SlideShare une entreprise Scribd logo
1  sur  27
Télécharger pour lire hors ligne
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 

z  12   1

2

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n

this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5



z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
2  cis


 4 

4
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

1
1 
 4 2 

i

2
2 

 4  4i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

e.g .i  z 2  4i

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 





k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 




5

z  2cis ,2cis
4
4

k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y

x

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y
2cis



x

z  2  2i, 2  2i

4
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

k  0,1,, n  1

e.g .i  z 2  4i

OR
2
y
z  4cis

2
2cis
4
 2k   

2  k  0,1
z  2cis 
2 
x




3
2cis 
5

z  2cis ,2cis
4
4
4
 1  1 i ,2  1  1 i 
z  2
z  2  2i, 2  2i

 
2  
2
2 
 2
 ii 

x 4  16  0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 




k  0,1, 2,3

3
x  2cis 0, 2cis , 2cis , 2cis
2
2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis 0
x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis


2

2cis

2cis 0
x
2cis 


2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis

Patel: Exercise 4E;
1 to 4 ac


2

2cis

2cis 0
x
2cis 

Cambridge: Exercise 7A;
1, 2, 3 abef, 5, 6, 7,
9 to 14, 16 to 18


2

Contenu connexe

Tendances

Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
Series solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular pointSeries solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular pointvaibhav tailor
 
Complex analysis
Complex analysisComplex analysis
Complex analysissujathavvv
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability Seyid Kadher
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrationsitutor
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1 Pokarn Narkhede
 
formulation of first order linear and nonlinear 2nd order differential equation
formulation of first order linear and nonlinear 2nd order differential equationformulation of first order linear and nonlinear 2nd order differential equation
formulation of first order linear and nonlinear 2nd order differential equationMahaswari Jogia
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsmuhammadabullah
 
Relations & Functions
Relations & FunctionsRelations & Functions
Relations & FunctionsBitsy Griffin
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theoremitutor
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations University of Windsor
 

Tendances (20)

Bessel function
Bessel functionBessel function
Bessel function
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Series solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular pointSeries solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular point
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Relaxation method
Relaxation methodRelaxation method
Relaxation method
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuriLINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
 
INTERPOLATION
INTERPOLATIONINTERPOLATION
INTERPOLATION
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
Types of RELATIONS
Types of RELATIONSTypes of RELATIONS
Types of RELATIONS
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1
 
Fourier series
Fourier seriesFourier series
Fourier series
 
formulation of first order linear and nonlinear 2nd order differential equation
formulation of first order linear and nonlinear 2nd order differential equationformulation of first order linear and nonlinear 2nd order differential equation
formulation of first order linear and nonlinear 2nd order differential equation
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Relations & Functions
Relations & FunctionsRelations & Functions
Relations & Functions
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations
 

En vedette

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)Nigel Simmons
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers gandhinagar
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbersLeo Crisologo
 
Power Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesPower Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesShubham Sharma
 
Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian seriesNishant Patel
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersswartzje
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesHernanFula
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersitutor
 

En vedette (20)

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
Unit 6.6
Unit 6.6Unit 6.6
Unit 6.6
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Chap4
Chap4Chap4
Chap4
 
Power Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesPower Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's Series
 
Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian series
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 

X2 t01 09 de moivres theorem

  • 1. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n
  • 2. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n  r n cos n  i sin n 
  • 3. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n 
  • 4. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n  z  12   1 2  2   1 arg z  tan    1  1   4
  • 5. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan    1  1   4
  • 6. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5  2  cis    4   4 1
  • 7. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1
  • 8. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4  
  • 9. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4   1 1   4 2   i  2 2    4  4i
  • 10. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n k  0,1,, n  1
  • 11. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n e.g .i  z 2  4i k  0,1,, n  1
  • 12. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2 k  0,1,, n  1
  • 13. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      k  0,1 k  0,1,, n  1
  • 14. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      5  z  2cis ,2cis 4 4 k  0,1 k  0,1,, n  1
  • 15. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 z  2  2i, 2  2i
  • 16. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y x z  2  2i, 2  2i
  • 17. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y 2cis  x z  2  2i, 2  2i 4
  • 18. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n k  0,1,, n  1 e.g .i  z 2  4i  OR 2 y z  4cis  2 2cis 4  2k     2  k  0,1 z  2cis  2  x     3 2cis  5  z  2cis ,2cis 4 4 4  1  1 i ,2  1  1 i  z  2 z  2  2i, 2  2i    2   2 2   2
  • 19.  ii  x 4  16  0
  • 20.  ii  x 4  16  0 x 4  16 x 4  16cis 0
  • 21.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3
  • 22.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4    k  0,1, 2,3 3 x  2cis 0, 2cis , 2cis , 2cis 2 2
  • 23.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i
  • 24.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y x
  • 25.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis 0 x
  • 26.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis  2 2cis 2cis 0 x 2cis   2
  • 27.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis Patel: Exercise 4E; 1 to 4 ac  2 2cis 2cis 0 x 2cis  Cambridge: Exercise 7A; 1, 2, 3 abef, 5, 6, 7, 9 to 14, 16 to 18  2