04 mod arg form(2013)

  • 2. Mod-Arg Form y z = x + iy y O x x Modulus The modulus of a complex number is the length of the vector OZ
  • 3. Mod-Arg Form y z = x + iy r z O x Modulus The modulus of a complex number is the length of the vector OZ r 2  x2  y2 r  x2  y2 y x
  • 4. Mod-Arg Form y z = x + iy r z O x Modulus The modulus of a complex number is the length of the vector OZ r 2  x2  y2 r  x2  y2 y x z  x2  y2
  • 5. Mod-Arg Form y z = x + iy r z   arg z O x Modulus The modulus of a complex number is the length of the vector OZ r 2  x2  y2 r  x2  y2 y x z  x2  y2 Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis
  • 6. Mod-Arg Form y z = x + iy r z   arg z O x Modulus The modulus of a complex number is the length of the vector OZ r 2  x2  y2 r  x2  y2 y x z  x2  y2 Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis  y arg z  tan    x 1    arg z  
  • 7. e.g . Find the modulus and argument of 4  4i
  • 8. e.g . Find the modulus and argument of 4  4i 4  4i  4 2   4  2  32 4 2
  • 9. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2  32 4 2 2  4 arg4  4i   tan    4   tan 1  1 1
  • 10. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2  32 4 2 2  4 arg4  4i   tan    4   tan 1  1 1   4
  • 11. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2  32 4 2 2  4 arg4  4i   tan    4   tan 1  1 1   4 Every complex number can be written in terms of its modulus and argument
  • 12. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2  32 4 2 2  4 arg4  4i   tan    4   tan 1  1 1   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin  
  • 13. e.g . Find the modulus and argument of 4  4i 4  4i  4   4  2 2  32 4 2  4 arg4  4i   tan    4   tan 1  1 1   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is; z  r cos  i sin   z  rcis where; r  z   arg z
  • 14. e.g. i  4  4i
  • 15.  e.g. i  4  4i  4 2cis      4
  • 16.  e.g. i  4  4i  4 2cis      4 ii  3  i
  • 17.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3  4 2 2  12
  • 18.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3  4 2 2 1 2 arg z  tan 1   6 1 3
  • 19.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1   4 2  3  i  2cis  6  6 1 3
  • 20.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 arg z  tan 1 1 2   4 2  3  i  2cis  ii  Convert 6cis  6  6 to Cartsian form  6 1 3
  • 21.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 arg z  tan 1 1 2   4 2  3  i  2cis  ii  Convert 6cis 6cis  6  6   6 to Cartsian form  6(cos    i sin ) 6 6 6 1 3
  • 22.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 arg z  tan 1 1 2   4 2  3  i  2cis  ii  Convert 6cis 6cis  6    6 to Cartsian form  6(cos    i sin ) 6 6 6 3 1  6(  i) 2 2  3 3  3i 6 1 3
  • 24. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2
  • 25. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 NOTE: Multiplication rotates z1 by arg z2
  • 26. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2  NOTE: Multiplication rotates z1 by arg z2
  • 27. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2 
  • 28. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2   r1r2 cos1   2   i sin 1   2 
  • 29. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2   r1r2 cos1   2   i sin 1   2   z1 z 2  r1r2  z1 z 2
  • 30. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2   r1r2 cos1   2   i sin 1   2   z1 z 2  r1r2 arg z1 z 2   1   2  z1 z 2  arg z1  arg z 2
  • 31. Mod-Arg Relations 1 z1 z2  z1 z2 arg z1 z 2   arg z1  arg z 2 Proof: let z1  r1cis1 and z 2  r2 cis 2 NOTE: Multiplication rotates z1 by arg z2 z1 z 2  r1 cos1  i sin 1   r2 cos 2  i sin  2   r1r2 cos1 cos 2  i sin 1 cos 2  i cos1 sin  2  sin 1 sin  2   r1r2 cos1 cos 2  sin 1 sin  2   isin 1 cos 2  cos1 sin  2   r1r2 cos1   2   i sin 1   2   z1 z 2  r1r2 arg z1 z 2   1   2  z1 z 2  arg z1  arg z 2 NOTE: it follows that; z1 z 2 z3  z n  z1 z 2 z3  z n arg z1 z 2 z3  z n   arg z1  arg z 2  arg z3    arg z n
  • 32. z1 z1 2   z2 z2 z  arg 1   arg z1  arg z 2  z2 
  • 33. z1 z1 2   z2 z2 z  arg 1   arg z1  arg z 2  z2  NOTE: it follows that; z1 z 2 z1 z 2  z3 z 4 z3 z 4  z1 z 2  arg   z z   arg z1  arg z 2  arg z3  arg z 4  3 4
  • 34. z1 z1 2   z2 z2 z  arg 1   arg z1  arg z 2  z2  NOTE: it follows that; z1 z 2 z1 z 2  z3 z 4 z3 z 4  z1 z 2  arg   z z   arg z1  arg z 2  arg z3  arg z 4  3 4 3 z  z n n argz n   n arg z
  • 35. e.g. Find the modulus and argument of z  5  i  2  i  3  2i
  • 36. e.g. Find the modulus and argument of z  2 2 52  12  2    1 z 32  2 2 5  i  2  i  3  2i
  • 37. e.g. Find the modulus and argument of z  2 2 52  12  2    1 z 32  2 2 26 5  13  10 5  i  2  i  3  2i
  • 38. 5  i  2  i  e.g. Find the modulus and argument of z  3  2i 2 2 2 2 5  1  2    1 1 2 1 z 2 2 arg z  tan 1    tan 1    tan 1         3 2 5   2  3 26 5  13  10
  • 39. 5  i  2  i  e.g. Find the modulus and argument of z  3  2i 2 2 2 2 5  1  2    1 1 2 1 z 2 2 arg z  tan 1    tan 1    tan 1         3 2 5   2  3 26 5   1119   153 26  33 41 13  175 48  10
  • 40. 5  i  2  i  e.g. Find the modulus and argument of z  3  2i 2 2 2 2 5  1  2    1 1 2 1 z 2 2 arg z  tan 1    tan 1    tan 1         3 2 5   2  3 26 5   1119   153 26  33 41 13  175 48  10 Patel: Exercise 4B; evens Patel: Exercise 4C; 1 to 10 evens Cambridge: Exercise 1D; 9, 11, 13, 14, 16, 20