SlideShare une entreprise Scribd logo
1  sur  20
space is not fundamental.
time might be.
Sean Carroll, Caltech
http://preposterousuniverse.com/
“What is and is not fundamental”
is not fundamental.
What features will be important ingredients in
an ultimate (as yet hypothetical) comprehensive
theory of everything.
Theories often have very different-looking but
equivalent descriptions (e.g. soliton/particle
duality). Who is to say what is “fundamental”?
But some things are certainly not fundamental;
e.g. temperature. Theories using them are not
comprehensive. Space is like that.
Classical Mechanics
Start with a set of coordinates .
These obey second-order equations of motion:
Specifying the coordinates alone doesn’t determine
a solution; need to give and .
Coordinates qi and momenta pj.
Hamiltonian function H(qi, pj).
Hamilton’s equations:
Together we have a = {qi, pj}, defining phase space .
A single point a(t0) in  defines a unique trajectory.
Hamiltonian Mechanics
Phase space is a symplectic manifold.
A symplectic form  is a closed, invertible 2-form.
Trajectories are integral curves of the Hamiltonian
vector field,

a(t)
Xa
The coordinate/momentum distinction is blurred.
Conventionally:
cotangent bundle T*M
= {qi, pi}
= phase space 
configuration space M,
coordinates qi
symplectic form
 =  dpi  dqi
(automatic)
Every cotangent bundle is a symplectic manifold, but
not every symplectic manifold is a cotangent bundle.
Symplecticity is more “fundamental” than
coordinate/momentum distinction.
Mechanics is invariant under canonical transformations:
{q, p}  {Q(q,p), P(q,p)}
that leave the form of Hamilton’s equations unchanged.
Example:
Nothing “fundamental” about which are the coordinates,
which are the momenta.
Qi = pi ,
Pj = -qj .
Why don’t we live in momentum space?
Think of interacting harmonic oscillators.
Interactions are local in position, not in momentum.
Better:
position is the thing in which interactions are local.
Quantum mechanics
States are rays in Hilbert space: |.
Evolution is governed by the Schrödinger equation:
Energy eigenbasis:
Dynamics are defined by the eigenvalues {En},
the spectrum of the Hamiltonian.
Where is “space” in the quantum state?
We can define a position operator with eigenstates
in terms of which the state is
But we don’t have to; momentum also works.
These are related by Fourier transform,
Or other bases, e.g. creation/annihilation operators
for a simple harmonic oscillator.
Here,
These operators raise and lower energy eigenstates:
Entanglement
For a generic multiparticle state |,
The wave function is not a function of space,
but of many copies of space.
Things don’t happen in “space”; they happen
in Hilbert space.
Again, it’s locality of interactions that tempts us
to speak otherwise.
Quantum Field Theory
QFT would seem to deeply privilege “space”; the
Hamiltonian is an integral over space. But why?
Interactions are local in space:
not in momentum:
Gravity
Consider a compact dimension on a circle.
R
A scalar field  can be decomposed
into Kaluza-Klein modes
with energies
From the higher-dimensional perspective, these
modes comprise a tower of massive states.
Conversely: if every field has such a tower,
that implies an extra dimension.
M-theory’s 11th dimension
Witten 1995: there are supersymmetric particle
multiplets in Type IIA string theory with masses
that depend on the coupling  as
Small : states are heavy and decouple.
Large : Kaluza-Klein tower, as if an extra dimension.
Q: How many dimensions are
there in string theory?
A: It depends.
x11

10 dimensional
IIA string theory
11 dimensional
supergravity
T-duality: string theory on a small circle is
equivalent to string theory on a big circle.
Momentum/winding duality.
Mirror symmetries: IIA string theory on one Calabi-Yau
manifold equals IIB string theory on another one.
These are gauge symmetries; exact equivalence.
No such thing as the “true” compactification.
R
Holography
Maximum entropy inside a region
of space doesn’t go as R3, the
volume, but as R2, the area.
Discovered in the context of
black holes, but believed to be more general.
Significance:
The world is not made of separate degrees of
freedom at each point in space.
Emergent space isn’t just a matter of discreteness.
Maldacena, 1997:
quantum gravity
(string theory) on
five-dimensional
anti-de Sitter space
times a five-sphere
is equivalent to a
conformal field theory
without gravity on the
four-dimensional boundary.
“The spacetime one is in” is not unambiguously defined.
10 dimensions
AdS5 x S5
4-dimensional
Minkowski space
AdS/CFT
• QM, states, time, & the Schrödinger equation:
Space somehow recovered from |.
• QM, states, & the Wheeler-de Witt equation:
Space and time recovered from |.
• A generalization of, or replacement for, QM.
What might be fundamental?
Closing ruminations
• Space/coordinates are picked out by the
specific Hamiltonian of the world, not
by the structure of our theories.
• Investigations of quantum gravity provide
strong evidence that space is emergent,
and in a deeper way than local discreteness.
Degrees of freedom are not local.
• Unwarranted speculation: trying to understand
the early universe will help us understand
the role of space & time.

Contenu connexe

Tendances

General theory of relativity
General theory of relativity General theory of relativity
General theory of relativity
jade carmena
 
General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and Cosmology
Pratik Tarafdar
 
Time travel
Time travelTime travel
Time travel
hplap
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglement
Alexis Diaz
 

Tendances (20)

Quantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of KnowledgeQuantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of Knowledge
 
Time Travel: A Science Fiction or A Science Fact?
Time Travel: A Science Fiction or A Science Fact?Time Travel: A Science Fiction or A Science Fact?
Time Travel: A Science Fiction or A Science Fact?
 
General theory of relativity
General theory of relativity General theory of relativity
General theory of relativity
 
Philosophical Issues in Quantum Thermodynamics
Philosophical Issues in Quantum ThermodynamicsPhilosophical Issues in Quantum Thermodynamics
Philosophical Issues in Quantum Thermodynamics
 
A Brief Tour of Relativity and Cosmology
A Brief Tour of Relativity and CosmologyA Brief Tour of Relativity and Cosmology
A Brief Tour of Relativity and Cosmology
 
EPR paradox
EPR paradoxEPR paradox
EPR paradox
 
Spacetime
SpacetimeSpacetime
Spacetime
 
Relativity theory
Relativity theoryRelativity theory
Relativity theory
 
General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and Cosmology
 
Time travel
Time travelTime travel
Time travel
 
Quantum entaglement
Quantum entaglementQuantum entaglement
Quantum entaglement
 
The Physics Of Time Travel
The Physics Of Time TravelThe Physics Of Time Travel
The Physics Of Time Travel
 
Special theory of relativity
Special theory of relativitySpecial theory of relativity
Special theory of relativity
 
Time travel
Time travelTime travel
Time travel
 
Is time travel possible?
Is time travel possible?Is time travel possible?
Is time travel possible?
 
Theory of relativity
Theory of relativityTheory of relativity
Theory of relativity
 
Cosmology,bigbang and dark energy
Cosmology,bigbang and dark energyCosmology,bigbang and dark energy
Cosmology,bigbang and dark energy
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Quantum Hall Effect
 
Space and time
Space and timeSpace and time
Space and time
 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglement
 

En vedette

Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion Cotaescu
SEENET-MTP
 

En vedette (16)

The Cosmic Web - Lincoln
The Cosmic Web - LincolnThe Cosmic Web - Lincoln
The Cosmic Web - Lincoln
 
Lecture7
Lecture7Lecture7
Lecture7
 
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
Tachyonic and Localy Equivalent Canonical Lagrangians - The Polynomial Case -
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion Cotaescu
 
zanardi
zanardizanardi
zanardi
 
Steven Duplij - Generalized duality, Hamiltonian formalism and new brackets
Steven Duplij - Generalized duality, Hamiltonian formalism and new bracketsSteven Duplij - Generalized duality, Hamiltonian formalism and new brackets
Steven Duplij - Generalized duality, Hamiltonian formalism and new brackets
 
Hamilton
HamiltonHamilton
Hamilton
 
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization ProblemElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
 
Hamilton application
Hamilton applicationHamilton application
Hamilton application
 
Distruct week 15 graphs theory (updated)
Distruct week 15 graphs theory (updated)Distruct week 15 graphs theory (updated)
Distruct week 15 graphs theory (updated)
 
The Hamiltonian constraint and its possible deformations
The Hamiltonian constraint and its possible deformationsThe Hamiltonian constraint and its possible deformations
The Hamiltonian constraint and its possible deformations
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
 
S. Duplij, Constraintless approach to singular theories, new brackets and mul...
S. Duplij, Constraintless approach to singular theories, new brackets and mul...S. Duplij, Constraintless approach to singular theories, new brackets and mul...
S. Duplij, Constraintless approach to singular theories, new brackets and mul...
 
Basic Ray Theory
Basic Ray TheoryBasic Ray Theory
Basic Ray Theory
 
The Variational Method
The Variational MethodThe Variational Method
The Variational Method
 
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
 

Similaire à Against Space

Vasil Penchev. Gravity as entanglement, and entanglement as gravity
Vasil Penchev. Gravity as entanglement, and entanglement as gravityVasil Penchev. Gravity as entanglement, and entanglement as gravity
Vasil Penchev. Gravity as entanglement, and entanglement as gravity
Vasil Penchev
 
Gravity as entanglement, and entanglement as gravity
Gravity as entanglement, and entanglement as gravityGravity as entanglement, and entanglement as gravity
Gravity as entanglement, and entanglement as gravity
Vasil Penchev
 
Quantum phenomena modeled by interactions between many classical worlds
Quantum phenomena modeled by interactions between many classical worldsQuantum phenomena modeled by interactions between many classical worlds
Quantum phenomena modeled by interactions between many classical worlds
Lex Pit
 
Oxford slides on Duality and Emergence
Oxford slides on Duality and EmergenceOxford slides on Duality and Emergence
Oxford slides on Duality and Emergence
Sebastian De Haro
 
natsci1report (2007version)
natsci1report (2007version)natsci1report (2007version)
natsci1report (2007version)
alezandria
 
Epstemologic controversy on quantum operators
Epstemologic controversy on quantum operatorsEpstemologic controversy on quantum operators
Epstemologic controversy on quantum operators
raalbe autor
 
Relativity theory project
Relativity theory projectRelativity theory project
Relativity theory project
Seergio Garcia
 
Quantum entanglement
Quantum entanglementQuantum entanglement
Quantum entanglement
AKM666
 

Similaire à Against Space (20)

Vasil Penchev. Gravity as entanglement, and entanglement as gravity
Vasil Penchev. Gravity as entanglement, and entanglement as gravityVasil Penchev. Gravity as entanglement, and entanglement as gravity
Vasil Penchev. Gravity as entanglement, and entanglement as gravity
 
Gravity as entanglement, and entanglement as gravity
Gravity as entanglement, and entanglement as gravityGravity as entanglement, and entanglement as gravity
Gravity as entanglement, and entanglement as gravity
 
London A Holographic Universe?
London A Holographic Universe?London A Holographic Universe?
London A Holographic Universe?
 
Berlin Slides Dualities and Emergence of Space-Time and Gravity
Berlin Slides Dualities and Emergence of Space-Time and GravityBerlin Slides Dualities and Emergence of Space-Time and Gravity
Berlin Slides Dualities and Emergence of Space-Time and Gravity
 
Gct sfp cp-25112015
Gct sfp cp-25112015Gct sfp cp-25112015
Gct sfp cp-25112015
 
Quantum Geometry: A reunion of math and physics
Quantum Geometry: A reunion of math and physicsQuantum Geometry: A reunion of math and physics
Quantum Geometry: A reunion of math and physics
 
Quantum phenomena modeled by interactions between many classical worlds
Quantum phenomena modeled by interactions between many classical worldsQuantum phenomena modeled by interactions between many classical worlds
Quantum phenomena modeled by interactions between many classical worlds
 
Colloquium2013
Colloquium2013Colloquium2013
Colloquium2013
 
Oxford slides on Duality and Emergence
Oxford slides on Duality and EmergenceOxford slides on Duality and Emergence
Oxford slides on Duality and Emergence
 
G. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic Inflation
G. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic InflationG. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic Inflation
G. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic Inflation
 
natsci1report (2007version)
natsci1report (2007version)natsci1report (2007version)
natsci1report (2007version)
 
Epstemologic controversy on quantum operators
Epstemologic controversy on quantum operatorsEpstemologic controversy on quantum operators
Epstemologic controversy on quantum operators
 
Dm mach's ether_qcd_vac
Dm mach's ether_qcd_vacDm mach's ether_qcd_vac
Dm mach's ether_qcd_vac
 
Quantum cosmologyjj halliwell
Quantum cosmologyjj halliwellQuantum cosmologyjj halliwell
Quantum cosmologyjj halliwell
 
Relativity theory project
Relativity theory projectRelativity theory project
Relativity theory project
 
Could Einstein’s Relativity be Wrong?
Could Einstein’s Relativity be Wrong?Could Einstein’s Relativity be Wrong?
Could Einstein’s Relativity be Wrong?
 
Quantum entanglement
Quantum entanglementQuantum entanglement
Quantum entanglement
 
STRING THEORY - CHALLENGES AND PROSPECTS
STRING THEORY - CHALLENGES AND PROSPECTS STRING THEORY - CHALLENGES AND PROSPECTS
STRING THEORY - CHALLENGES AND PROSPECTS
 
Cramer john[1]
Cramer john[1]Cramer john[1]
Cramer john[1]
 
The Unreachable Universes
The Unreachable Universes The Unreachable Universes
The Unreachable Universes
 

Dernier

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Dernier (20)

From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 

Against Space

  • 1. space is not fundamental. time might be. Sean Carroll, Caltech http://preposterousuniverse.com/
  • 2. “What is and is not fundamental” is not fundamental. What features will be important ingredients in an ultimate (as yet hypothetical) comprehensive theory of everything. Theories often have very different-looking but equivalent descriptions (e.g. soliton/particle duality). Who is to say what is “fundamental”? But some things are certainly not fundamental; e.g. temperature. Theories using them are not comprehensive. Space is like that.
  • 3. Classical Mechanics Start with a set of coordinates . These obey second-order equations of motion: Specifying the coordinates alone doesn’t determine a solution; need to give and .
  • 4. Coordinates qi and momenta pj. Hamiltonian function H(qi, pj). Hamilton’s equations: Together we have a = {qi, pj}, defining phase space . A single point a(t0) in  defines a unique trajectory. Hamiltonian Mechanics
  • 5. Phase space is a symplectic manifold. A symplectic form  is a closed, invertible 2-form. Trajectories are integral curves of the Hamiltonian vector field,  a(t) Xa
  • 6. The coordinate/momentum distinction is blurred. Conventionally: cotangent bundle T*M = {qi, pi} = phase space  configuration space M, coordinates qi symplectic form  =  dpi  dqi (automatic) Every cotangent bundle is a symplectic manifold, but not every symplectic manifold is a cotangent bundle. Symplecticity is more “fundamental” than coordinate/momentum distinction.
  • 7. Mechanics is invariant under canonical transformations: {q, p}  {Q(q,p), P(q,p)} that leave the form of Hamilton’s equations unchanged. Example: Nothing “fundamental” about which are the coordinates, which are the momenta. Qi = pi , Pj = -qj .
  • 8. Why don’t we live in momentum space? Think of interacting harmonic oscillators. Interactions are local in position, not in momentum. Better: position is the thing in which interactions are local.
  • 9. Quantum mechanics States are rays in Hilbert space: |. Evolution is governed by the Schrödinger equation: Energy eigenbasis: Dynamics are defined by the eigenvalues {En}, the spectrum of the Hamiltonian.
  • 10. Where is “space” in the quantum state? We can define a position operator with eigenstates in terms of which the state is But we don’t have to; momentum also works. These are related by Fourier transform,
  • 11. Or other bases, e.g. creation/annihilation operators for a simple harmonic oscillator. Here, These operators raise and lower energy eigenstates:
  • 12. Entanglement For a generic multiparticle state |, The wave function is not a function of space, but of many copies of space. Things don’t happen in “space”; they happen in Hilbert space. Again, it’s locality of interactions that tempts us to speak otherwise.
  • 13. Quantum Field Theory QFT would seem to deeply privilege “space”; the Hamiltonian is an integral over space. But why? Interactions are local in space: not in momentum:
  • 14. Gravity Consider a compact dimension on a circle. R A scalar field  can be decomposed into Kaluza-Klein modes with energies From the higher-dimensional perspective, these modes comprise a tower of massive states. Conversely: if every field has such a tower, that implies an extra dimension.
  • 15. M-theory’s 11th dimension Witten 1995: there are supersymmetric particle multiplets in Type IIA string theory with masses that depend on the coupling  as Small : states are heavy and decouple. Large : Kaluza-Klein tower, as if an extra dimension. Q: How many dimensions are there in string theory? A: It depends. x11  10 dimensional IIA string theory 11 dimensional supergravity
  • 16. T-duality: string theory on a small circle is equivalent to string theory on a big circle. Momentum/winding duality. Mirror symmetries: IIA string theory on one Calabi-Yau manifold equals IIB string theory on another one. These are gauge symmetries; exact equivalence. No such thing as the “true” compactification.
  • 17. R Holography Maximum entropy inside a region of space doesn’t go as R3, the volume, but as R2, the area. Discovered in the context of black holes, but believed to be more general. Significance: The world is not made of separate degrees of freedom at each point in space. Emergent space isn’t just a matter of discreteness.
  • 18. Maldacena, 1997: quantum gravity (string theory) on five-dimensional anti-de Sitter space times a five-sphere is equivalent to a conformal field theory without gravity on the four-dimensional boundary. “The spacetime one is in” is not unambiguously defined. 10 dimensions AdS5 x S5 4-dimensional Minkowski space AdS/CFT
  • 19. • QM, states, time, & the Schrödinger equation: Space somehow recovered from |. • QM, states, & the Wheeler-de Witt equation: Space and time recovered from |. • A generalization of, or replacement for, QM. What might be fundamental?
  • 20. Closing ruminations • Space/coordinates are picked out by the specific Hamiltonian of the world, not by the structure of our theories. • Investigations of quantum gravity provide strong evidence that space is emergent, and in a deeper way than local discreteness. Degrees of freedom are not local. • Unwarranted speculation: trying to understand the early universe will help us understand the role of space & time.