SlideShare une entreprise Scribd logo
1  sur  31
Télécharger pour lire hors ligne
The EFSA Journal (2005) 234, 1 - 31

Please note that this opinion, published on 7 April 2006, replaces the earlier version published
7 July 2005. The revision was considered necessary because the only study of oral toxicity of
endosulfan in fish listed in the original opinion was found to be actually a study with
endosulfan exposure of fish via water. Furthermore, two additional studies on fish exposed to
endosulfan in feed became available to the Panel.

The following items have been changed:
• Section 5.2, 1st paragraph has been replaced by 3 new paragraphs,
•   Conclusion, Adverse effects in animals, bullet on fish is replaced.
•   Reference list: Naveed et al., 2004 has been replaced by Braunbeck and Appelbaum, 1999
    and Coimbra et al., 2005.

The Panel on contaminants in the food chain is informed that there is an on-going oral toxicity
study on Atlantic salmon exposed to endosulfan in the feed (Marc Berntssen, personal
communication, The National Institute of Nutrition and Sea Food Research, Bergen, Norway,
2006). Based on the results of this study, the opinion might be updated again. This study is
expected to be finalised in 2006.




http://www.efsa.eu.int                                                               Page 1 of 31
The EFSA Journal (2005) 234, 1 - 31


 OPINION OF THE SCIENTIFIC PANEL ON CONTAMINANTS IN THE FOOD CHAIN
    ON A REQUEST FROM THE COMMISSION RELATED TO ENDOSULFAN AS
                         UNDESIRABLE SUBSTANCE IN ANIMAL FEED

                                   Question N° EFSA-Q-2003-066

                                    Adopted on 20 June 2005
SUMMARY

Endosulfan is a non-systemic organochlorine pesticide that was developed and introduced in
the mid 1950s. Endosulfan consists of α- and β-isomers that could be metabolised to
endosulfan sulfate and endosulfan diol. In contrast to α- and β- endosulfan these metabolites
are susceptible to photolysis. Endosulfan containing products still hold authorisation in seven
member states of the European Community, but it is foreseen that the authorization of
endosulfan will be withdrawn by the Member States before 1 February 2006. The use of
endosulfan within the EU has steadily decreased during the recent years. Endosulfan is
released into the environment mainly as a result of its use as a pesticide and is found in
atmosphere, soil and sediment. Direct uptake from soil to plant as well as transport in plants is
negligible.

In contrast to most related organochlorine pesticides, endosulfan has a less pronounced
affinity to lipids. Consequently, biomagnification and accumulation of endosulfan, in
terrestrial food chains, is less likely to occur.

Endosulfan is readily absorbed from the gastrointestinal tract and distributed to the kidneys
and liver and to a lesser extent to other tissues. However, differences in distribution pattern
between the isomers as well as metabolites have been reported.

Endosulfan residues are normally found in food and feed at low levels only. Detailed data on
occurrence and temporal trends of endosulfan in feed are scarce.

Based on the limited data on animal exposure via feed produced according to good
agricultural practice, it is not likely that terrestrial animals will be exposed to levels that could
cause toxic effects.

Neurotoxic effects of endosulfan in both humans and animals are well documented. Exposure
can induce a number of effects including liver and kidney toxicity, haematological effects,
alterations in the immune system, and alterations in the reproductive organs.

Data from a limited number of samples suggest that intake of endosulfan by the general
population, are far below the ADI of 6 µg/kg b.w. established by JMPR in 1998.

KEY WORDS: Endosulfan, α-endosulfan, β-endosulfan, endosulfan sulfate, analysis, toxicity,
residues in feed and food, carry-over, ADI, environmental fate.



http://www.efsa.eu.int                                                                    Page 2 of 31
The EFSA Journal (2005) 234, 1 - 31

TABLE OF CONTENTS

LIST OF ABBREVIATIONS ............................................................................................................... 4
BACKGROUND ............................................................................................................................... 5
1. General Background............................................................................................................... 5
2. Specific Background .............................................................................................................. 6
TERMS OF REFERENCE ................................................................................................................... 8
ASSESSMENT ................................................................................................................................. 9
1. Introduction ............................................................................................................................ 9
     1.1. Chemistry and use ......................................................................................................... 9
     1.2. Environmental fate ...................................................................................................... 10
     1.3. Toxicological findings in laboratory animals and hazard assessment for humans ..... 12
2.   Methods of analysis.............................................................................................................. 14
3.   Statutory limits ..................................................................................................................... 14
4.   Occurrence in food and feed ................................................................................................ 14
5.   Adverse effects on fish, livestock and pets, and exposure-response relationship................ 16
     5.1. Introduction ................................................................................................................. 16
     5.2. Fish .............................................................................................................................. 16
     5.3. Ruminants.................................................................................................................... 17
     5.4. Birds ............................................................................................................................ 18
     5.5. Rabbits......................................................................................................................... 18
   5.6. Dogs ............................................................................................................................ 18
6. Toxicokinetics and tissue disposition................................................................................... 19
     6.1. Absorption................................................................................................................... 19
     6.2. Distribution.................................................................................................................. 20
     6.3. Metabolism.................................................................................................................. 20
   6.4. Excretion ..................................................................................................................... 21
7. Carry over and tissue concentration ..................................................................................... 21
8. Human dietary exposure and comparison with ADI............................................................ 23
CONCLUSIONS ............................................................................................................................. 23
RECOMMENDATION ..................................................................................................................... 25
REFERENCES ............................................................................................................................... 26
SCIENTIFIC PANEL MEMBERS....................................................................................................... 31
ACKNOWLEDGEMENT .................................................................................................................. 31
DOCUMENTATION PROVIDED TO EFSA ....................................................................................... 31




http://www.efsa.eu.int                                                                                                         Page 3 of 31
The EFSA Journal (2005) 234, 1 - 31

LIST OF ABBREVIATIONS

ADI                      Acceptable daily intake
ATSDR                    Agency for Toxic Substances and Disease Registry
B.w.                     Body weight
CAS                      Chemical abstracts service
ECD                      Electron capture detector
FAO                      Food and Agricultural Organization
FEFAC                    European Feed Manufacturers' Federation
GABA                     Gamma-aminobutryic acid
GC                       Gas chromatography
IPCS                     International Programme on Chemical Safety
JMPR                     Joint FAO/WHO meetings on pesticide residues
LD50                     Lethal dose that causes 50 % death of a group of test animals
LOAEL                    Lowest observed adverse effect level
Log Kow                  Logarithm of octanol-water partition coefficient
MRL                      Maximum residue levels
MS                       Mass spectrometry
NOAEC                    No observed acute effect concentration
NOAEL                    No observed adverse effect level
PCB                      Polychlorinated Biphenyls
POPs                     Persistent organic pollutants
SCAN                     Scientific Committee on Animal Nutrition
ULV                      Ultra-low volume
WHO                      World Health Organization
W.w.                     Wet weight




http://www.efsa.eu.int                                                                   Page 4 of 31
The EFSA Journal (2005) 234, 1 - 31

BACKGROUND

1.           General Background

Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on
undesirable substances in animal feed1 replaces since 1 August 2003 Council Directive
1999/29/EC of 22 April 1999 on the undesirable substances and products in animal nutrition2.

The main modifications can be summarised as follows

     -   extension of the scope of the Directive to include the possibility of establishing
         maximum limits for undesirable substances in feed additives.

     -   deletion of the existing possibility to dilute contaminated feed materials instead of
         decontamination or destruction (introduction of the principle of non-dilution).

     -   deletion of the possibility for derogation of the maximum limits for particular local
         reasons.

     -   introduction the possibility of the establishment of an action threshold triggering an
         investigation to identify the source of contamination (“early warning system”) and to
         take measures to reduce or eliminate the contamination (“pro-active approach”).

In particular the introduction of the principle of non-dilution is an important and far- reaching
measure. In order to protect public and animal health, it is important that the overall
contamination of the food and feed chain is reduced to a level as low as reasonably achievable
providing a high level of public health and animal health protection. The deletion of the
possibility of dilution is a powerful mean to stimulate all operators throughout the chain to
apply the necessary prevention measures to avoid contamination as much as possible. The
prohibition of dilution accompanied with the necessary control measures will effectively
contribute to safer feed.

During the discussions in view of the adoption of Directive 2002/32/EC the Commission
made the commitment to review the provisions laid down in Annex I on the basis of updated
scientific risk assessments and taking into account the prohibition of any dilution of
contaminated non-complying products intended for animal feed. The Commission has
therefore requested the Scientific Committee on Animal Nutrition (SCAN) in March 2001 to
provide these updated scientific risk assessments in order to enable the Commission to
finalise this review as soon as possible (Question 121 on undesirable substances in feed)3.

It is worthwhile to note that Council Directive 1999/29/EC is a legal consolidation of Council
Directive 74/63/EEC of 17 December 1973 on the undesirable substances in animal nutrition4,

1
  OJ L140, 30.5.2002, p. 10
2
  OJ L 115, 4.5.1999, p. 32
3
  Summary record of the 135th SCAN Plenary meeting, Brussels, 21-22 March 2001, point 8 – New questions (
  http://europa.eu.int/comm/food/fs/sc/scan/out61_en.pdf)
4
  OJ L 38, 11.2.1974, p. 31

http://www.efsa.eu.int                                                                         Page 5 of 31
The EFSA Journal (2005) 234, 1 - 31

which has been frequently and substantially amended. Consequently, several of the provisions
of the Annex to Directive 2002/32/EC date back from 1973.

The opinion on undesirable substances in feed, adopted by SCAN on 20 February 2003 and
updated on 25 April 20035 provides a comprehensive overview on the possible risks for
animal and public health as the consequence of the presence of undesirable substances in
animal feed.

It was nevertheless acknowledged by SCAN itself for several undesirable substances and by
the Standing Committee on the Food Chain and Animal Health that additional detailed risk
assessments are necessary to enable a complete review of the provisions in the Annex,
including the establishment of maximum levels for undesirable substances currently not
listed.

2.           Specific Background

Endosulfan is an organochlorine insecticide. Contrary to some other organochlorine
pesticides, endosulfan does not accumulate in the food chain and is eliminated rapidly from
the body. Endosulfan is highly toxic for some aquatic species, particular fish.

Contrary to the other pesticides listed in the Annex to Directive 2002/32/EC, endosulfan is
still in use as a pesticide.

Current EU legislation on maximum residue levels (MRLs) for pesticides is derived
from/based on four Council Directives

     -   Council Directive 76/895/EEC of 23 November 1976 relating to the fixing of
         maximum levels for pesticide residues in and on fruit and vegetables6

     -   Council Directive 86/362/EEC of 24 July 1986 on the fixing of maximum residue
         levels for pesticide residues in and on cereals7

     -   Council Directive 86/363/EEC of 24 July 1986 on the fixing of maximum residue
         levels for pesticide residues in and on foodstuffs of animal origin8

     -   Council Directive 90/642/EEC of 27 November 1990 on the fixing of maximum
         residue levels for pesticide residues in and on certain products of plant origin,
         including fruits and vegetables9.

     -   Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23
         February 2005 on maximum residue levels of pesticides in or on food and feed of


5
  Opinion of the Scientific Committee on Animal Nutrition on Undesirable Substances in Feed, adopted on 20
  February 2003, updated on 25 April 2003 (http://europa.eu.int/comm/food/fs/sc/scan/out126_bis_en.pdf)
6
  OJ L 340, 9.12.1976, p.26
7
  OJ L 221, 7.8.1986, p. 37
8
  OJ L 221, 7.8.1986, p. 43
9
  OJ L 350, 14.12.1990, p. 71

http://www.efsa.eu.int                                                                           Page 6 of 31
The EFSA Journal (2005) 234, 1 - 31

           plant and animal origin and amending Council Directive 91/414/EEC which will
           repeal the four Council Directives10.

Until 1997, MRLs were fixed only for raw commodities. Council Directive 1997/41/EC of 25
June 199711 amending the above mentioned Directives, provided for a system applicable from
1 January 1999 to set MRLs in processed products and composite foodstuffs, based on the
MRLs fixed for the raw agricultural products. MRLs for processed products and composite
foodstuffs are calculated on the basis of the MRL set for the agricultural commodity by
application of an appropriate dilution or concentration factor and for composite foodstuffs
MRLs are calculated taking into account the relative concentrations of the ingredients in the
composite foodstuffs.

As the consequence of the coming into force of Directive 1997/41/EC, the pesticide residue
legislation applies also to animal feeding stuffs since 1 January 1999. However some
problems have been observed in implementing the pesticide residue legislation. The following
problems have already been identified:

       -   compound feed is composed of a relatively high number of ingredients of which
           several are processed products (by-products). It is not obvious to know what MRL is
           applicable to such compound feed as it involves many calculations and uncertainties
           and “unknowns” (processing factors).

       -   pesticide residue legislation does not cover products of marine origin which are
           regularly used in animal feed (no direct application).

       -   pesticide residue legislation does not cover products typically for animal feed (no food
           use) such as pastures, roughages, forages, fish oil and fish meal.

Therefore it is appropriate to include in the list of undesirable substances maximum levels for
some pesticides, in particular those of relevance for animal health or for public health through
carry over from feed to food of animal origin

As already mentioned, endosulfan is listed in the Annex to Directive 2002/32/EC. For
comparison the current provisions in the EU-pesticide residue legislation are mentioned.




10
     OJ L 70, 16/03/2005, p. 1
11
     OJ L 184, 12/07/1997, p. 33

http://www.efsa.eu.int                                                                  Page 7 of 31
The EFSA Journal (2005) 234, 1 - 31



Directive 2002/32/EC                               EU-Pesticide residue legislation
ML relative to a feeding stuff with a              MRL applicable to the product as marketed
moisture content of 12 %
Product                          mg/kg             Product                            mg/kg
Maize                             0.2              Cotton seeds                        0.3
Oilseeds                          0.5              Soybean seeds                       0.5
Complete feeding stuffs for fish  0.005            Other oilseeds                      0.1*
All other feeding stuffs          0.1              Potatoes                            0.05*
                                                   Tea                                30
                                                   Hops                                0.1*
                                                   Cereals                             0.05*
                                                   Citrus, berries                     0.5
                                                   Pome fruit                          0.3
                                                   Tree nuts                           0.1*
                                                   Peppers                             1
                                                   Tomatoes                            0.5
                                                   Other vegetables                    0.05*
                                                   Meat (fat)                          0.1
                                                   Milk                                0.004
                                                   Eggs                                0.1*
*lower limit of analytical determination

In the current provisions in Directive 2002/32/EC there are apparently some inconsistencies.
Whereas for example a maximum level for endosulfan is fixed at 0.5 mg/kg for soybean seeds
(oilseeds) the resulting soybean oil (in which endosulfan concentrates) has to comply with 0.1
mg/kg (all other feeding stuffs) in case it is used for animal feed. For foodstuffs a processing
factor can be applied.

It is important that these provisions concerning endosulfan are completely reviewed in the
framework of Directive 2002/32/EC. A risk assessment on the presence of endosulfan in
animal feed, in particular fish feed and fish feed ingredients, should be undertaken as a
priority.


TERMS OF REFERENCE
The European Commission requests the EFSA to provide a scientific opinion on the presence
of endosulfan in animal feed.

This scientific opinion should comprise the

    -   determination of the toxic exposure levels (daily exposure) of endosulfan for the
        different animal species of relevance (difference in sensitivity between animal species,
        with particular attention to farmed fish species) above which

             -   signs of toxicity can be observed (animal health/impact on animal health)


http://www.efsa.eu.int                                                                Page 8 of 31
The EFSA Journal (2005) 234, 1 - 31

             -   the level of transfer/carry over of endosulfan from the feed to the products of
                 animal origin results in unacceptable levels of endosulfan or of its metabolites
                 in the products of animal origin in view of providing a high level of public
                 health protection.

     -   identification of feed materials which could be considered as sources of contamination
         by endosulfan and the characterisation, insofar as possible, of the distribution of levels
         of contamination

     -   assessment of the contribution of the different identified feed materials as sources of
         contamination by endosulfan

             -   to the overall exposure of the different relevant animal species (with particular
                 attention to farmed fish species) to endosulfan,

             -   to the impact on animal health,

             -   to the contamination of food of animal origin (the impact on public health),
                 taking into account dietary variations and carry over rates.

     -   identification of eventual gaps in the available data which need to be filled in order to
         complete the evaluation.


ASSESSMENT
1.           Introduction

1.1.         Chemistry and use

Endosulfan is an organochlorine pesticide that was developed and introduced in the mid
1950s. World wide production of endosulfan in the middle of the 1980’s was estimated at
10,000 tons/year (ATSDR, 2000). Within the European Union there is currently only one
producer located in Frankfurt (Germany) which produces endosulfan. The manufactured
volume of endosulfan at this site currently amounts for approximately 4,000 tons/year and a
major part is exported for use in tropical and subtropical regions such as Latin America,
Caribbean and Southeast Asia. Endosulfan has also been reported to be produced in Israel,
India, South Korea, and China (Umweltbundesamt, 2004).

CAS numbers are for technical endosulfan 115-29-7, α-endosulfan 959-98-8, β-endosulfan
33213-65-9, and endosulfan sulfate 1031-07-8.

Technical    endosulfan     is    obtained    through     the    Diels-Alder    addition   of
hexachlorocylopentadiene and cis-butene-1,4-diol, followed by reaction of the addition-
product with thionyl chloride. It mainly consists of a mixture of two stereoisomers named α-
and β- endosulfan in the approximate ratio of 70:30 (Figure 1). As minor impurities technical
grade endosulfan may also contain up to 2 % endosulfan alcohol and 1 % endosulfan ether.


http://www.efsa.eu.int                                                                  Page 9 of 31
The EFSA Journal (2005) 234, 1 - 31

The technical product is a brownish crystalline solid and has a slight sulfur dioxide odour.
Endosulfan is practically insoluble in water but soluble in most organic solvents. Log Kow
values for technical endosulfan is 3.55 and 3.62, for α-endosulfan 3.83, for β-endosulfan 3.52,
and for endosulfan sulfate 3.66. It is hydrolysed slowly by water, more rapidly by acids and
bases. Decomposition is catalysed by iron, which it corrodes.




                      α - endosulfan                             β - endosulfan

                            Figure 1. Structure of α- and β-endosulfan.

Endosulfan is a non-systemic insecticide and acaricide with contact action. Formulations of
endosulfan include emulsifiable concentrate, wettable powder, ultra-low volume (ULV)
liquid, and smoke tablets. It is used in the control of sucking, chewing and boring insects and
mites on a very wide range of crops, including fruit, vines, olives, vegetables, ornamentals,
potatoes, cucurbits, cotton, tea, coffee, rice, cereals, maize, sorghum, oilseed crops, hops,
hazels, sugar cane, tobacco, alfalfa, mushrooms, forestry, glasshouse crops, etc. In addition to
its agricultural use, and its use in the control of the tsetse fly, endosulfan is used as a wood
preservative and for the control of home and garden pests.

Endosulfan containing products are authorised for use in seven member states of the
Community. But use of endosulfan within the EU has seen a steadily decrease lasting recent
years. Almost 90 % of 490 tons/year used in 1999, were applied in Mediterranean parts of the
EU (Umweltbundesamt, 2004). A draft Commission Decision has been notified by the
European Communities to the WTO proposing not to include endosulfan in the positive
Community list (Annex I of Directive 91/414/EEC) because it does not satisfy the minimum
safety requirements in particular the environmental fate, eco-toxicological profile and the
operators’ exposure risk. The foreseen date of entry into force is 1 August 2005 and Member
States have to withdraw all existing authorisations for plant protection products containing
endosulfan within 6 months from that date12.


1.2.           Environmental fate

Endosulfan is released into the environment mainly as a result of its use as a pesticide. The
compound partitions to the atmosphere and to soils and sediments. Endosulfan can be



12
     Notification G/SPS/N/EEC/260 of 3 May 2005. http://www.wto.org/english/tratop_e/sps_e/sps_e.htm


http://www.efsa.eu.int                                                                          Page 10 of 31
The EFSA Journal (2005) 234, 1 - 31

transported over long distances in the atmosphere, but is relatively immobile in soils
(ATSDR, 2000). Direct uptake from soil to plant as well as transport in the plant is negligible.

Both α- and β- endosulfan are fairly resistant to photo degradation, but the metabolites
endosulfan sulfate and endosulfan diol (Figure 2) are susceptible to photolysis. The half-life
of both isomers in water are estimated to be in the range of 4 to 7 days, but at low pH and
anaerobic conditions it could be up to 5 months (ATSDR, 2000). In laboratory experiments
with two soil types half time of 14C-endosulfan was estimated between 90 and 180 days based
on 14CO2 production (Peres et al., 2004).




        Figure 2. Chemical degradation of endosulfan in the environment (WHO, 1984).

In soil, the α-isomer has a shorter half-life (60 days) than the β-isomer (900 days). Endosulfan
sulfate was found to be the major degradation product in soil and on plant surfaces. It is found
to be more stable than the two endosulfan isomers, but the transport of all three compounds is
slow in soil. Biodegradation in soil and water is dependent on climatic conditions and on the
type of micro organisms present. In plants sprayed with endosulfan, initial residues on fruits
and vegetables can vary from about 1 to 100 mg/kg; after 1 week, residues generally decrease
to 20 % or less of the initial amount (WHO, 1984).

Due to its potential for long range transport, environmental persistence, bioconcentration in
various aquatic organisms and ecotoxicity, there is agreement that endosulfan and its
metabolite endosulfan sulfate meet the criteria for future inclusion into the list of persistent
organic pollutants (POPs). However, unlike most other organochlorine pesticides of the Diels-

http://www.efsa.eu.int                                                              Page 11 of 31
The EFSA Journal (2005) 234, 1 - 31

Alder class, such as chlordene, chlordane, heptachlor, heptachlorepoxide, aldrine and dieldrin,
endosulfan has a less pronounced affinity to lipids. Consequently, biomagnification and
accumulation of endosulfan, in terrestrial food chains, is unlikely to occur. Endosulfan is still
in use in some countries.


1.3.         Toxicological findings in laboratory animals and hazard assessment for
             humans

Endosulfan was evaluated by JMPR in 1998 (FAO/WHO, 1998). ATSDR published a
toxicological profile for endosulfan in 2000 (ATSDR, 2000).

The neurotoxic effects of endosulfan are well documented in both humans and animals, and
extensive research has been conducted in recent years aimed at elucidating its mechanism of
neurotoxicity. Possible mechanisms of toxicity include (a) alteration of neurotransmitter
levels in brain areas by affecting synthesis, degradation, and/or rates of release and reuptake,
and/or (b) interference with the binding of neurotransmitter to their receptors. In addition to
neurotoxicity, exposure to endosulfan has induced a wide array of effects in animals including
liver and kidney toxicity, hematological effects, alterations in the immune system, and
alterations in the reproductive organs of males. There are just a few studies on possible
mechanisms of the effects on organ or systems other than the nervous system.

As summarized in 6.3. Metabolism, the biotransformation of endosulfan can give rise to a
number of both polar and nonpolar metabolites. There is little and inconclusive information
on whether the toxicological properties of endosulfan are due to the parent compound or to
any of its metabolites.

The more lipophilic parent compound of endosulfan will be able to cross cell membranes
more easily than its polar metabolites, accumulate to a greater extent, and therefore possibly
be the most neurotoxic. Differential toxicity could also be related to differential affinity for
the GABA receptor. What is known from oral acute lethality studies in rats and mice is that α-
endosulfan is approximately 3 times more toxic than β-endosulfan (Dorough et al., 1978;
Hoechst, 1975, 1990; Maier-Bode, 1968). In addition, in mice, the acute toxicity of
endosulfan sulfate was comparable to that of α-endosulfan (Dorough et al., 1978). Also in
mice, the metabolites endosulfan α-hydroxy ether, endosulfan lactone, and endosulfan ether
had lethal doses 10 - 20 times higher than the α-or β-isomers; the lethal dose for
endosulfandiol was two orders of magnitude higher than that of the α-or β-isomer (Dorough et
al., 1978).

Most studies are carried out with technical products and if purity is given it is generally 97 -
99 % but purity as low as 91.4 % is also reported.

Acute toxicity

Acute exposure to high doses of endosulfan results in hyperactivity, muscle tremors, ataxia,
and convulsions.


http://www.efsa.eu.int                                                               Page 12 of 31
The EFSA Journal (2005) 234, 1 - 31

The LD50 of endosulfan varies widely depending on the route of administration, species,
vehicle, and sex of the animal. Female rats are clearly more sensitive than male rats, and, on
the basis of a single study, this sex difference appears to apply to mice also. The lowest oral
LD50 value is 9.6 mg/kg b.w. in female Sprague-Dawley rats (Hoechst, 1990; Reno, 1975).

Long term toxicity

In a 78 week oral study with mice non-neoplastic changes were observed in both sexes in
kidneys and sex organs. Based on these findings a NOAEL was identified for female mice at
3.9 mg/kg diet; equal to 0.58 mg/kg b.w./day (US National Cancer Institute, 1978).

In a corresponding 78 week oral study with rats given diets containing 220 mg/kg technical-
grade endosulfan (purity, 98.8 %) or higher, non-neoplasic effects were seen in all dose
groups and thus a NOAEL could not be established (US National Cancer Institute, 1978). In
an other study groups of 50 five-to-six-week-old rats of both sexes were fed diets containing
endosulfan (purity, 97.1 %) at concentrations of 0, 3, 7.5, 15, or 75 mg/kg diet, equal to 0, 0.1,
0.3, 0.6, and 2.9 mg/kg b.w./day for males and 0, 0.1, 0.4, 0.7, and 3.8 mg/kg b.w./day for
females, for 104 weeks. Reductions in body weights and body-weight gains were observed in
males and females at 75 mg/kg diet, but no clinical signs of poisoning were seen at any dose.
No increase in mortality rates was observed in treated groups. Increased incidences of
enlarged kidneys in females and of aneurysms, enlarged lumbar lymph nodes and marked
progressive glomerulonephrosis in males were seen at 75 mg/kg diet. The NOAEL was 15
mg/kg diet, equal to 0.6 mg/kg b.w./day, on the basis of reduced body weights and
pathological findings at higher doses (Ruckman et al., 1989; Gopinath and Cannon, 1990;
Hack et al., 1995).

Human data as well as studies in animals did not provide unequivocal evidence of
carcinogenicity for endosulfan (Hack et al., 1995; Hoechst, 1988, 1989). However,
endosulfan promoted the development of altered hepatic foci in rats initiated with
nitrosodiethylamine (Fransson-Steen et al., 1992). Although the mechanism of tumour
promotion of endosulfan is not known, it has been suggested that it involves inhibition of
cellular communication (Kenne et al., 1994).

JMPR (FAO/WHO, 1998) established an ADI of 0 - 0.006 mg/kg b.w. for technical
endosulfan on the basis of the NOAEL of 0.6 mg/kg b.w./day in the two-year dietary study of
toxicity in rats and a safety factor of 100. The ADI is supported by similar NOAEL values in
the 78-week dietary study of toxicity in mice (NOAEL of 0.58 mg/kg b.w./day), a one-year
dietary study of toxicity in dogs (NOAEL of 0.8 mg/kg b.w./day, see chapter 5.6 for further
details), and a study of developmental toxicity in rats (NOAEL of 1.5 mg/kg b.w./day)

Endosulfan has been tested for genotoxicity in a wide range of assays. There was however no
evidence on genotoxicity in most of these assays. In one assay for dominant lethal mutation in
mice, late effects were observed at high doses (16.6 mg/kg b.w./day). The technical
endosulfan used was reported to have a purity of 97.3 % (FAO/WHO, 1998, Pandey et al.
1990).


http://www.efsa.eu.int                                                                Page 13 of 31
The EFSA Journal (2005) 234, 1 - 31

2.             Methods of analysis

Analysis of endosulfan residues in food and feed samples should include detection of α- and
β- endosulfan plus the major degradation product endosulfan sulfate. Currently, high
resolution gas chromatography with electron capture detection (GC/ECD) or mass
spectrometric detection (GC/MS) after extraction of samples with organic solvents, various
clean-up steps to remove lipids and other possible co-extractives are the analytical methods of
choice. These methods not only allow differentiation between the different isomers but also
separate them from possible superimposing co-extractives. An efficient separation of the two
endosulfan isomers and endosulfan sulfate from other interfering compounds, such as other
organochlorine pesticides and polychlorinated biphenyls (PCBs) is especially important. In
routine monitoring programmes it has therefore proven necessary to perform the gas
chromatographic separation on two capillary columns of different polarity.

3.             Statutory limits

Endosulfan is listed in the Annex to Directive 2002/32/EC of the European Parliament and of
the Council of 7 May 2002 on undesirable substances in animal feed13 which replaces since 1
August 2003 Council Directive 1999/29/EC of 22 April 1999 on the undesirable substances
and products in animal nutrition14. The maximum levels which apply to the sum of the α- and
β- isomer and of endosulfan sulfate, expressed as endosulfan each pertain to a feedingstuff
with a moisture content of 12 %. See also specific background.

Minimum time intervals between the last application and harvesting are prescribed in most
countries and vary between 0 and 42 days, depending on the crop, type of formulation used,
the mode of application, tolerances, and agronomic needs.

4.             Occurrence in food and feed

Endosulfan is released to the environment mainly as the result of its use as a pesticide. It has
been found at low levels in numerous food and feed samples.

Annually, some 40,000 – 50,000 food samples are analysed for, on average, 151 different
pesticides within national monitoring programmes of 15 EU Member States and the three
EFTA States Norway, Iceland and Liechtenstein in order to check the compliance of different
food commodities with the corresponding pesticide maximum residue levels. The condensed
results are regularly submitted to the Commission, which compiles and collates the data.
Besides national monitoring programmes, the Commission recommends the participation of
each Member State in a specific EU co-ordinated monitoring programme. These programmes
which have existed since 1996 include the analysis of major components of the standard
European diet of plant origin (so far: mandarins, pears, bananas, potatoes, oranges, peaches,
carrots, spinach, cauliflower, wheat grains, peppers, melons, rice, cucumber, head cabbage,
peas, apples, tomatoes, lettuce, strawberries, table grapes and nectarines) for an increasing

13
     OJ L140, 30.5.2002, p. 10
14
     OJ L 115, 4.5.1999, p. 32

http://www.efsa.eu.int                                                              Page 14 of 31
The EFSA Journal (2005) 234, 1 - 31

number of pesticides. Endosulfan became part of the pesticide spectrum to check for in 1997.
Between 1997 and 2002 a total of 35,152 food samples of plant origin have been analysed for
endosulfan in the frame of these EU co-ordinated monitoring programmes. While 33,785
(96.1 %) samples contained no endosulfan residues, this pesticide could be determined in
1367 samples (3.9 %) below or at the MRLs. In 55 cases (0.16 %), the MRLs were exceeded.
Endosulfan and endosulfan sulfate were found mainly on pepper, melons, strawberries and
lettuce15.

Endosulfan levels in food can be reduced by food processing. For example, endosulfan can be
removed by physical refinement treatment during oil refining using bleaching and
deodorization (Riuz Mendez et al., 2005) or by peeling of apples (Rasmussen et al., 2003).

Thousands of feed samples are analysed annually in the Member States within the frame of
official feed control, with the aim to check compliance with legal limits. As the Commission
only requires the Member States to report their results as compliant and non-compliant, these
condensed summaries give almost no information on actual levels in feed. Furthermore, it is
often not specified which compounds are covered by the analytical method applied nor are the
limits of detection reported. When comparing the summary reports it is often difficult to
differentiate between numbers of individual analyses on the one hand and number of samples
on the other hand. Concentration levels for individual substances analysed rather than
condensed summaries for compound groups would be essential for a better understanding of
the occurrence situation of undesirable substances in different feed materials and compound
feeds as a prerequisite for a meaningful risk assessment and finally for a derivation of a
possible temporal trend of the respective compounds in the feed chain.

Analysis of 104 feedingstuffs performed in 2003/2004 as part of official feed control in
Germany revealed that endosulfan was detected in two samples only and then at a
concentration of 7 µg/kg. In all other samples which included crops, maize, oil seeds, tubers,
roots, mineral feed and compound feed for ruminants, pigs, poultry, horses and pets, α-, β-
endosulfan and endosulfan sulfate could not be detected at a limit of detection of 1 µg/kg.

In the Czech Republic, 10 samples of fish meal have been analysed in 2004. The samples
were analysed for α- and β-endosulfan. All results were below the limit of detection of 1
µg/kg. Data on endosulfan sulfate were not reported.

Data on fish feed (9 samples) provided by European Feed Manufacturers' Federation showed
levels of 0.08 – 0.23 µg/kg for α-endosulfan, whereas the levels for β-endosulfan and
endosulfan sulfate were < 0.1 µg/kg.

A survey of pesticide residues in animal feed ingredients has been conducted in the UK in
1998, where 151 samples of cereals (barley grain and malting, wheat grain, maize gluten and
distillers), fodder (barley and wheat straw, grass and maize silage, sugar beet pulp) and beans
(rapeseed, cotton seed, sunflower seed, cocoa meal, palm kernel and soy bean meal, copra)

15
     European Commission, Food and Veterinary Office, pesticide annual reports
     http://www.europa.eu.int/comm/food/fvo/specialreports/pesticides_index_en.htm

http://www.efsa.eu.int                                                               Page 15 of 31
The EFSA Journal (2005) 234, 1 - 31

where analyzed for 28 different pesticides including endosulfan. None of these samples
contained endosulfan at concentrations over the detection limit (50 µg/kg) (MAFF-UK,
1998).

5.           Adverse effects on fish, livestock and pets, and exposure-response relationship

5.1.         Introduction

The effect of any dose of endosulfan varies with the route of exposure and with the vehicle
used. The lethal dose is lower if the insecticide is given in vegetable rather than in mineral oil,
or as suspensions or dry powder (Humphreys, 1988). The sensitivity to endosulfan exposure
varies with species, strain, age, gender and health status.

Acute intoxication with endosulfan is expressed through stimulation of the nervous system.
The symptoms vary considerably but are predominantly neuromuscular. The onset of clinical
signs may occur after a few minutes to days depending on the dose and route of exposure.
Most animals show signs within 24 hours after exposure (Humphreys, 1988).

The signs of chronic endosulfan toxicity are principally similar to those of acute poisoning but
develop more gradually, and tremors, convulsions, and depression may occur for weeks
(Humphreys, 1988).


5.2.         Fish

In a recently published study on Nile tilapia of about 140 g b.w., the effects of endosulfan at
100 and 500 µg/kg diet during 21 or 35 days exposure on thyroid hormone levels and
metabolism were investigated (Coimbra et al., 2005). The plasma levels of T4 and of the
inactive metabolite reverse T3 were decreased compared to levels in control fish, the effect
was most prominent at the lowest dose. Furthermore, the hepatic deiodinase type I activity
was reduced and the hepatic deiodinase type III (D3) was increased compared with controls.
In the gills, D3 activity was increased in fish fed both levels of endosulfan. There was no clear
dose-response pattern. It is therefore difficult to interpret the consequences of these effects on
a long term; in addition, the authors claim that these might be adaptive responses.

In the common carp (on average 62.5 g b.w.) fed a diet containing technical endosulfan
(thiodan, 35 % w./v.) at an endosulfan concentration of 0.5 µg/kg diet dry weight (0.015
µg/kg b.w.) for 5 weeks. No alterations in behaviour, feeding activity, growth and
macroscopically overt signs of pathology upon dissection were observed. Cytological and
ultrastructural alterations in hepatocytes and enterocytes were investigated by means of light
and electron microscopy (Braunbeck and Appelbaum, 1999). The liver cells showed
enlargement of the nucleolus, increased number and size of both Golgi fields and rough
endoplasmic reticulum (ER) lamellae, as well as proliferation of peroxisomes and lysosomes,
all together representing morphological equivalent of a general stimulation of hepatic
metabolism. Furthermore, proliferation of smooth ER, glycogen and lipid depletion, invasion
of phagocytic macrophages and accumulation of myelinated bodies in endothelial cells of

http://www.efsa.eu.int                                                                 Page 16 of 31
The EFSA Journal (2005) 234, 1 - 31

hepatic sinusoids were found. In the intestinal tract, lack of chylomicrons in the epithelial
lining was observed, indicating a disturbance of absorption. These subtle biological changes
were considered by the Panel as not to represent adverse effects.

Endosulfan is toxic to fish through exposure via water, and generally the LC50 values lie
within the concentration range of 1 to 10 µg/L water (Goebel et al., 1982). The α-isomer was
more toxic and the β-isomer less toxic, than technical grade endosulfan when examined in
two freshwater fish species (Rao et al., 1980; Devi et al., 1981). Sulfur-free metabolites
possess a significantly lower toxicity against fish with LC50 values in the range 1 to 10 mg/L
(Knauf and Schulze, 1973). The effect of endosulfan in fish is temperature-dependent with
decreased action at low temperatures, demonstrated in rainbow trout (Macek et al., 1969).

Short time endosulfan exposure of different fish species in sub lethal water concentrations
(0.1 - 10 µg/L), have triggered increased swimming activity and raised blood glucose levels
(Van Dyk et al., 1977; Gopal et al., 1980; Singh and Srivastava, 1981; Verma et al., 1983).
Histopathological changes in the gills are reported after exposure to toxic water
concentrations (Dalela et al., 1979). Histopathological changes in the liver and brain have
been found in fish exposed to endosulfan contaminated water from insect spraying
(Matthiessen and Roberts, 1982).

5.3.         Ruminants

In an experimental study, groups of two steers were given endosulfan in the rations at doses
0.15, 1.1, 2.5 and 5.0 mg/kg b.w. After 60 days, no signs of toxicity were found in the pairs of
steers receiving endosulfan at 0.15 and 1.1 mg/kg, One of the steers in the pairs receiving 2.5
mg/kg and 5.0 mg/kg showed toxic symptoms (muscle convulsions, excessive salivation, and
incoordination) after 13 and 2 days, respectively, and both pairs were removed from the
experiment (Bech et al., 1966). This indicates a NOAEL for clinical toxicity of 1.1 mg/kg
b.w., and with a dry matter feed intake to body weight of approximately 3 % (Pond et al.
1995) this correspond to a no observed acute effect concentration of 40 mg/kg diet.

A study of endosulfan effects in goats orally dosed with 5 mg/kg b.w/day for 36 days revealed
reduced body weight gain and depleted fat stores compared to controls. Other toxic symptoms
were not reported (Amin and Abdalla, 1995).

There are several reports on endosulfan poisoning in cattle. In one case fatal poisoning
appeared among cows fed peanut hay contaminated with endosulfan. Three cows died within
15 hours after the ingestion, and the dose was calculated to be approximately 30 mg of
Thiodan (presumed to contain 35 % endosulfan)/kg b.w. (Terblanche and Minne, 1968). In
another accidental case in cattle, Thiodan (also presumed to contain 35 % endosulfan)
resulted in convulsions and death. The dose ingested was not determined, but residues were
determined in liver (4.4 mg/kg w.w.), kidney (1.1 mg/kg w.w.) and muscle tissue (0.66 mg/kg
w.w.) consisting predominantly of the metabolite endosulfan sulfate (Braun and Lobb, 1976).




http://www.efsa.eu.int                                                              Page 17 of 31
The EFSA Journal (2005) 234, 1 - 31

Spraying of animals with accidental high endosulfan concentration (Thiodan emulsion of 0.12
% endosulfan) for treatment against ectoparasites, produced acute nervous symptoms in 50 of
250 cattle and 11 animals died (Thomson, 1966). Spraying or applying powder with the
pesticide at the animal skin are the main causes to endosulfan poisoning in cattle and such
cases are still occurring (Aslani, 1996; Kelch and Kerr, 1997; Mor and Ozmen, 2003).


5.4.         Birds

In broiler chicken fed 30, 60 and 120 mg endosulfan/kg diet from age one day to eight weeks,
a slight inhibitory effect on body weight gain relative to controls was found at all endosulfan
levels, but no significant effect on feed consumption was revealed. Furthermore, increased
serum glucose and decreased serum albumin was found in the chicken at all endosulfan levels.
The hyperglycemia tended to be dose-related (Selvaraj et al., 2001a,b). The daily feed intake
of broiler chicken after hatching is approximately 15 % relative to the body weight, reduced
to approximately 10 % within few days (Pond et al., 1995), hence the levels in feed
correspond to daily doses of 3 - 4.5, 6 - 9 and 12 - 18 mg/kg b.w., respectively.

Hudson et al. (1972) examined the effects of age of mallard ducks on their acute susceptibility
to endosulfan. The oral LD50s of animals of 36 hours after birth, the age of 7 days, 30 days
and 6 months were 28, 6.5, 7.9 and 34 mg/kg b.w., respectively.

Reported lethal feed concentrations (< 10-d LC50) of endosulfan in young mallard, ring-
necked pheasant and bobwhite quail are 350, 175 and 100 mg/kg diet (WHO, 1984). Based on
a daily feed intake of approximately 6 % relative to body weight, the feed concentrations
correspond to approximately 20, 15 and 6 mg/kg b.w., respectively.


5.5.         Rabbits

Mated New Zealand white rabbits were given endosulfan by gavage on days 6 - 28 of
gestation at doses of 0.3, 0.7 or 1.8 mg/kg b.w. The highest dose was associated with signs of
maternal toxicity that included noisy, rapid breathing, hyperactivity and convulsions, but no
teratogenic or developmental effects. No clinical signs of toxicity in does or foetal effects
were found at the two other dose levels. Thus, the NOAEL of endosulfan in rabbits was 0.7
mg/kg b.w./day (Dickie et al., 1981).


5.6.         Dogs

Dogs dosed endosulfan 200 or 500 mg/kg b.w. as a single dose in gelatine capsules showed
increased saliva formation, vomiting, and tonic and clonic cramps. The animals which did not
vomit during these tests died (Maier-Bode, 1968). LD50 in dogs is reported 77 mg/kg
(FAO/WHO, 1998)

Beagle dogs of both sexes were fed endosulfan at concentrations of 3, 10 and 30 mg/kg diet
for one year, calculated by the authors to be 0.23, 0.77 and 2.3 mg/kg b.w./day. At the 30


http://www.efsa.eu.int                                                             Page 18 of 31
The EFSA Journal (2005) 234, 1 - 31

mg/kg diet some animals had violent contractions of the abdominal muscles, and males at this
dose had reduced body weight gains throughout the study in comparison with controls, and
cholinesterase activity was increased in the brain. No other effects related to treatment were
observed. In addition, one group was given a diet containing 30 - 60 mg/kg endosulfan,
increasing in stages from 30 mg/kg for 54 days, to 45 mg/kg for 52 days, and 60 mg/kg for 19
- 40 days. These dogs were killed in extremis before the scheduled completion of the
experiment due to a number of neurotoxic symptoms (FAO/WHO, 1998). The results from
this study gives a NOAEL of 10 mg/kg feed, corresponding to 0.8 mg/kg b.w.

Mongrel dogs of both sexes were given endosulfan in gelatine capsules at feed levels 3, 10
and 30 mg/kg for one year. No clinical signs or treatment related effects on body weight gain,
clinical chemical or haematological parameters, or gross or histopathological changes at these
concentrations were noted (FAO/WHO, 1998). Middle sized adult dogs have daily
maintenance requirement of dry feed of approximately 2 % relative to body weight (Pond et
al., 1995), corresponding to 0.06, 0.2 and 0.6 mg/kg b.w./day.

6.           Toxicokinetics and tissue disposition

6.1.         Absorption

Several animal studies provided evidence of endosulfan absorption following oral exposure
(Goebel et al., 1982; FAO/WHO, 1998; ATSDR, 2000). In metabolic studies with 14C-
endosulfan in mice (Deema et al., 1966) approximately 65 % of the administered radioactivity
was recovered from the excreta and tissues 24 hours after ingestion of a single dose (0.3
mg/animal), suggesting that gastrointestinal absorption occurred to a significant extent in this
species. More than 90 % of a single oral dose of 14C-endosulfan (2 mg/kg b.w.) was absorbed
in rats with a maximum plasma concentration occurring after 3 – 8 hours in males (0.25
µg/mL) and about 18 hours in females (0.18 µg/mL). The half-life in plasma was 75 hours in
females. Males show a biphasic curve with an initial half-life of 8 hours followed by a half-
live of 110 hours (FAO/WHO, 1998).

When 14C-endosulfan was administered as a single oral dose (0.3 mg/kg b.w.) to lactating
sheep (Gorbach et al., 1968), blood radioactivity reached a maximum after 24 hours (0.064
µg/mL). The metabolic balance performed on day 22 suggested that absorption of endosulfan
was > 42 % of the dose, based on radioactivity excreted in urine and milk.

Although no specific studies were carried out to determine the absorption of endosulfan in
humans, residues of endosulfan were found in the fat, brain and kidney of a man who had
ingested a single oral dose (260 mg/kg b.w.) of endosulfan. 150 minutes after ingestion, the
levels of α- and β-endosulfan and endosulfan sulfate in blood were 644, 101 and 876 µg/L
respectively (Boereboom et al., 1998). α-Endosulfan and endosulfan sulfate were also found
in urine but at levels of 1.0 µg/L or lower. The patient died 91 hours after ingestion. Post
mortem, the highest levels of α-endosulfan were found in adipose tissue and stomach content,
4.1 and 3.5 mg/kg respectively, whereas lower levels were found in brain and kidney, 0.08
and 0.06 mg/kg respectively. β-endosulfan was found in brain and stomach content at 0.07

http://www.efsa.eu.int                                                              Page 19 of 31
The EFSA Journal (2005) 234, 1 - 31

and 1.4 mg/kg respectively and endosulfan sulfate was found in liver, brain and kidney at 3.0,
1.3 and 0.4 mg/kg respectively. β-endosulfan and endosulfan sulfate were not analysed in
adipose tissue. Even if this report concerns an extreme case, it gives evidence of absorption,
metabolism and distribution of endosulfan in humans.

6.2.             Distribution

Studies using radiolabelled endosulfan administered to rat and mice indicate that the tissue
concentration of residues of parent compound and metabolites were generally highest in the
kidneys and liver and lower in other tissues, including fat. Male rats exposed daily for 60 days
to 2.5 or 3.75 mg/kg/day of endosulfan containing α- and β-isomers in a ratio of 2:1 produced
different disposition patterns for the two isomers (Ansari et al., 1984). For both doses, the
concentrations of the α-isomer were as follows: kidney > epididymis > prostate ≈ spleen >
testes > brain > liver. The β-isomer was found predominantly in seminal vesicle > epididymis
> heart > prostate > spleen > liver. Overall, the greatest levels of both isomers were located in
the kidney, seminal vesicle, and epididymis, with the liver having the least amount. Hoechst
(1987) investigated the tissue residues in rats consuming 34 or 68 mg endosulfan/kg/day over
4 weeks. The predominant substances found in the liver were endosulfan sulfate and
endosulfan lactone. Traces of α- and β-endosulfan were measured in the liver, whereas
approximately 200 times more α-endosulfan than β-endosulfan was found in the kidney.

In lactating cows and sheep (Keller, 1959; Gorbach et al., 1968) residues were predominantly
found in fat, kidney, and liver; all of the remaining tissues had considerably lower
concentrations.

Because Spain is a main user of endosulfan within EU several reports focused on residues of
endosulfan in humans from this country especially from southern Spain where extensive areas
are devoted to intensive farming, including plastic greenhouse production.

In the mid-1990ties remarkable high levels of endosulfan residues were determined in the
adipose tissue from 52 children from the Granada area in Spain, and showed the following
results, based on a limit of quantification of 1 - 5 ng/g of lipid: α-endosulfan was detected in
seven individuals: distribution, percentile 25, 50 and 75 were: 8.6, 58.9 and 105 ng/g of lipid.
β-endosulfan was detected in three individuals with levels of 115, 2450 and 9060 ng/g of
lipid. Endosulfan sulfate was found in one individual at 42.9 ng/g of lipid (Olea, personal
communication).

In women of reproductive age the highest concentration of α-endosulfan, β-endosulfan and
endosulfan sulfate were found in fat corresponding to 11 ± 86 µg/kg fat, 6.5 ± 20 µg/kg fat
and 16 ± 93 µg/kg fat, respectively (Cerrillo et al., 2005).

6.3.         Metabolism

Biotransformation in mammals is by oxidation, hydrolysis and subsequent conjugation of α-
and β-endosulfan. The major portion of metabolites in the excreta and/or tissues consisted of


http://www.efsa.eu.int                                                               Page 20 of 31
The EFSA Journal (2005) 234, 1 - 31

unidentified polar metabolites that could not be extracted from the matrix, whereas the non-
polar metabolites including sulfate, diol, α-hydroxyether, and ether derivatives of endosulfan,
represented only minor amounts (Dorough et al., 1978). In sheep, endosulfan sulfate was
detected in the faeces and endosulfan diol and α-hydroxyether were detected in urine
(Gorbach et al., 1968).

Of all the metabolites of endosulfan, the sulfate appears to be the one that accumulates,
predominantly in the liver and kidneys. The β-isomer is more resistant to oxidation to
endosulfan sulfate than the α-isomer and hence is more persistent in living organisms
(Sutherland et al., 2004). Residues associated with endosulfan comprise both isomers and
endosulfan sulfate, the latter being the major residue detected in animal tissues after exposure
(Sutherland et al., 2004). This has important consequences in regard to the monitoring issue
since endosulfan sulfate has equivalent mammalian toxicity to α-endosulfan (Goebel et al.,
1982).

Endosulfan is slowly metabolised in fish and endosulfan sulfate is the main metabolite (Rao et
al., 1981). Other metabolism data for fish dietary exposed to endosulfan were not identified.

6.4.         Excretion

Elimination occurs mainly in the faeces and to lesser extent in urine, less that 15 % is retained
after 5 days. In a study using rats treated with a single oral dose of 14C-endosulfan (2 mg/kg
b.w.), Dorough et al. (1978) found that 82 and 72 % of the dose was found in faeces, whereas
12 and 22 % was excreted in urine for males and females, respectively.

Biliary excretion of radio labelled compounds in male rats given 1.2 mg/kg b.w. as a single
dose was approximately 50 % for the α-isomer and 30 % for the ß-isomer over 48 hours.
There appeared to be little enterohepatic circulation.

In sheep receiving a single dose of 14C-endosulfan (Gorbach et al., 1968), radiolabelled
compounds were excreted mainly via the urine (41 %) and faeces (50 %). About half of the 50
% in faeces was unmetabolised endosulfan.

When treatment ceased after dietary administration of 14C-endosulfan for 14 days (Dorough et
al., 1978), the estimated residues half-lives were approximately one week for kidney and
three days in liver.

7.      Carry over and tissue concentration

In pigs fed a diet containing 2 mg endosulfan/kg feed for up to 81 days, the compound was
detected in fat at concentrations of 70, 90 and 40 µg/kg after 27, 54 and 81 days of treatment,
respectively, suggesting that endosulfan does not bioaccumulate. 27 days after the exposure
ceased concentrations in fat were below the limit of detection (Maier-Bode, 1966).

Groups of three lactating Holstein cows were given diets containing 0, 0.3, 3, or 30 mg/kg
14
 C-endosulfan for 30 days. Between days 7 and 29, the average concentrations in milk were


http://www.efsa.eu.int                                                               Page 21 of 31
The EFSA Journal (2005) 234, 1 - 31

3.4, 40, and 462 µg/kg endosulfan in the three dose groups (Bowman, 1959). The
concentrations of tissue residues found at the three doses were: liver, 0.35, 2.45, and 25.3
mg/kg; kidney, 0.05, 0.35, and 6.29 mg/kg; and omental fat, 0.07, 0.71, and 7.08 mg/kg
(Keller, 1959).

After feeding 0.5 to 2 g technical endosulfan per day to dairy cows for 11 days, the parent
compound endosulfan was not found in milk, but merely the oxidation product endosulfan
sulfate (McCaskey and Liska, 1967). Braun and Lobb (1976) determined endosulfan
concentrations in different tissues of a dairy herd acutely intoxicated by endosulfan. In post
mortem samples from the carcass 1270 mg/kg was found in rumen content, whereas the
concentrations in liver (4.2 mg/kg), kidneys (1.1 mg/kg) and muscle (0.6 mg/kg) were much
lower. In animals which survived the concentrations in the milk decreased rapidly, with a
biological half life of about 3.9 days.

Two lactating sheep were given a single oral dose of 0.3 mg/kg b.w. 14C-endosulfan and were
killed after 40 days (Gorbach et al., 1968). The elimination of radio labelled compounds via
milk during 17 days was 0.37 % and 1.82 % of the dose in the two sheep. Fat, kidney, and
liver of the sheep contained 0.02 - 0.03 µg/g endosulfan; all of the remaining tissues had
considerably lower concentrations. The total amount of radio labelled compounds found in
organs and tissues accounted for less than 1 % of the administered dose.

In lactating goats receiving endosulfan in gelatine capsules at a dose of 1 mg/kg b.w. per day
for 28 days, the levels of total residues (α- and β-endosulfan and endosulfan sulfate) were
generally low, the highest being detected on the first day after cessation of treatment, with
0.29 mg/kg in kidney, 0.2 mg/kg in the gastrointestinal tract, 0.12 mg/kg in liver and 0.02
mg/kg in milk (Indraningsih et al., 1993). The concentration in the kidney was increased to
0.49 mg/kg one week after the treatment ceased, but no residues were detected 21 days after
end of treatment. Endosulfan residues did not accumulate in the fat; the concentrations
reached 0.06 mg/kg on day 1 after the end of treatment, but no residues were detected one
week 8 after treatment.

Naqvi and Vaishnavi (1993) reviewed bioaccumulation factors for aquatic animals. For
different organisms the reported bioconcentration factors were between 10 and 600. In an
ATSDR review (ATSDR, 2000) maximum bioconcentration factors in aquatic systems are
usually less than 3,000 and residues are eliminated within 2 weeks after transfer of fish to
endosulfan-free water. The tests with 14C-labelled endosulfan revealed that fish are capable of
forming water-soluble endosulfan metabolites in the liver. Analyses suggest that endosulfan
diol is formed, which conjugated with glucuronic acid and is passed via bile to the faeces and
excreted (Goebel et al., 1982).

Bargar et al. (2001a,b) studied the transfer of endosulfan injected in laying hens to the eggs.
About 0.04 to 0.12 % of the dose injected was transferred to the eggs (Bargar et al., 2001b).
During incubation of the fertilized eggs most of the endosulfan could be found in yolk and
albumin. There seemed an excretion and reabsorption of endosulfan and metabolites into/from
the allantoic fluid during the development of the embryo.

http://www.efsa.eu.int                                                             Page 22 of 31
The EFSA Journal (2005) 234, 1 - 31

Endosulfan has been detected in breast milk of women environmentally exposed to a number
of contaminants in rural Kazakhstan (Lutter et al., 1998) and in Spain (Cerillo et al., 2005),
indicating that transfer to children can occur during lactation. No data on levels were reported
in the Kazakhstan study, but in the Spanish study a mean endosulfan (α plus β) concentration
of 11.38 ng/mL milk was found.

8.           Human dietary exposure and comparison with ADI

The most important routes of exposure to endosulfan for the general population are ingestion
of food and the use of tobacco products with endosulfan residues remaining after treatment
(ATSDR, 2000). A total diet study performed between 1993 and 1996 in Canada revealed an
average daily dietary intake for total endosulfan 23.8 ng/kg b.w. (Health Canada, 2003). In a
recent Canadian study (Rawn et al., 2004) on a single location maximum intake of endosulfan
could be observed in 5 - 11 year old children (0.03 µg/kg b.w./day). These values correspond
with the results of an US study (0.05 µg/kg b.w./day) (Gunderson, 1995). In Hsinchu, Taiwan,
the dietary intake of α- and β-endosulfan was studied from June 1996 to April 1997 (Doong et
al., 1999). β-Endosulfan was not detected in any of the 14 different foods studied, including
fruits, meats, seafood, and cereal, and α-endosulfan, by contrast, was found in 78 of 149
samples at an average concentration of 2.8 ng/g wet weight. Data on endosulfan sulfate were
not reported in this study. Based on the average Taiwanese diet, the estimated daily intake of
α-endosulfan was 0.62 µg/person. Converted to body weight this results at approximately 0.01
µg/kg b.w. (Doong et al., 1999). In Europe, the Czech Republic reported results of dietary
intake for the sum of α-, β-endosulfan and endosulfan sulphate. Median of summary exposure
to endosulfan in 1994 was 0.015 µg/kg b.w./day (Ruprich et al., 1995). Mean intake 0.003
µg/kg b.w./day has been reported in 2002 (Ruprich et al., 2003). 4136 samples representing
all major food groups after processing were analysed during the period 1994 - 2002. Most
frequently contaminated foods were offal (30 %) and fish and fish products (28 %) but
concentrations were low (up to 15 µg/kg of sample).


CONCLUSIONS
Chemistry and environmental fate
     •   Once released into the environment, α- and β-endosulfan, which are the major
         constituents of the technical-grade pesticide endosulfan, can be broken down by
         hydrolysis, biodegradation. β-endosulfan is more persistent than the α- isomer.
         Endosulfan sulfate is the main degradation product of both isomers. It is equally toxic
         and more persistent in vivo than its parent compounds. Therefore, it is mandatory that
         analysis of endosulfan residues in feed and food includes the parent compounds α-
         and β-endosulfan as well as their major degradation product endosulfan sulfate.

Adverse effect in animals
     •   Fish show high sensitivity to endosulfan exposure via water. Oral exposure studies
         have shown effects on thyroxin level and thyroid hormone metabolism at dietary

http://www.efsa.eu.int                                                              Page 23 of 31
The EFSA Journal (2005) 234, 1 - 31

        concentration of 100 µg/kg (Nile tilapia), and ultrastructural alterations of the liver
        and intestinal tract at dietary concentration of 0.5 µg/kg (common carp). These effects
        were subtle, possibly adaptive, and not considered to represent adverse effects.

    •   The dominant toxic effect in mammals is stimulation and disturbance of the nervous
        system.

    •   A NOAEL for clinical toxicity of 1.1 mg/kg b.w. was found in young steers, fed
        endosulfan for 60 days, corresponding to a concentration in the diet of 40 mg/kg dry
        matter. This concentration in feed is 400 times higher than the current ML for the
        corresponding feed product.

    •   For chicken fed endosulfan for eight weeks a lowest observed adverse effect level of
        30 mg/kg feed (LOAEL of 3 mg/kg b.w.) was found. This concentration in feed is 300
        times higher than the current ML for the corresponding feed product.

    •   In dogs, orally dosed endosulfan for one year, a no observed adverse effect level of 10
        mg/kg feed (NOAEL of 0.8 mg/kg b.w.) was found. This concentration in feed is 100
        times higher than the current ML for the corresponding feed product.
Occurrence in feed and carry over
    •   Residues of endosulfan in feed are mostly reported by the Member States to the
        Commission as condensed overall summaries just giving the number of compliant and
        non compliant samples. Thus, primary data are not accessible, and as a consequence,
        detailed occurrence levels of endosulfan in feed are scarce.
    •   The limited data available on the occurrence of endosulfan and endosulfan sulfate in
        various feed categories, including fish feed, show only a limited number of samples
        containing residues (usually below 1 µg/kg product).
    •   Endosulfan does not significantly bioaccumulate in mammals.

    •   In living organisms, β-endosulfan is more persistent than α-endosulfan.
    •   Depending on species and duration of exposure, residues (parent compounds and
        endosulfan sulfate) are predominantly found in kidney, fat and liver. Transfer of
        residues to milk and eggs occurs to a limited extent.
    •   Based on the limited data on animal exposure via feed produced according to good
        agricultural practice, it is not likely that terrestrial animals will be exposed to levels
        that could cause toxic effects.

Human exposure
    •   Limited exposure data collected in the 1990s in Canada, United States and Taiwan
        show a mean daily dietary intake between 0.01 and 0.05 µg total endosulfan/kg body
        weight. Recent data on human endosulfan exposure in European adults are reported
        from the Czech Republic for the years 1994 - 2002. These show a mean daily dietary

http://www.efsa.eu.int                                                                Page 24 of 31
The EFSA Journal (2005) 234, 1 - 31

        intake between 0.003 and 0.015 µg total endosulfan/kg body weight. A similar dietary
        exposure can be assumed for other EU Member States based on the occurrence data of
        endosulfan in various food commodities measured in co-ordinated European
        monitoring programmes since 1997.
    •   Endosulfan does not significantly bioaccumulate in humans. During the latest WHO
        field study 27 human milk pools from 16 European and non-European countries were
        analysed for pesticides and showed no endosulfan contamination at a limit of detection
        of 1 µg/kg milk fat.
    •   The limited data available indicate that human dietary exposure to endosulfan is well
        below the ADI at 6 µg/kg b.w. set by JMPR in 1998.
Important gaps in the database
    •   Detailed data on residues of endosulfan and its metabolites in feedingstuffs and food
        of animal origin are scarce.
    •   Only limited information on oral toxicity of endosulfan exposure in fish and no data
        on laying hens are available.


RECOMMENDATION
    •   Most of the surveillance data from Member States are required by the European
        Commission to be reported as compliant or non-compliant. To allow for a better intake
        assessment it is necessary that the actual levels as well as the contaminant are
        reported.

    •   Studies on carry-over, accumulation and oral toxicity of endosulfan, especially in
        farmed fish and laying hens, should be performed.




http://www.efsa.eu.int                                                             Page 25 of 31
The EFSA Journal (2005) 234, 1 - 31


REFERENCES
Amin, A.E. and Abdalla, G.A. 1995. Effects of endosulfan and amitraz on feedlot
  performance, carcass yield and meat quality characteristics of Nubian goats. Vet Hum
  Toxicol 37:113-115.
Ansari, R.A., Siddiqui, M.K.J. and Gupta, P.K. 1984. Toxicity of endosulfan: Distribution of
  alpha- and beta-isomers of racemic endosulfan following oral administration in rats.
  Toxicol Lett 21:29-33.
Aslani, M.R. 1996. Endosulfan toxicosis in calves. Vet Hum Toxicol 38:364.
ATSDR (Agency for Toxic Substances and Disease Registry), 2000. Toxicological profile for
  endosulfan. Atlanta GA. USA.
Bargar, T.A., Scott, G.I. and Cobb, G.B. 2001a. Uptake and distribution of three PCB
  conceners and endosulfan by developing white leghorn chicken embryos (Gallus
  domesticus). Arch Environ Contam Toxicol 41, 508 – 514.
Bargar, T.A., Scott, G.I. and Cobb, G.P. 2001b. Maternal transfer of contaminants: case study
  of the excretion of three polychlorinated biphenyl congeners and technical-grade
  endosulfan into eggs by white leghorn chickens (Gallus domesticus). Environ. Toxicol
  Chem 20, 61-67.
Beck, E.W., Johnson, J.C. Jr., Woodham, D.W., Leuck, D.B., Dawsey, L.H., Robbins, J.E.
  and Bowman, M.C. 1966. Residues of endosulfan in meat and milk of cattle fed treated
  forages. J Econ Entomol 59:1444-1450.
Boereboom, F.T., van Dijk. A., van Zoonen, P. and Meulenbelt, J. 1998. Nonaccidental
  endosulfan intoxication: A case report with toxicokinetic calculations and tissue
  concentrations. Clin Toxicol 36(4):345-352.
Bowman, J.S. 1959. Preliminary report: Subacute feeding – dairy cows. Unpublished report
  from Hazleton Laboratories, USA. Hoechst document No. A14205. Submitted to WHO by
  Hoechst Schering AgrEvo GmbH, Frankfurt-am-Main, Germany.
Braun, H.E. and Lobb, B.T. 1976. Residues in milk and organs in a dairy herd following acute
  endosulfan intoxication. Can J Anim Sci 56:373-376.
Braunbeck, T. and Appelbaum, S. 1999. Ultrastructural alterations in the liver and intestine af
   carp Cyprinus carpio induced orally by ultra-low doses of endosulfan. Dis Aquat Org 36:
   183-200.
Cerrillo, I., Granada, A., Lopez-Espinosa, M.J., Olmos, B., Jimenez, M., Cano, A., Olea, N.
  and Fatima Olea-Serrano, M. 2005. Endosulfan and its metabolites in fertile women,
  placenta, cord blood, and human milk. Environ Res 98(2):233-9.
Coimbra, A.M., Reis-Henriques, M.A. and Darras, V.M. 2005. Circulating thyroid hormone
   levels and iodothyronine deiodinase activities in Nile tilapia (Oreochromis niloticus)
   following dietary exposure to endosulfan and Arochlor 1254. Comp Biochem Physiol
   141C: 8-14.
Dalela, R.C., Bhatnagar, M.C., Tyagi, A.K. and Verma, S.R. 1979. Histological damage of
  gills in Channa gachua after acute and subacute exposure to endosulfan and rogor.
  Mikroskopie 35:301-307.

http://www.efsa.eu.int                                                             Page 26 of 31
The EFSA Journal (2005) 234, 1 - 31

Deema, P., Thompson, E. and Ware, G.W. 1966. Metabolism, storage and excretion of C-14-
  endosulfan in the mouse. J Econ Entomol 59:546-550.
Devi, A.P., Rato, D.M.R., Tilak, K.S. and Murty, A.S. 1981. Relative toxicity of the technical
  grade material, isomers, and formulations of endosulfan to the fish Channa punctata. Bull
  Environ Contam Toxicol 27:239-243.
Dickie, S.M., McKenzie, K.M. and Rao, G.N. 1981. Teratology study with FMC 5462 in
  rabbits. Raltech Sci Serv, US Report No A23192 (unpublished study).
Doong, R.A., Lee, C.-Y. and Sun, Y.-C. 1999. Dietary intake and residues of organochlorine
  pesticides in food from Hsinchu, Taiwan. J AOAC Int 82:677-682.
Dorough, H.W., Huhtanen, K., Marshall, T.C. and Bryant, H.E. 1978. Fate of endosulfan in
  rats and toxicological considerations of apolar metabolites. Pest Biochem Physiol 8:241-
  252.
FAO/WHO (Food and Agriculture Organization/World Health Organization), 1998. Joint
  FAO/WHO Meeting on Pesticide Residues (JMPR). Endosulfan, part II, toxicology.
  http://www.inchem.org/documents/jmpr/jmpmono/v098pr08.htm.
Fransson-Steen R., Flodström, S. and Wärngård, L. 1992. The insecticide endosulfan and its
   two stereoisomerspromotethe growth of altered hepatic foci in rats. Carcinogenesis 13
   (12):2299-2303.
Fürst, P. 2004. Personal communication.
Goebel, H., Gorbach, S., Knauf, W., Rimpau, R.H. and Hüttenbach, H. 1982. Properties,
  effects, residues, and analytics of the insecticide endosulfan. Res Rev 83:1-165.
Gopal, K., Anand, M., Khanna, R.N. and Misra, D. 1980. Endosulfan induced changes in
  blood glucose of catfish, Clarias batrachus. J Adv Zool 1:68-71.
Gopinath, C. and Cannon, M.W.J. 1990. Photomicrographic addendum to histopathology
  report No. Hst/289 Endosulfan, active ingredient technical (code: Hoe 002671 OI ZD97
  0003) combined chronic toxicity/carcinogenicity study (104-week feeding in rats).
  Huntingdon Research Centre Ltd, Huntingdon, Cambridgeshire, United Kingdom.
  Unpublished Hoechst document No. A44604. Submitted to WHO by Hoechst Schering
  AgrEvo GmbH, Frankfurt-am-Main, Germany.
Gorbach, S.G., Christ, O.E., Kellner, H.-M., Kloss, G. and Borner, E. 1968. Metabolism of
  endosulfan in milk sheep. J Agric Food Chem 16:950-953.
Gunderson, E.L. 1995. FDA total diet study, July 1986 – April 1991, dietary intakes of
  pesticides, selected elements, and other chemicals. J AOAC Int 78:1353- 1363.
Hack, R., Ebert, E. and Leist, K.H. 1995. Chronic toxicity and carcinogenicity studies with
  the insecticide endosulfan in rats and mice. Food Chem Toxicol 33:941-950.
Health Canada, 2003. Average dietary intakes (ng/kg b.w./day) of pesticide residues for
  Canadians in different age-sex groups from the 1993 to 1996 Total Diet Study.
  http://www.hc-sc.gc.ca/food-aliment/cs-ipc/fr-ra/e_pesticide_intake_93-96.html




http://www.efsa.eu.int                                                            Page 27 of 31
The EFSA Journal (2005) 234, 1 - 31

Hoechst, 1975. Beta-endosulfan purew (analysis GOE 1485): Acute oral toxicity in female
  SPF-Wistar rats. Hoechts Aktiengesellschaft, Frankfurt, Germany. Doc #A05270
  (unpublished study).
Hoechst, 1987. Endosulfan - active ingredient technical (code HOE 02671 OI ZD97 0003):
  30-Day feeding study in adult male Wistar rats. Hoechst Aktiengesellschaft, Frankfurt,
  Germany. Project no. 87.0129 (unpublished study).
Hoechst, 1988. Endosulfan - active ingredient technical (code HOE 02671 OI ZD97 0003):
  Carcinogenicity study in mice: 24-Month feeding study. Hoechst Aktiengesellschaft,
  Frankfurt, Germany. TOXN no. 83 0113 (unpublished study).
Hoechst, 1989. Endosulfan - active ingredient technical (code HOE 02671 OI ZD97 0003):
  Combined chronic toxicity/carcinogenicity study: 104-Week feeding in rats. Conducted for
  Hoechst Aktiengesellschaft, Frankfurt, Germany. Huntington Research Centre,
  Cambridgeshire, England. Project no. HST 289/881067 (unpublished study).
Hoechst, 1990. Summary and evaluation of the toxicity datafor endosulfan – substance
  technical (code HOE 002671) Hoechts Aktiengesellschaft, Frankfurt, Germany. Report no.
  90 0848 (unpublished study).
Hudson, R.H., Tucker, R.K. and Haegele, M.A. 1972. Effect of age on sensitivity: acute oral
  toxicity of 14 pesticides to mallard ducks of several ages. Toxicol Appl Pharmacol
  22(4):556-61.
Humphreys, D.J. 1988. Chlorinated hydrocarbon insecticides. In Humphreys, D.J. Veterinary
  Toxicology. 3. ed. Bailliere Tindall, London, p. 142-156.
Indraningsih, McSweeney, C.S. and Ladds, P.W. 1993. Residues of endosulfan in the tissues
   of lactating goats. Aust Vet J 70(2):59-62.
Kelch, W.J. and Kerr, L.A. 1997. Acute toxicosis in cattle sprayed with endosulfan. Vet Hum
  Toxicol 39:29-30.
Keller, J.G. 1959. Subacute feeding - dairy cows. Hazleton Laboratories, USA. Unpublished
  Hoechst document No. A14206. Submitted to WHO by Hoechst Schering AgrEvo GmbH,
  Frankfurt-am-Main, Germany.
Kenne, K., Fransson-Steen, R., Honkasalo, S. and Warngard, L. 1994. Two inhibitors of gap
  junctional intercellular communication, TPA and endosulfan: Different effects on
  phosphorylation of connexion 43 in the rat liver epitheliar cell line IAR 20. Carcinogenesis
  15(6):1161-1165.
Knauf, W. and Scultze, E.-F. 1973. New findings on the toxicity of endosulfan and its
  metabolites to aqatic organisms. Meded Fac Lanbouwwet Rijksuniv Gent 38:717-732.
Lutter, C., Iyengar, V., Barnes, R., Chuvakova, T., Kazbekova, G. and Sharmanov, T. 1998.
  Breast milk contamination in Kazakhstan: implications for infant feeding. Chemosphere
  37(9-12):1761-72.
Macek, K.J., Hutchinson, C. and Cope, O.B. 1969. Effects of temperature on the
  susceptibility of blugills and rainbow trout to selected pesticides. Bull Environ Contam
  Toxicol 4:174-183.


http://www.efsa.eu.int                                                             Page 28 of 31
The EFSA Journal (2005) 234, 1 - 31

MAFF-UK (Ministry of Agriculture, Fisheries and Food in UK), 1998. Annual Report of the
 Working Party on Pesticides Residues: Supplement to The Pesticides Monitor 1999,
 MAFF Publications. p 18.
Maier-Bode, H. 1966. Investigations on the persistence of the insecticide endosulfan in the
  vegetable and animal organism. Pharmakologisches Institut der Rheinischen Friedrich
  Wilhelms Universität. Unpublished Hoechst document No. A4047. Submitted to WHO by
  Hoechst Schering AgrEvo GmbH, Frankfurt-am-Main, Germany.
Maier-Bode, H. 1968. Properties, effects, residues and analytics of the insecticide endosulfan.
  Res Rev 22:1-44.
Malisch, R., Kypke, K., van Leeuwen, R. and Moy, G. 2004. Unpublished data from the 3rd
  WHO human milk field study.
Matthiessen, P. and Roberts, R.J. 1982. Histopathological changes in the liver and brain of
  fish exposed to endosulfan insecticide during tsetse fly control operations in Botswana. J
  Fish Dis 5:153-159.
Mc Caskey, T.A. and Liska, B.J. 1967. Effect of milk processing methods on endosulfan,
  endosulfan sulfate, and chlordane residues in milk. J Dairy Sci 50:1991-1993.
Mor, F. and Ozmen, O. 2003. Acute endosulfan poisoning in cattle. Vet Hum Toxicol 45:323-
  324.
Naqvi, S.M. and Vaishnavi, C. 1993. Bioaccumulative potential and toxicity of endosulfan
  insecticide to non-target animals. Comp Biochem Physiol 105C:347 – 361.
Nath, G, and Dikshith, T.S.S. 1979. Endosulfan residues in rat tissues. Natl Acad Sci Lett
  2:278-279.
Pandey, N., Gundevia, F., Prem, A.S. and Ray, P.K. 1990. Studies on the genotoxicity of
  endosulfan, and organochlorine insecticide, in mammalian germ cells. Mutat Res 242:1-7.
Peres, T.B., Papini, S., Marchetti, M. and Luchini, L.C. 2004. Dissipação de endossulfan em
   amostras de dois tipos de solos brasileiros tratadas em laboratório. Pesticidas: Revista de
   Ecotoxicologia e Meio Ambiente 14:11-18.
Pond, W.G., Church, D.C. and Pond, K.R. 1995. Basic animal nutrition and feeding. 4th ed.
  John Wiley & Sons, NewYork.
Rao, D.M.R., Devi, A.P. and Murty, A.S. 1980. Relative toxicity of of endosulfan, its
  isomers, and formulated products to the freshwater fish Labeo rohita. J Toxicol Environ
  Health 6:825-834.
Rao, D.M.R., Devi, A.P. and Murty, A.S. 1981. Toxicity and metabolism of endosulfan and
  its effect on oxygen consumption and total nitrogen excretion of the fish, Macrognathus
  aculeatum. Pestic Biochem Physiol 15:282-287.
Rasmussen, R.R, Poulsen, M.E. and Hansen, H.C.B. 2003. Distribution of multiple pesticide
  residues in apple segments after home processing. Food Additives and Contaminants
  20(11):1044–1063.




http://www.efsa.eu.int                                                             Page 29 of 31
The EFSA Journal (2005) 234, 1 - 31

Rawn, D.F.K., Cao, X.-L., Doucet, J., Davies, D.J., Sun, W.-F., Dabeka, R.W. and Newsome,
  W.H. 2004. Canadian total diet study in 1998: pesiticide levels in foods from whitehorse,
  yukon, canada, and corresponding dietary intake estimates. Food Add Contam 21:232-250.
Reno, F.E. 1975. Acute oral toxicity study in rats. Endosulfan technical. Unpublished final
  report, 18 December 1975, from Hazleton Laboratories America. Hoechst document No.
  A33732. Submitted to WHO by Hoechst Schering AgrEvo GmbH, Frankfurt-am-Main,
  Germany.
Riuz Mendez , M.V., Perez de la Rosa, I., Jimenez Marquez, A.and Ojeda, M.U. 2005.
  Elimination of pesticides in olive oil by refining using bleaching and deodorization. Food
  Add Contam 22:23-30.
Ruckman, S.A., Waterson, L.A., Crook, D., Gopinath, C., Majeed, S.K., Anderson, A. and
  Chanter, D.O. 1989. Endosulfan, active ingredient technical (code: Hoe 002671 OI ZD97
  0003). Combined chronic toxicity/carcinogenicity study (104-week feeding study in rats).
  Huntingdon Research Centre, Huntingdon, Cambridgeshire, United               Kingdom.
  Unpublished Hoechst document No.A40440. Submitted to WHO by Hoechst Schering
  AgrEvo GmbH, Frankfurt-am-Main, Germany.
Ruprich, J., Řehůřková, I., Steinhauserová, I. and Ostrý, V. 1995. Health impact of exposure
  to xenobiotics from food chains: alimentary diseases (1993) and dietary exposure (1994).
  National Institute of Public Health in Prague, 275 p., ISBN 80-900066-7-1.
Ruprich, J. Adamikova, V., Borkovcova, I., Bouskova, E., Dofkova, M., Karasek,
  K.,Karlikova, D., Karpiskova, K., Kolackova, I., Kopriva, V., Krajcovicova, R.,
  Rajcovicova, R., Krbuskova, M., Markova, E., Ostry, V., Rehakova, J., Ehakova, J.,
  Resova, D, Rehurkova, I., Slavikova, S., Skarkova, J. and Vokounova, S. 2003. Health
  impact of exposure to xenobiotics from food chain in 2002: reported alimentary diseases,
  bacteriological and mycological analyse of foods and dietary exposure of human beings.
  (in Czech). National Institute of Public Health in Prague, 2003. ISBN 80-7071-228-7.
Selvaraj, J., Balasubramaniam, G.A., Titus George, V. and Balachandran, C. 2001a. Effect of
   dietary endosulfan on the growth rate of broiler chicken. Indian Vet J 78:798-800.
Selvaraj, J., Balasubramaniam, G.A., Titus George, V. and Balachandran, C. 2001b. Studies
   on biochemical changes in endosulfan toxicity in broiler chicken. Indian Vet J 78:896-899.
Singh, N.N. and Srivastava, A.K. 1981. Effects of endosulfan on fish carbohydrate
   metabolism. Ecotoxicol Environ Saf 5:412-417.
Sutherland, T.D., Horne, I., Weir, K.M., Russell, R.J. and Oakeshott, J.G. 2004. Toxicity and
  residues of endosulfan isomers. Rev. Environ. Contam. Toxicol 183:99-113.
Terblanche, J. and Minne, J.A. 1968. Thiodan poisoning of cattle – a case report. Jl S Afr Vet
  Med Ass 39:91-92.
Thompson, G.E. 1966. Poisoning of cattle following accidental spraying with Thiodan. J S
  Afr Vet Med Ass 37:81-83.
Umweltbundesamt, 2004. Endosulfan - Draft Dossier prepared in support of a proposal of
  endosulfan to be considered as a candidate for inclusion in the UN-ECE LRTAP protocol


http://www.efsa.eu.int                                                             Page 30 of 31
The EFSA Journal (2005) 234, 1 - 31

   on persistent organic pollutants. German          Federal   Environment    Agency      –
   Umweltbundesamt, Berlin September 2004.
US National Cancer Institute, 1978. 78-week dietary study in Osborne-Mendel rats and
  B6C3F1 mice. NCI study No. NCI-CG-TR62, Technical Report Series No. 62, Bethesda,
  Maryland, USA.
Van Dyk, L.P. and Greeff, C.G. 1977. Endosulfan pollution of rivers and streams in the
  Loskop Dam cotton-growing area. Agrochemophysica 9:71.
Verma, S.R., Rani, S., Tonk, I.P. and Dalela, R.C. 1983. Pesticide-induced dysfunction in
  carbohydrate metabolism in three freshwater fishes. Environ Res 32:127-133.
WHO (World Health Organisation), 1984. Endosulfan. Environmental Health Criteria 40.
 International Programme on Chemical Safety. World Health Organization, Geneva,
 Switzerland.


SCIENTIFIC PANEL MEMBERS

Jan Alexander, Herman Autrup, Denis Bard, Angelo Carere, Lucio Guido Costa, Jean-Pierre
Cravedi, Alessandro Di Domenico, Roberto Fanelli, Johanna Fink-Gremmels, John Gilbert,
Philippe Grandjean, Niklas Johansson, Agneta Oskarsson, Andrew Renwick, Jirí Ruprich,
Josef Schlatter, Greet Schoeters, Dieter Schrenk, Rolaf van Leeuwen, Philippe Verger.


ACKNOWLEDGEMENT

The Scientific Panel on Contaminants in the Food Chain wishes to thank Jan Alexander,
Aksel Bernhoft, George Bories, Jean-Pierre Cravedi, Peter Fürst, Niklas Johansson and Hans
Schenkel for the contributions to the draft opinion.

DOCUMENTATION PROVIDED TO EFSA
Submission of occurrence data
Belgium, The Federal Agency for the Safety of the Food Chain, 2000-2004.
Czech Republic, Central Institute for Testing and Supervising in Agriculture, 2004, and
  National Institute of Public Health, 1994 - 2004.
Germany, Chemisches Landes- und Staatliches, Veterinäruntersuchungsamt Münster, 2003
  and 2004.
European Feed Manufacturers' Federation.




http://www.efsa.eu.int                                                         Page 31 of 31

Contenu connexe

Similaire à EFSA Updates Opinion on Endosulfan Toxicity in Fish

Assessing The Toxicity Of Pv Coated Magnetite Nanoparticles
Assessing The Toxicity Of Pv Coated Magnetite NanoparticlesAssessing The Toxicity Of Pv Coated Magnetite Nanoparticles
Assessing The Toxicity Of Pv Coated Magnetite NanoparticlesRenee Wardowski
 
QUINALPHOS INDUCED BIOCHEMICAL AND PATHOPHYSIOLOGICAL CHANGES IN FRESHWATER E...
QUINALPHOS INDUCED BIOCHEMICAL AND PATHOPHYSIOLOGICAL CHANGES IN FRESHWATER E...QUINALPHOS INDUCED BIOCHEMICAL AND PATHOPHYSIOLOGICAL CHANGES IN FRESHWATER E...
QUINALPHOS INDUCED BIOCHEMICAL AND PATHOPHYSIOLOGICAL CHANGES IN FRESHWATER E...Sameer Chebbi
 
Analysis of Organophosphate Pesticides Residue on Crops in Abakaliki, Ebonyi ...
Analysis of Organophosphate Pesticides Residue on Crops in Abakaliki, Ebonyi ...Analysis of Organophosphate Pesticides Residue on Crops in Abakaliki, Ebonyi ...
Analysis of Organophosphate Pesticides Residue on Crops in Abakaliki, Ebonyi ...IOSR Journals
 
Propolair Scientific and Clinical Studies
Propolair Scientific and Clinical StudiesPropolair Scientific and Clinical Studies
Propolair Scientific and Clinical StudiesBee Healthy Farms
 
Aflatoxin presentation
Aflatoxin presentationAflatoxin presentation
Aflatoxin presentationTesfay Haile
 
I danni del fumo sono dovuti ai radicali liberi: è possibile contrastarli per...
I danni del fumo sono dovuti ai radicali liberi: è possibile contrastarli per...I danni del fumo sono dovuti ai radicali liberi: è possibile contrastarli per...
I danni del fumo sono dovuti ai radicali liberi: è possibile contrastarli per...CreAgri Europe
 
Aflatoxins: A Postharvest Associated Challenge and Mitigation Opportunities
Aflatoxins: A Postharvest Associated Challenge and Mitigation OpportunitiesAflatoxins: A Postharvest Associated Challenge and Mitigation Opportunities
Aflatoxins: A Postharvest Associated Challenge and Mitigation Opportunitiesanupfpic
 
P seudoionon cas document
P seudoionon cas documentP seudoionon cas document
P seudoionon cas documenthiramanan
 
MA-Phenol-Paper_JECE
MA-Phenol-Paper_JECEMA-Phenol-Paper_JECE
MA-Phenol-Paper_JECEMustafa Nabil
 
Lab #11 – EcotoxicologyPrelab DiscussionT.docx
Lab #11 – EcotoxicologyPrelab DiscussionT.docxLab #11 – EcotoxicologyPrelab DiscussionT.docx
Lab #11 – EcotoxicologyPrelab DiscussionT.docxcroysierkathey
 
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...Scientific Review SR
 
in silico validation of efficacy of phytochemicals from Passiflora edulis sim...
in silico validation of efficacy of phytochemicals from Passiflora edulis sim...in silico validation of efficacy of phytochemicals from Passiflora edulis sim...
in silico validation of efficacy of phytochemicals from Passiflora edulis sim...Sneya Fernandes
 
Methods for detection of aflatoxins in agricultural food crops
Methods for detection of aflatoxins in agricultural food cropsMethods for detection of aflatoxins in agricultural food crops
Methods for detection of aflatoxins in agricultural food cropsfstdesk.com
 
Mycotoxins (aflatoxin,Patulin
Mycotoxins (aflatoxin,PatulinMycotoxins (aflatoxin,Patulin
Mycotoxins (aflatoxin,PatulinVijiMahesh1
 

Similaire à EFSA Updates Opinion on Endosulfan Toxicity in Fish (20)

Acido sulfurico
Acido sulfuricoAcido sulfurico
Acido sulfurico
 
Aflatoxin
AflatoxinAflatoxin
Aflatoxin
 
Aflatoxin.pdf
Aflatoxin.pdfAflatoxin.pdf
Aflatoxin.pdf
 
Assessing The Toxicity Of Pv Coated Magnetite Nanoparticles
Assessing The Toxicity Of Pv Coated Magnetite NanoparticlesAssessing The Toxicity Of Pv Coated Magnetite Nanoparticles
Assessing The Toxicity Of Pv Coated Magnetite Nanoparticles
 
QUINALPHOS INDUCED BIOCHEMICAL AND PATHOPHYSIOLOGICAL CHANGES IN FRESHWATER E...
QUINALPHOS INDUCED BIOCHEMICAL AND PATHOPHYSIOLOGICAL CHANGES IN FRESHWATER E...QUINALPHOS INDUCED BIOCHEMICAL AND PATHOPHYSIOLOGICAL CHANGES IN FRESHWATER E...
QUINALPHOS INDUCED BIOCHEMICAL AND PATHOPHYSIOLOGICAL CHANGES IN FRESHWATER E...
 
Analysis of Organophosphate Pesticides Residue on Crops in Abakaliki, Ebonyi ...
Analysis of Organophosphate Pesticides Residue on Crops in Abakaliki, Ebonyi ...Analysis of Organophosphate Pesticides Residue on Crops in Abakaliki, Ebonyi ...
Analysis of Organophosphate Pesticides Residue on Crops in Abakaliki, Ebonyi ...
 
tesi finale Giulio Scalzotto
tesi finale Giulio Scalzottotesi finale Giulio Scalzotto
tesi finale Giulio Scalzotto
 
Propolair Scientific and Clinical Studies
Propolair Scientific and Clinical StudiesPropolair Scientific and Clinical Studies
Propolair Scientific and Clinical Studies
 
Aflatoxin presentation
Aflatoxin presentationAflatoxin presentation
Aflatoxin presentation
 
I danni del fumo sono dovuti ai radicali liberi: è possibile contrastarli per...
I danni del fumo sono dovuti ai radicali liberi: è possibile contrastarli per...I danni del fumo sono dovuti ai radicali liberi: è possibile contrastarli per...
I danni del fumo sono dovuti ai radicali liberi: è possibile contrastarli per...
 
Aflatoxins: A Postharvest Associated Challenge and Mitigation Opportunities
Aflatoxins: A Postharvest Associated Challenge and Mitigation OpportunitiesAflatoxins: A Postharvest Associated Challenge and Mitigation Opportunities
Aflatoxins: A Postharvest Associated Challenge and Mitigation Opportunities
 
P seudoionon cas document
P seudoionon cas documentP seudoionon cas document
P seudoionon cas document
 
MA-Phenol-Paper_JECE
MA-Phenol-Paper_JECEMA-Phenol-Paper_JECE
MA-Phenol-Paper_JECE
 
Experimental Design
Experimental DesignExperimental Design
Experimental Design
 
Research Paper 2012
Research Paper 2012Research Paper 2012
Research Paper 2012
 
Lab #11 – EcotoxicologyPrelab DiscussionT.docx
Lab #11 – EcotoxicologyPrelab DiscussionT.docxLab #11 – EcotoxicologyPrelab DiscussionT.docx
Lab #11 – EcotoxicologyPrelab DiscussionT.docx
 
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
 
in silico validation of efficacy of phytochemicals from Passiflora edulis sim...
in silico validation of efficacy of phytochemicals from Passiflora edulis sim...in silico validation of efficacy of phytochemicals from Passiflora edulis sim...
in silico validation of efficacy of phytochemicals from Passiflora edulis sim...
 
Methods for detection of aflatoxins in agricultural food crops
Methods for detection of aflatoxins in agricultural food cropsMethods for detection of aflatoxins in agricultural food crops
Methods for detection of aflatoxins in agricultural food crops
 
Mycotoxins (aflatoxin,Patulin
Mycotoxins (aflatoxin,PatulinMycotoxins (aflatoxin,Patulin
Mycotoxins (aflatoxin,Patulin
 

Plus de shreeramkannan

Endosulfan ban no clear battle lines drawn
Endosulfan ban  no clear battle lines drawnEndosulfan ban  no clear battle lines drawn
Endosulfan ban no clear battle lines drawnshreeramkannan
 
Deceitful decisions at stockholm convention
Deceitful decisions at stockholm conventionDeceitful decisions at stockholm convention
Deceitful decisions at stockholm conventionshreeramkannan
 
Letter by the endosuflan workers in protest of the ban
Letter by the endosuflan workers in protest of the banLetter by the endosuflan workers in protest of the ban
Letter by the endosuflan workers in protest of the banshreeramkannan
 
Farmers:The Endosulfan victims 
Farmers:The Endosulfan victims  Farmers:The Endosulfan victims 
Farmers:The Endosulfan victims  shreeramkannan
 
Endosulfan – a few facts
Endosulfan – a few factsEndosulfan – a few facts
Endosulfan – a few factsshreeramkannan
 
Endosulfan not banned in USA
Endosulfan not banned in USAEndosulfan not banned in USA
Endosulfan not banned in USAshreeramkannan
 
NIOH report on endosulfan - key issues
NIOH report on endosulfan -  key issuesNIOH report on endosulfan -  key issues
NIOH report on endosulfan - key issuesshreeramkannan
 
Kerala pesticide puzzle - indian express
Kerala pesticide puzzle  -  indian expressKerala pesticide puzzle  -  indian express
Kerala pesticide puzzle - indian expressshreeramkannan
 
Debunking of the fraud nioh report on endosulfan
Debunking of the fraud nioh report on endosulfanDebunking of the fraud nioh report on endosulfan
Debunking of the fraud nioh report on endosulfanshreeramkannan
 
Endosulfan safe to use usepa
Endosulfan safe to use  usepaEndosulfan safe to use  usepa
Endosulfan safe to use usepashreeramkannan
 
Endosulfan absent in worker blood reports
Endosulfan absent in worker blood reportsEndosulfan absent in worker blood reports
Endosulfan absent in worker blood reportsshreeramkannan
 
No endosulfan residues in rivers of india report
No endosulfan residues in rivers of india  reportNo endosulfan residues in rivers of india  report
No endosulfan residues in rivers of india reportshreeramkannan
 
Endosulfan has not contaminated yamuna river scientific report
Endosulfan has not contaminated yamuna river  scientific reportEndosulfan has not contaminated yamuna river  scientific report
Endosulfan has not contaminated yamuna river scientific reportshreeramkannan
 
No endosulfan residues in fishes
No endosulfan residues in fishesNo endosulfan residues in fishes
No endosulfan residues in fishesshreeramkannan
 
No endosulfan residues in himalayas
No endosulfan residues in himalayasNo endosulfan residues in himalayas
No endosulfan residues in himalayasshreeramkannan
 
Endosulfan has negligible residues in drinking water who report
Endosulfan has negligible residues in drinking water   who reportEndosulfan has negligible residues in drinking water   who report
Endosulfan has negligible residues in drinking water who reportshreeramkannan
 

Plus de shreeramkannan (19)

Last Chance
Last ChanceLast Chance
Last Chance
 
Endosulfan ban no clear battle lines drawn
Endosulfan ban  no clear battle lines drawnEndosulfan ban  no clear battle lines drawn
Endosulfan ban no clear battle lines drawn
 
Deceitful decisions at stockholm convention
Deceitful decisions at stockholm conventionDeceitful decisions at stockholm convention
Deceitful decisions at stockholm convention
 
Letter by the endosuflan workers in protest of the ban
Letter by the endosuflan workers in protest of the banLetter by the endosuflan workers in protest of the ban
Letter by the endosuflan workers in protest of the ban
 
Farmers:The Endosulfan victims 
Farmers:The Endosulfan victims  Farmers:The Endosulfan victims 
Farmers:The Endosulfan victims 
 
Endosulfan – a few facts
Endosulfan – a few factsEndosulfan – a few facts
Endosulfan – a few facts
 
Endosulfan key issues
Endosulfan key issuesEndosulfan key issues
Endosulfan key issues
 
Endosulfan key issues
Endosulfan key issuesEndosulfan key issues
Endosulfan key issues
 
Endosulfan not banned in USA
Endosulfan not banned in USAEndosulfan not banned in USA
Endosulfan not banned in USA
 
NIOH report on endosulfan - key issues
NIOH report on endosulfan -  key issuesNIOH report on endosulfan -  key issues
NIOH report on endosulfan - key issues
 
Kerala pesticide puzzle - indian express
Kerala pesticide puzzle  -  indian expressKerala pesticide puzzle  -  indian express
Kerala pesticide puzzle - indian express
 
Debunking of the fraud nioh report on endosulfan
Debunking of the fraud nioh report on endosulfanDebunking of the fraud nioh report on endosulfan
Debunking of the fraud nioh report on endosulfan
 
Endosulfan safe to use usepa
Endosulfan safe to use  usepaEndosulfan safe to use  usepa
Endosulfan safe to use usepa
 
Endosulfan absent in worker blood reports
Endosulfan absent in worker blood reportsEndosulfan absent in worker blood reports
Endosulfan absent in worker blood reports
 
No endosulfan residues in rivers of india report
No endosulfan residues in rivers of india  reportNo endosulfan residues in rivers of india  report
No endosulfan residues in rivers of india report
 
Endosulfan has not contaminated yamuna river scientific report
Endosulfan has not contaminated yamuna river  scientific reportEndosulfan has not contaminated yamuna river  scientific report
Endosulfan has not contaminated yamuna river scientific report
 
No endosulfan residues in fishes
No endosulfan residues in fishesNo endosulfan residues in fishes
No endosulfan residues in fishes
 
No endosulfan residues in himalayas
No endosulfan residues in himalayasNo endosulfan residues in himalayas
No endosulfan residues in himalayas
 
Endosulfan has negligible residues in drinking water who report
Endosulfan has negligible residues in drinking water   who reportEndosulfan has negligible residues in drinking water   who report
Endosulfan has negligible residues in drinking water who report
 

Dernier

Chandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD availableChandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD availableDipal Arora
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatorenarwatsonia7
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...aartirawatdelhi
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.MiadAlsulami
 
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...narwatsonia7
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...narwatsonia7
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableNehru place Escorts
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...indiancallgirl4rent
 
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...narwatsonia7
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...Neha Kaur
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...narwatsonia7
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...Garima Khatri
 

Dernier (20)

Chandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD availableChandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD available
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
 
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...Bangalore Call Girls Hebbal Kempapura Number 7001035870  Meetin With Bangalor...
Bangalore Call Girls Hebbal Kempapura Number 7001035870 Meetin With Bangalor...
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
 
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
 

EFSA Updates Opinion on Endosulfan Toxicity in Fish

  • 1. The EFSA Journal (2005) 234, 1 - 31 Please note that this opinion, published on 7 April 2006, replaces the earlier version published 7 July 2005. The revision was considered necessary because the only study of oral toxicity of endosulfan in fish listed in the original opinion was found to be actually a study with endosulfan exposure of fish via water. Furthermore, two additional studies on fish exposed to endosulfan in feed became available to the Panel. The following items have been changed: • Section 5.2, 1st paragraph has been replaced by 3 new paragraphs, • Conclusion, Adverse effects in animals, bullet on fish is replaced. • Reference list: Naveed et al., 2004 has been replaced by Braunbeck and Appelbaum, 1999 and Coimbra et al., 2005. The Panel on contaminants in the food chain is informed that there is an on-going oral toxicity study on Atlantic salmon exposed to endosulfan in the feed (Marc Berntssen, personal communication, The National Institute of Nutrition and Sea Food Research, Bergen, Norway, 2006). Based on the results of this study, the opinion might be updated again. This study is expected to be finalised in 2006. http://www.efsa.eu.int Page 1 of 31
  • 2. The EFSA Journal (2005) 234, 1 - 31 OPINION OF THE SCIENTIFIC PANEL ON CONTAMINANTS IN THE FOOD CHAIN ON A REQUEST FROM THE COMMISSION RELATED TO ENDOSULFAN AS UNDESIRABLE SUBSTANCE IN ANIMAL FEED Question N° EFSA-Q-2003-066 Adopted on 20 June 2005 SUMMARY Endosulfan is a non-systemic organochlorine pesticide that was developed and introduced in the mid 1950s. Endosulfan consists of α- and β-isomers that could be metabolised to endosulfan sulfate and endosulfan diol. In contrast to α- and β- endosulfan these metabolites are susceptible to photolysis. Endosulfan containing products still hold authorisation in seven member states of the European Community, but it is foreseen that the authorization of endosulfan will be withdrawn by the Member States before 1 February 2006. The use of endosulfan within the EU has steadily decreased during the recent years. Endosulfan is released into the environment mainly as a result of its use as a pesticide and is found in atmosphere, soil and sediment. Direct uptake from soil to plant as well as transport in plants is negligible. In contrast to most related organochlorine pesticides, endosulfan has a less pronounced affinity to lipids. Consequently, biomagnification and accumulation of endosulfan, in terrestrial food chains, is less likely to occur. Endosulfan is readily absorbed from the gastrointestinal tract and distributed to the kidneys and liver and to a lesser extent to other tissues. However, differences in distribution pattern between the isomers as well as metabolites have been reported. Endosulfan residues are normally found in food and feed at low levels only. Detailed data on occurrence and temporal trends of endosulfan in feed are scarce. Based on the limited data on animal exposure via feed produced according to good agricultural practice, it is not likely that terrestrial animals will be exposed to levels that could cause toxic effects. Neurotoxic effects of endosulfan in both humans and animals are well documented. Exposure can induce a number of effects including liver and kidney toxicity, haematological effects, alterations in the immune system, and alterations in the reproductive organs. Data from a limited number of samples suggest that intake of endosulfan by the general population, are far below the ADI of 6 µg/kg b.w. established by JMPR in 1998. KEY WORDS: Endosulfan, α-endosulfan, β-endosulfan, endosulfan sulfate, analysis, toxicity, residues in feed and food, carry-over, ADI, environmental fate. http://www.efsa.eu.int Page 2 of 31
  • 3. The EFSA Journal (2005) 234, 1 - 31 TABLE OF CONTENTS LIST OF ABBREVIATIONS ............................................................................................................... 4 BACKGROUND ............................................................................................................................... 5 1. General Background............................................................................................................... 5 2. Specific Background .............................................................................................................. 6 TERMS OF REFERENCE ................................................................................................................... 8 ASSESSMENT ................................................................................................................................. 9 1. Introduction ............................................................................................................................ 9 1.1. Chemistry and use ......................................................................................................... 9 1.2. Environmental fate ...................................................................................................... 10 1.3. Toxicological findings in laboratory animals and hazard assessment for humans ..... 12 2. Methods of analysis.............................................................................................................. 14 3. Statutory limits ..................................................................................................................... 14 4. Occurrence in food and feed ................................................................................................ 14 5. Adverse effects on fish, livestock and pets, and exposure-response relationship................ 16 5.1. Introduction ................................................................................................................. 16 5.2. Fish .............................................................................................................................. 16 5.3. Ruminants.................................................................................................................... 17 5.4. Birds ............................................................................................................................ 18 5.5. Rabbits......................................................................................................................... 18 5.6. Dogs ............................................................................................................................ 18 6. Toxicokinetics and tissue disposition................................................................................... 19 6.1. Absorption................................................................................................................... 19 6.2. Distribution.................................................................................................................. 20 6.3. Metabolism.................................................................................................................. 20 6.4. Excretion ..................................................................................................................... 21 7. Carry over and tissue concentration ..................................................................................... 21 8. Human dietary exposure and comparison with ADI............................................................ 23 CONCLUSIONS ............................................................................................................................. 23 RECOMMENDATION ..................................................................................................................... 25 REFERENCES ............................................................................................................................... 26 SCIENTIFIC PANEL MEMBERS....................................................................................................... 31 ACKNOWLEDGEMENT .................................................................................................................. 31 DOCUMENTATION PROVIDED TO EFSA ....................................................................................... 31 http://www.efsa.eu.int Page 3 of 31
  • 4. The EFSA Journal (2005) 234, 1 - 31 LIST OF ABBREVIATIONS ADI Acceptable daily intake ATSDR Agency for Toxic Substances and Disease Registry B.w. Body weight CAS Chemical abstracts service ECD Electron capture detector FAO Food and Agricultural Organization FEFAC European Feed Manufacturers' Federation GABA Gamma-aminobutryic acid GC Gas chromatography IPCS International Programme on Chemical Safety JMPR Joint FAO/WHO meetings on pesticide residues LD50 Lethal dose that causes 50 % death of a group of test animals LOAEL Lowest observed adverse effect level Log Kow Logarithm of octanol-water partition coefficient MRL Maximum residue levels MS Mass spectrometry NOAEC No observed acute effect concentration NOAEL No observed adverse effect level PCB Polychlorinated Biphenyls POPs Persistent organic pollutants SCAN Scientific Committee on Animal Nutrition ULV Ultra-low volume WHO World Health Organization W.w. Wet weight http://www.efsa.eu.int Page 4 of 31
  • 5. The EFSA Journal (2005) 234, 1 - 31 BACKGROUND 1. General Background Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed1 replaces since 1 August 2003 Council Directive 1999/29/EC of 22 April 1999 on the undesirable substances and products in animal nutrition2. The main modifications can be summarised as follows - extension of the scope of the Directive to include the possibility of establishing maximum limits for undesirable substances in feed additives. - deletion of the existing possibility to dilute contaminated feed materials instead of decontamination or destruction (introduction of the principle of non-dilution). - deletion of the possibility for derogation of the maximum limits for particular local reasons. - introduction the possibility of the establishment of an action threshold triggering an investigation to identify the source of contamination (“early warning system”) and to take measures to reduce or eliminate the contamination (“pro-active approach”). In particular the introduction of the principle of non-dilution is an important and far- reaching measure. In order to protect public and animal health, it is important that the overall contamination of the food and feed chain is reduced to a level as low as reasonably achievable providing a high level of public health and animal health protection. The deletion of the possibility of dilution is a powerful mean to stimulate all operators throughout the chain to apply the necessary prevention measures to avoid contamination as much as possible. The prohibition of dilution accompanied with the necessary control measures will effectively contribute to safer feed. During the discussions in view of the adoption of Directive 2002/32/EC the Commission made the commitment to review the provisions laid down in Annex I on the basis of updated scientific risk assessments and taking into account the prohibition of any dilution of contaminated non-complying products intended for animal feed. The Commission has therefore requested the Scientific Committee on Animal Nutrition (SCAN) in March 2001 to provide these updated scientific risk assessments in order to enable the Commission to finalise this review as soon as possible (Question 121 on undesirable substances in feed)3. It is worthwhile to note that Council Directive 1999/29/EC is a legal consolidation of Council Directive 74/63/EEC of 17 December 1973 on the undesirable substances in animal nutrition4, 1 OJ L140, 30.5.2002, p. 10 2 OJ L 115, 4.5.1999, p. 32 3 Summary record of the 135th SCAN Plenary meeting, Brussels, 21-22 March 2001, point 8 – New questions ( http://europa.eu.int/comm/food/fs/sc/scan/out61_en.pdf) 4 OJ L 38, 11.2.1974, p. 31 http://www.efsa.eu.int Page 5 of 31
  • 6. The EFSA Journal (2005) 234, 1 - 31 which has been frequently and substantially amended. Consequently, several of the provisions of the Annex to Directive 2002/32/EC date back from 1973. The opinion on undesirable substances in feed, adopted by SCAN on 20 February 2003 and updated on 25 April 20035 provides a comprehensive overview on the possible risks for animal and public health as the consequence of the presence of undesirable substances in animal feed. It was nevertheless acknowledged by SCAN itself for several undesirable substances and by the Standing Committee on the Food Chain and Animal Health that additional detailed risk assessments are necessary to enable a complete review of the provisions in the Annex, including the establishment of maximum levels for undesirable substances currently not listed. 2. Specific Background Endosulfan is an organochlorine insecticide. Contrary to some other organochlorine pesticides, endosulfan does not accumulate in the food chain and is eliminated rapidly from the body. Endosulfan is highly toxic for some aquatic species, particular fish. Contrary to the other pesticides listed in the Annex to Directive 2002/32/EC, endosulfan is still in use as a pesticide. Current EU legislation on maximum residue levels (MRLs) for pesticides is derived from/based on four Council Directives - Council Directive 76/895/EEC of 23 November 1976 relating to the fixing of maximum levels for pesticide residues in and on fruit and vegetables6 - Council Directive 86/362/EEC of 24 July 1986 on the fixing of maximum residue levels for pesticide residues in and on cereals7 - Council Directive 86/363/EEC of 24 July 1986 on the fixing of maximum residue levels for pesticide residues in and on foodstuffs of animal origin8 - Council Directive 90/642/EEC of 27 November 1990 on the fixing of maximum residue levels for pesticide residues in and on certain products of plant origin, including fruits and vegetables9. - Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of 5 Opinion of the Scientific Committee on Animal Nutrition on Undesirable Substances in Feed, adopted on 20 February 2003, updated on 25 April 2003 (http://europa.eu.int/comm/food/fs/sc/scan/out126_bis_en.pdf) 6 OJ L 340, 9.12.1976, p.26 7 OJ L 221, 7.8.1986, p. 37 8 OJ L 221, 7.8.1986, p. 43 9 OJ L 350, 14.12.1990, p. 71 http://www.efsa.eu.int Page 6 of 31
  • 7. The EFSA Journal (2005) 234, 1 - 31 plant and animal origin and amending Council Directive 91/414/EEC which will repeal the four Council Directives10. Until 1997, MRLs were fixed only for raw commodities. Council Directive 1997/41/EC of 25 June 199711 amending the above mentioned Directives, provided for a system applicable from 1 January 1999 to set MRLs in processed products and composite foodstuffs, based on the MRLs fixed for the raw agricultural products. MRLs for processed products and composite foodstuffs are calculated on the basis of the MRL set for the agricultural commodity by application of an appropriate dilution or concentration factor and for composite foodstuffs MRLs are calculated taking into account the relative concentrations of the ingredients in the composite foodstuffs. As the consequence of the coming into force of Directive 1997/41/EC, the pesticide residue legislation applies also to animal feeding stuffs since 1 January 1999. However some problems have been observed in implementing the pesticide residue legislation. The following problems have already been identified: - compound feed is composed of a relatively high number of ingredients of which several are processed products (by-products). It is not obvious to know what MRL is applicable to such compound feed as it involves many calculations and uncertainties and “unknowns” (processing factors). - pesticide residue legislation does not cover products of marine origin which are regularly used in animal feed (no direct application). - pesticide residue legislation does not cover products typically for animal feed (no food use) such as pastures, roughages, forages, fish oil and fish meal. Therefore it is appropriate to include in the list of undesirable substances maximum levels for some pesticides, in particular those of relevance for animal health or for public health through carry over from feed to food of animal origin As already mentioned, endosulfan is listed in the Annex to Directive 2002/32/EC. For comparison the current provisions in the EU-pesticide residue legislation are mentioned. 10 OJ L 70, 16/03/2005, p. 1 11 OJ L 184, 12/07/1997, p. 33 http://www.efsa.eu.int Page 7 of 31
  • 8. The EFSA Journal (2005) 234, 1 - 31 Directive 2002/32/EC EU-Pesticide residue legislation ML relative to a feeding stuff with a MRL applicable to the product as marketed moisture content of 12 % Product mg/kg Product mg/kg Maize 0.2 Cotton seeds 0.3 Oilseeds 0.5 Soybean seeds 0.5 Complete feeding stuffs for fish 0.005 Other oilseeds 0.1* All other feeding stuffs 0.1 Potatoes 0.05* Tea 30 Hops 0.1* Cereals 0.05* Citrus, berries 0.5 Pome fruit 0.3 Tree nuts 0.1* Peppers 1 Tomatoes 0.5 Other vegetables 0.05* Meat (fat) 0.1 Milk 0.004 Eggs 0.1* *lower limit of analytical determination In the current provisions in Directive 2002/32/EC there are apparently some inconsistencies. Whereas for example a maximum level for endosulfan is fixed at 0.5 mg/kg for soybean seeds (oilseeds) the resulting soybean oil (in which endosulfan concentrates) has to comply with 0.1 mg/kg (all other feeding stuffs) in case it is used for animal feed. For foodstuffs a processing factor can be applied. It is important that these provisions concerning endosulfan are completely reviewed in the framework of Directive 2002/32/EC. A risk assessment on the presence of endosulfan in animal feed, in particular fish feed and fish feed ingredients, should be undertaken as a priority. TERMS OF REFERENCE The European Commission requests the EFSA to provide a scientific opinion on the presence of endosulfan in animal feed. This scientific opinion should comprise the - determination of the toxic exposure levels (daily exposure) of endosulfan for the different animal species of relevance (difference in sensitivity between animal species, with particular attention to farmed fish species) above which - signs of toxicity can be observed (animal health/impact on animal health) http://www.efsa.eu.int Page 8 of 31
  • 9. The EFSA Journal (2005) 234, 1 - 31 - the level of transfer/carry over of endosulfan from the feed to the products of animal origin results in unacceptable levels of endosulfan or of its metabolites in the products of animal origin in view of providing a high level of public health protection. - identification of feed materials which could be considered as sources of contamination by endosulfan and the characterisation, insofar as possible, of the distribution of levels of contamination - assessment of the contribution of the different identified feed materials as sources of contamination by endosulfan - to the overall exposure of the different relevant animal species (with particular attention to farmed fish species) to endosulfan, - to the impact on animal health, - to the contamination of food of animal origin (the impact on public health), taking into account dietary variations and carry over rates. - identification of eventual gaps in the available data which need to be filled in order to complete the evaluation. ASSESSMENT 1. Introduction 1.1. Chemistry and use Endosulfan is an organochlorine pesticide that was developed and introduced in the mid 1950s. World wide production of endosulfan in the middle of the 1980’s was estimated at 10,000 tons/year (ATSDR, 2000). Within the European Union there is currently only one producer located in Frankfurt (Germany) which produces endosulfan. The manufactured volume of endosulfan at this site currently amounts for approximately 4,000 tons/year and a major part is exported for use in tropical and subtropical regions such as Latin America, Caribbean and Southeast Asia. Endosulfan has also been reported to be produced in Israel, India, South Korea, and China (Umweltbundesamt, 2004). CAS numbers are for technical endosulfan 115-29-7, α-endosulfan 959-98-8, β-endosulfan 33213-65-9, and endosulfan sulfate 1031-07-8. Technical endosulfan is obtained through the Diels-Alder addition of hexachlorocylopentadiene and cis-butene-1,4-diol, followed by reaction of the addition- product with thionyl chloride. It mainly consists of a mixture of two stereoisomers named α- and β- endosulfan in the approximate ratio of 70:30 (Figure 1). As minor impurities technical grade endosulfan may also contain up to 2 % endosulfan alcohol and 1 % endosulfan ether. http://www.efsa.eu.int Page 9 of 31
  • 10. The EFSA Journal (2005) 234, 1 - 31 The technical product is a brownish crystalline solid and has a slight sulfur dioxide odour. Endosulfan is practically insoluble in water but soluble in most organic solvents. Log Kow values for technical endosulfan is 3.55 and 3.62, for α-endosulfan 3.83, for β-endosulfan 3.52, and for endosulfan sulfate 3.66. It is hydrolysed slowly by water, more rapidly by acids and bases. Decomposition is catalysed by iron, which it corrodes. α - endosulfan β - endosulfan Figure 1. Structure of α- and β-endosulfan. Endosulfan is a non-systemic insecticide and acaricide with contact action. Formulations of endosulfan include emulsifiable concentrate, wettable powder, ultra-low volume (ULV) liquid, and smoke tablets. It is used in the control of sucking, chewing and boring insects and mites on a very wide range of crops, including fruit, vines, olives, vegetables, ornamentals, potatoes, cucurbits, cotton, tea, coffee, rice, cereals, maize, sorghum, oilseed crops, hops, hazels, sugar cane, tobacco, alfalfa, mushrooms, forestry, glasshouse crops, etc. In addition to its agricultural use, and its use in the control of the tsetse fly, endosulfan is used as a wood preservative and for the control of home and garden pests. Endosulfan containing products are authorised for use in seven member states of the Community. But use of endosulfan within the EU has seen a steadily decrease lasting recent years. Almost 90 % of 490 tons/year used in 1999, were applied in Mediterranean parts of the EU (Umweltbundesamt, 2004). A draft Commission Decision has been notified by the European Communities to the WTO proposing not to include endosulfan in the positive Community list (Annex I of Directive 91/414/EEC) because it does not satisfy the minimum safety requirements in particular the environmental fate, eco-toxicological profile and the operators’ exposure risk. The foreseen date of entry into force is 1 August 2005 and Member States have to withdraw all existing authorisations for plant protection products containing endosulfan within 6 months from that date12. 1.2. Environmental fate Endosulfan is released into the environment mainly as a result of its use as a pesticide. The compound partitions to the atmosphere and to soils and sediments. Endosulfan can be 12 Notification G/SPS/N/EEC/260 of 3 May 2005. http://www.wto.org/english/tratop_e/sps_e/sps_e.htm http://www.efsa.eu.int Page 10 of 31
  • 11. The EFSA Journal (2005) 234, 1 - 31 transported over long distances in the atmosphere, but is relatively immobile in soils (ATSDR, 2000). Direct uptake from soil to plant as well as transport in the plant is negligible. Both α- and β- endosulfan are fairly resistant to photo degradation, but the metabolites endosulfan sulfate and endosulfan diol (Figure 2) are susceptible to photolysis. The half-life of both isomers in water are estimated to be in the range of 4 to 7 days, but at low pH and anaerobic conditions it could be up to 5 months (ATSDR, 2000). In laboratory experiments with two soil types half time of 14C-endosulfan was estimated between 90 and 180 days based on 14CO2 production (Peres et al., 2004). Figure 2. Chemical degradation of endosulfan in the environment (WHO, 1984). In soil, the α-isomer has a shorter half-life (60 days) than the β-isomer (900 days). Endosulfan sulfate was found to be the major degradation product in soil and on plant surfaces. It is found to be more stable than the two endosulfan isomers, but the transport of all three compounds is slow in soil. Biodegradation in soil and water is dependent on climatic conditions and on the type of micro organisms present. In plants sprayed with endosulfan, initial residues on fruits and vegetables can vary from about 1 to 100 mg/kg; after 1 week, residues generally decrease to 20 % or less of the initial amount (WHO, 1984). Due to its potential for long range transport, environmental persistence, bioconcentration in various aquatic organisms and ecotoxicity, there is agreement that endosulfan and its metabolite endosulfan sulfate meet the criteria for future inclusion into the list of persistent organic pollutants (POPs). However, unlike most other organochlorine pesticides of the Diels- http://www.efsa.eu.int Page 11 of 31
  • 12. The EFSA Journal (2005) 234, 1 - 31 Alder class, such as chlordene, chlordane, heptachlor, heptachlorepoxide, aldrine and dieldrin, endosulfan has a less pronounced affinity to lipids. Consequently, biomagnification and accumulation of endosulfan, in terrestrial food chains, is unlikely to occur. Endosulfan is still in use in some countries. 1.3. Toxicological findings in laboratory animals and hazard assessment for humans Endosulfan was evaluated by JMPR in 1998 (FAO/WHO, 1998). ATSDR published a toxicological profile for endosulfan in 2000 (ATSDR, 2000). The neurotoxic effects of endosulfan are well documented in both humans and animals, and extensive research has been conducted in recent years aimed at elucidating its mechanism of neurotoxicity. Possible mechanisms of toxicity include (a) alteration of neurotransmitter levels in brain areas by affecting synthesis, degradation, and/or rates of release and reuptake, and/or (b) interference with the binding of neurotransmitter to their receptors. In addition to neurotoxicity, exposure to endosulfan has induced a wide array of effects in animals including liver and kidney toxicity, hematological effects, alterations in the immune system, and alterations in the reproductive organs of males. There are just a few studies on possible mechanisms of the effects on organ or systems other than the nervous system. As summarized in 6.3. Metabolism, the biotransformation of endosulfan can give rise to a number of both polar and nonpolar metabolites. There is little and inconclusive information on whether the toxicological properties of endosulfan are due to the parent compound or to any of its metabolites. The more lipophilic parent compound of endosulfan will be able to cross cell membranes more easily than its polar metabolites, accumulate to a greater extent, and therefore possibly be the most neurotoxic. Differential toxicity could also be related to differential affinity for the GABA receptor. What is known from oral acute lethality studies in rats and mice is that α- endosulfan is approximately 3 times more toxic than β-endosulfan (Dorough et al., 1978; Hoechst, 1975, 1990; Maier-Bode, 1968). In addition, in mice, the acute toxicity of endosulfan sulfate was comparable to that of α-endosulfan (Dorough et al., 1978). Also in mice, the metabolites endosulfan α-hydroxy ether, endosulfan lactone, and endosulfan ether had lethal doses 10 - 20 times higher than the α-or β-isomers; the lethal dose for endosulfandiol was two orders of magnitude higher than that of the α-or β-isomer (Dorough et al., 1978). Most studies are carried out with technical products and if purity is given it is generally 97 - 99 % but purity as low as 91.4 % is also reported. Acute toxicity Acute exposure to high doses of endosulfan results in hyperactivity, muscle tremors, ataxia, and convulsions. http://www.efsa.eu.int Page 12 of 31
  • 13. The EFSA Journal (2005) 234, 1 - 31 The LD50 of endosulfan varies widely depending on the route of administration, species, vehicle, and sex of the animal. Female rats are clearly more sensitive than male rats, and, on the basis of a single study, this sex difference appears to apply to mice also. The lowest oral LD50 value is 9.6 mg/kg b.w. in female Sprague-Dawley rats (Hoechst, 1990; Reno, 1975). Long term toxicity In a 78 week oral study with mice non-neoplastic changes were observed in both sexes in kidneys and sex organs. Based on these findings a NOAEL was identified for female mice at 3.9 mg/kg diet; equal to 0.58 mg/kg b.w./day (US National Cancer Institute, 1978). In a corresponding 78 week oral study with rats given diets containing 220 mg/kg technical- grade endosulfan (purity, 98.8 %) or higher, non-neoplasic effects were seen in all dose groups and thus a NOAEL could not be established (US National Cancer Institute, 1978). In an other study groups of 50 five-to-six-week-old rats of both sexes were fed diets containing endosulfan (purity, 97.1 %) at concentrations of 0, 3, 7.5, 15, or 75 mg/kg diet, equal to 0, 0.1, 0.3, 0.6, and 2.9 mg/kg b.w./day for males and 0, 0.1, 0.4, 0.7, and 3.8 mg/kg b.w./day for females, for 104 weeks. Reductions in body weights and body-weight gains were observed in males and females at 75 mg/kg diet, but no clinical signs of poisoning were seen at any dose. No increase in mortality rates was observed in treated groups. Increased incidences of enlarged kidneys in females and of aneurysms, enlarged lumbar lymph nodes and marked progressive glomerulonephrosis in males were seen at 75 mg/kg diet. The NOAEL was 15 mg/kg diet, equal to 0.6 mg/kg b.w./day, on the basis of reduced body weights and pathological findings at higher doses (Ruckman et al., 1989; Gopinath and Cannon, 1990; Hack et al., 1995). Human data as well as studies in animals did not provide unequivocal evidence of carcinogenicity for endosulfan (Hack et al., 1995; Hoechst, 1988, 1989). However, endosulfan promoted the development of altered hepatic foci in rats initiated with nitrosodiethylamine (Fransson-Steen et al., 1992). Although the mechanism of tumour promotion of endosulfan is not known, it has been suggested that it involves inhibition of cellular communication (Kenne et al., 1994). JMPR (FAO/WHO, 1998) established an ADI of 0 - 0.006 mg/kg b.w. for technical endosulfan on the basis of the NOAEL of 0.6 mg/kg b.w./day in the two-year dietary study of toxicity in rats and a safety factor of 100. The ADI is supported by similar NOAEL values in the 78-week dietary study of toxicity in mice (NOAEL of 0.58 mg/kg b.w./day), a one-year dietary study of toxicity in dogs (NOAEL of 0.8 mg/kg b.w./day, see chapter 5.6 for further details), and a study of developmental toxicity in rats (NOAEL of 1.5 mg/kg b.w./day) Endosulfan has been tested for genotoxicity in a wide range of assays. There was however no evidence on genotoxicity in most of these assays. In one assay for dominant lethal mutation in mice, late effects were observed at high doses (16.6 mg/kg b.w./day). The technical endosulfan used was reported to have a purity of 97.3 % (FAO/WHO, 1998, Pandey et al. 1990). http://www.efsa.eu.int Page 13 of 31
  • 14. The EFSA Journal (2005) 234, 1 - 31 2. Methods of analysis Analysis of endosulfan residues in food and feed samples should include detection of α- and β- endosulfan plus the major degradation product endosulfan sulfate. Currently, high resolution gas chromatography with electron capture detection (GC/ECD) or mass spectrometric detection (GC/MS) after extraction of samples with organic solvents, various clean-up steps to remove lipids and other possible co-extractives are the analytical methods of choice. These methods not only allow differentiation between the different isomers but also separate them from possible superimposing co-extractives. An efficient separation of the two endosulfan isomers and endosulfan sulfate from other interfering compounds, such as other organochlorine pesticides and polychlorinated biphenyls (PCBs) is especially important. In routine monitoring programmes it has therefore proven necessary to perform the gas chromatographic separation on two capillary columns of different polarity. 3. Statutory limits Endosulfan is listed in the Annex to Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed13 which replaces since 1 August 2003 Council Directive 1999/29/EC of 22 April 1999 on the undesirable substances and products in animal nutrition14. The maximum levels which apply to the sum of the α- and β- isomer and of endosulfan sulfate, expressed as endosulfan each pertain to a feedingstuff with a moisture content of 12 %. See also specific background. Minimum time intervals between the last application and harvesting are prescribed in most countries and vary between 0 and 42 days, depending on the crop, type of formulation used, the mode of application, tolerances, and agronomic needs. 4. Occurrence in food and feed Endosulfan is released to the environment mainly as the result of its use as a pesticide. It has been found at low levels in numerous food and feed samples. Annually, some 40,000 – 50,000 food samples are analysed for, on average, 151 different pesticides within national monitoring programmes of 15 EU Member States and the three EFTA States Norway, Iceland and Liechtenstein in order to check the compliance of different food commodities with the corresponding pesticide maximum residue levels. The condensed results are regularly submitted to the Commission, which compiles and collates the data. Besides national monitoring programmes, the Commission recommends the participation of each Member State in a specific EU co-ordinated monitoring programme. These programmes which have existed since 1996 include the analysis of major components of the standard European diet of plant origin (so far: mandarins, pears, bananas, potatoes, oranges, peaches, carrots, spinach, cauliflower, wheat grains, peppers, melons, rice, cucumber, head cabbage, peas, apples, tomatoes, lettuce, strawberries, table grapes and nectarines) for an increasing 13 OJ L140, 30.5.2002, p. 10 14 OJ L 115, 4.5.1999, p. 32 http://www.efsa.eu.int Page 14 of 31
  • 15. The EFSA Journal (2005) 234, 1 - 31 number of pesticides. Endosulfan became part of the pesticide spectrum to check for in 1997. Between 1997 and 2002 a total of 35,152 food samples of plant origin have been analysed for endosulfan in the frame of these EU co-ordinated monitoring programmes. While 33,785 (96.1 %) samples contained no endosulfan residues, this pesticide could be determined in 1367 samples (3.9 %) below or at the MRLs. In 55 cases (0.16 %), the MRLs were exceeded. Endosulfan and endosulfan sulfate were found mainly on pepper, melons, strawberries and lettuce15. Endosulfan levels in food can be reduced by food processing. For example, endosulfan can be removed by physical refinement treatment during oil refining using bleaching and deodorization (Riuz Mendez et al., 2005) or by peeling of apples (Rasmussen et al., 2003). Thousands of feed samples are analysed annually in the Member States within the frame of official feed control, with the aim to check compliance with legal limits. As the Commission only requires the Member States to report their results as compliant and non-compliant, these condensed summaries give almost no information on actual levels in feed. Furthermore, it is often not specified which compounds are covered by the analytical method applied nor are the limits of detection reported. When comparing the summary reports it is often difficult to differentiate between numbers of individual analyses on the one hand and number of samples on the other hand. Concentration levels for individual substances analysed rather than condensed summaries for compound groups would be essential for a better understanding of the occurrence situation of undesirable substances in different feed materials and compound feeds as a prerequisite for a meaningful risk assessment and finally for a derivation of a possible temporal trend of the respective compounds in the feed chain. Analysis of 104 feedingstuffs performed in 2003/2004 as part of official feed control in Germany revealed that endosulfan was detected in two samples only and then at a concentration of 7 µg/kg. In all other samples which included crops, maize, oil seeds, tubers, roots, mineral feed and compound feed for ruminants, pigs, poultry, horses and pets, α-, β- endosulfan and endosulfan sulfate could not be detected at a limit of detection of 1 µg/kg. In the Czech Republic, 10 samples of fish meal have been analysed in 2004. The samples were analysed for α- and β-endosulfan. All results were below the limit of detection of 1 µg/kg. Data on endosulfan sulfate were not reported. Data on fish feed (9 samples) provided by European Feed Manufacturers' Federation showed levels of 0.08 – 0.23 µg/kg for α-endosulfan, whereas the levels for β-endosulfan and endosulfan sulfate were < 0.1 µg/kg. A survey of pesticide residues in animal feed ingredients has been conducted in the UK in 1998, where 151 samples of cereals (barley grain and malting, wheat grain, maize gluten and distillers), fodder (barley and wheat straw, grass and maize silage, sugar beet pulp) and beans (rapeseed, cotton seed, sunflower seed, cocoa meal, palm kernel and soy bean meal, copra) 15 European Commission, Food and Veterinary Office, pesticide annual reports http://www.europa.eu.int/comm/food/fvo/specialreports/pesticides_index_en.htm http://www.efsa.eu.int Page 15 of 31
  • 16. The EFSA Journal (2005) 234, 1 - 31 where analyzed for 28 different pesticides including endosulfan. None of these samples contained endosulfan at concentrations over the detection limit (50 µg/kg) (MAFF-UK, 1998). 5. Adverse effects on fish, livestock and pets, and exposure-response relationship 5.1. Introduction The effect of any dose of endosulfan varies with the route of exposure and with the vehicle used. The lethal dose is lower if the insecticide is given in vegetable rather than in mineral oil, or as suspensions or dry powder (Humphreys, 1988). The sensitivity to endosulfan exposure varies with species, strain, age, gender and health status. Acute intoxication with endosulfan is expressed through stimulation of the nervous system. The symptoms vary considerably but are predominantly neuromuscular. The onset of clinical signs may occur after a few minutes to days depending on the dose and route of exposure. Most animals show signs within 24 hours after exposure (Humphreys, 1988). The signs of chronic endosulfan toxicity are principally similar to those of acute poisoning but develop more gradually, and tremors, convulsions, and depression may occur for weeks (Humphreys, 1988). 5.2. Fish In a recently published study on Nile tilapia of about 140 g b.w., the effects of endosulfan at 100 and 500 µg/kg diet during 21 or 35 days exposure on thyroid hormone levels and metabolism were investigated (Coimbra et al., 2005). The plasma levels of T4 and of the inactive metabolite reverse T3 were decreased compared to levels in control fish, the effect was most prominent at the lowest dose. Furthermore, the hepatic deiodinase type I activity was reduced and the hepatic deiodinase type III (D3) was increased compared with controls. In the gills, D3 activity was increased in fish fed both levels of endosulfan. There was no clear dose-response pattern. It is therefore difficult to interpret the consequences of these effects on a long term; in addition, the authors claim that these might be adaptive responses. In the common carp (on average 62.5 g b.w.) fed a diet containing technical endosulfan (thiodan, 35 % w./v.) at an endosulfan concentration of 0.5 µg/kg diet dry weight (0.015 µg/kg b.w.) for 5 weeks. No alterations in behaviour, feeding activity, growth and macroscopically overt signs of pathology upon dissection were observed. Cytological and ultrastructural alterations in hepatocytes and enterocytes were investigated by means of light and electron microscopy (Braunbeck and Appelbaum, 1999). The liver cells showed enlargement of the nucleolus, increased number and size of both Golgi fields and rough endoplasmic reticulum (ER) lamellae, as well as proliferation of peroxisomes and lysosomes, all together representing morphological equivalent of a general stimulation of hepatic metabolism. Furthermore, proliferation of smooth ER, glycogen and lipid depletion, invasion of phagocytic macrophages and accumulation of myelinated bodies in endothelial cells of http://www.efsa.eu.int Page 16 of 31
  • 17. The EFSA Journal (2005) 234, 1 - 31 hepatic sinusoids were found. In the intestinal tract, lack of chylomicrons in the epithelial lining was observed, indicating a disturbance of absorption. These subtle biological changes were considered by the Panel as not to represent adverse effects. Endosulfan is toxic to fish through exposure via water, and generally the LC50 values lie within the concentration range of 1 to 10 µg/L water (Goebel et al., 1982). The α-isomer was more toxic and the β-isomer less toxic, than technical grade endosulfan when examined in two freshwater fish species (Rao et al., 1980; Devi et al., 1981). Sulfur-free metabolites possess a significantly lower toxicity against fish with LC50 values in the range 1 to 10 mg/L (Knauf and Schulze, 1973). The effect of endosulfan in fish is temperature-dependent with decreased action at low temperatures, demonstrated in rainbow trout (Macek et al., 1969). Short time endosulfan exposure of different fish species in sub lethal water concentrations (0.1 - 10 µg/L), have triggered increased swimming activity and raised blood glucose levels (Van Dyk et al., 1977; Gopal et al., 1980; Singh and Srivastava, 1981; Verma et al., 1983). Histopathological changes in the gills are reported after exposure to toxic water concentrations (Dalela et al., 1979). Histopathological changes in the liver and brain have been found in fish exposed to endosulfan contaminated water from insect spraying (Matthiessen and Roberts, 1982). 5.3. Ruminants In an experimental study, groups of two steers were given endosulfan in the rations at doses 0.15, 1.1, 2.5 and 5.0 mg/kg b.w. After 60 days, no signs of toxicity were found in the pairs of steers receiving endosulfan at 0.15 and 1.1 mg/kg, One of the steers in the pairs receiving 2.5 mg/kg and 5.0 mg/kg showed toxic symptoms (muscle convulsions, excessive salivation, and incoordination) after 13 and 2 days, respectively, and both pairs were removed from the experiment (Bech et al., 1966). This indicates a NOAEL for clinical toxicity of 1.1 mg/kg b.w., and with a dry matter feed intake to body weight of approximately 3 % (Pond et al. 1995) this correspond to a no observed acute effect concentration of 40 mg/kg diet. A study of endosulfan effects in goats orally dosed with 5 mg/kg b.w/day for 36 days revealed reduced body weight gain and depleted fat stores compared to controls. Other toxic symptoms were not reported (Amin and Abdalla, 1995). There are several reports on endosulfan poisoning in cattle. In one case fatal poisoning appeared among cows fed peanut hay contaminated with endosulfan. Three cows died within 15 hours after the ingestion, and the dose was calculated to be approximately 30 mg of Thiodan (presumed to contain 35 % endosulfan)/kg b.w. (Terblanche and Minne, 1968). In another accidental case in cattle, Thiodan (also presumed to contain 35 % endosulfan) resulted in convulsions and death. The dose ingested was not determined, but residues were determined in liver (4.4 mg/kg w.w.), kidney (1.1 mg/kg w.w.) and muscle tissue (0.66 mg/kg w.w.) consisting predominantly of the metabolite endosulfan sulfate (Braun and Lobb, 1976). http://www.efsa.eu.int Page 17 of 31
  • 18. The EFSA Journal (2005) 234, 1 - 31 Spraying of animals with accidental high endosulfan concentration (Thiodan emulsion of 0.12 % endosulfan) for treatment against ectoparasites, produced acute nervous symptoms in 50 of 250 cattle and 11 animals died (Thomson, 1966). Spraying or applying powder with the pesticide at the animal skin are the main causes to endosulfan poisoning in cattle and such cases are still occurring (Aslani, 1996; Kelch and Kerr, 1997; Mor and Ozmen, 2003). 5.4. Birds In broiler chicken fed 30, 60 and 120 mg endosulfan/kg diet from age one day to eight weeks, a slight inhibitory effect on body weight gain relative to controls was found at all endosulfan levels, but no significant effect on feed consumption was revealed. Furthermore, increased serum glucose and decreased serum albumin was found in the chicken at all endosulfan levels. The hyperglycemia tended to be dose-related (Selvaraj et al., 2001a,b). The daily feed intake of broiler chicken after hatching is approximately 15 % relative to the body weight, reduced to approximately 10 % within few days (Pond et al., 1995), hence the levels in feed correspond to daily doses of 3 - 4.5, 6 - 9 and 12 - 18 mg/kg b.w., respectively. Hudson et al. (1972) examined the effects of age of mallard ducks on their acute susceptibility to endosulfan. The oral LD50s of animals of 36 hours after birth, the age of 7 days, 30 days and 6 months were 28, 6.5, 7.9 and 34 mg/kg b.w., respectively. Reported lethal feed concentrations (< 10-d LC50) of endosulfan in young mallard, ring- necked pheasant and bobwhite quail are 350, 175 and 100 mg/kg diet (WHO, 1984). Based on a daily feed intake of approximately 6 % relative to body weight, the feed concentrations correspond to approximately 20, 15 and 6 mg/kg b.w., respectively. 5.5. Rabbits Mated New Zealand white rabbits were given endosulfan by gavage on days 6 - 28 of gestation at doses of 0.3, 0.7 or 1.8 mg/kg b.w. The highest dose was associated with signs of maternal toxicity that included noisy, rapid breathing, hyperactivity and convulsions, but no teratogenic or developmental effects. No clinical signs of toxicity in does or foetal effects were found at the two other dose levels. Thus, the NOAEL of endosulfan in rabbits was 0.7 mg/kg b.w./day (Dickie et al., 1981). 5.6. Dogs Dogs dosed endosulfan 200 or 500 mg/kg b.w. as a single dose in gelatine capsules showed increased saliva formation, vomiting, and tonic and clonic cramps. The animals which did not vomit during these tests died (Maier-Bode, 1968). LD50 in dogs is reported 77 mg/kg (FAO/WHO, 1998) Beagle dogs of both sexes were fed endosulfan at concentrations of 3, 10 and 30 mg/kg diet for one year, calculated by the authors to be 0.23, 0.77 and 2.3 mg/kg b.w./day. At the 30 http://www.efsa.eu.int Page 18 of 31
  • 19. The EFSA Journal (2005) 234, 1 - 31 mg/kg diet some animals had violent contractions of the abdominal muscles, and males at this dose had reduced body weight gains throughout the study in comparison with controls, and cholinesterase activity was increased in the brain. No other effects related to treatment were observed. In addition, one group was given a diet containing 30 - 60 mg/kg endosulfan, increasing in stages from 30 mg/kg for 54 days, to 45 mg/kg for 52 days, and 60 mg/kg for 19 - 40 days. These dogs were killed in extremis before the scheduled completion of the experiment due to a number of neurotoxic symptoms (FAO/WHO, 1998). The results from this study gives a NOAEL of 10 mg/kg feed, corresponding to 0.8 mg/kg b.w. Mongrel dogs of both sexes were given endosulfan in gelatine capsules at feed levels 3, 10 and 30 mg/kg for one year. No clinical signs or treatment related effects on body weight gain, clinical chemical or haematological parameters, or gross or histopathological changes at these concentrations were noted (FAO/WHO, 1998). Middle sized adult dogs have daily maintenance requirement of dry feed of approximately 2 % relative to body weight (Pond et al., 1995), corresponding to 0.06, 0.2 and 0.6 mg/kg b.w./day. 6. Toxicokinetics and tissue disposition 6.1. Absorption Several animal studies provided evidence of endosulfan absorption following oral exposure (Goebel et al., 1982; FAO/WHO, 1998; ATSDR, 2000). In metabolic studies with 14C- endosulfan in mice (Deema et al., 1966) approximately 65 % of the administered radioactivity was recovered from the excreta and tissues 24 hours after ingestion of a single dose (0.3 mg/animal), suggesting that gastrointestinal absorption occurred to a significant extent in this species. More than 90 % of a single oral dose of 14C-endosulfan (2 mg/kg b.w.) was absorbed in rats with a maximum plasma concentration occurring after 3 – 8 hours in males (0.25 µg/mL) and about 18 hours in females (0.18 µg/mL). The half-life in plasma was 75 hours in females. Males show a biphasic curve with an initial half-life of 8 hours followed by a half- live of 110 hours (FAO/WHO, 1998). When 14C-endosulfan was administered as a single oral dose (0.3 mg/kg b.w.) to lactating sheep (Gorbach et al., 1968), blood radioactivity reached a maximum after 24 hours (0.064 µg/mL). The metabolic balance performed on day 22 suggested that absorption of endosulfan was > 42 % of the dose, based on radioactivity excreted in urine and milk. Although no specific studies were carried out to determine the absorption of endosulfan in humans, residues of endosulfan were found in the fat, brain and kidney of a man who had ingested a single oral dose (260 mg/kg b.w.) of endosulfan. 150 minutes after ingestion, the levels of α- and β-endosulfan and endosulfan sulfate in blood were 644, 101 and 876 µg/L respectively (Boereboom et al., 1998). α-Endosulfan and endosulfan sulfate were also found in urine but at levels of 1.0 µg/L or lower. The patient died 91 hours after ingestion. Post mortem, the highest levels of α-endosulfan were found in adipose tissue and stomach content, 4.1 and 3.5 mg/kg respectively, whereas lower levels were found in brain and kidney, 0.08 and 0.06 mg/kg respectively. β-endosulfan was found in brain and stomach content at 0.07 http://www.efsa.eu.int Page 19 of 31
  • 20. The EFSA Journal (2005) 234, 1 - 31 and 1.4 mg/kg respectively and endosulfan sulfate was found in liver, brain and kidney at 3.0, 1.3 and 0.4 mg/kg respectively. β-endosulfan and endosulfan sulfate were not analysed in adipose tissue. Even if this report concerns an extreme case, it gives evidence of absorption, metabolism and distribution of endosulfan in humans. 6.2. Distribution Studies using radiolabelled endosulfan administered to rat and mice indicate that the tissue concentration of residues of parent compound and metabolites were generally highest in the kidneys and liver and lower in other tissues, including fat. Male rats exposed daily for 60 days to 2.5 or 3.75 mg/kg/day of endosulfan containing α- and β-isomers in a ratio of 2:1 produced different disposition patterns for the two isomers (Ansari et al., 1984). For both doses, the concentrations of the α-isomer were as follows: kidney > epididymis > prostate ≈ spleen > testes > brain > liver. The β-isomer was found predominantly in seminal vesicle > epididymis > heart > prostate > spleen > liver. Overall, the greatest levels of both isomers were located in the kidney, seminal vesicle, and epididymis, with the liver having the least amount. Hoechst (1987) investigated the tissue residues in rats consuming 34 or 68 mg endosulfan/kg/day over 4 weeks. The predominant substances found in the liver were endosulfan sulfate and endosulfan lactone. Traces of α- and β-endosulfan were measured in the liver, whereas approximately 200 times more α-endosulfan than β-endosulfan was found in the kidney. In lactating cows and sheep (Keller, 1959; Gorbach et al., 1968) residues were predominantly found in fat, kidney, and liver; all of the remaining tissues had considerably lower concentrations. Because Spain is a main user of endosulfan within EU several reports focused on residues of endosulfan in humans from this country especially from southern Spain where extensive areas are devoted to intensive farming, including plastic greenhouse production. In the mid-1990ties remarkable high levels of endosulfan residues were determined in the adipose tissue from 52 children from the Granada area in Spain, and showed the following results, based on a limit of quantification of 1 - 5 ng/g of lipid: α-endosulfan was detected in seven individuals: distribution, percentile 25, 50 and 75 were: 8.6, 58.9 and 105 ng/g of lipid. β-endosulfan was detected in three individuals with levels of 115, 2450 and 9060 ng/g of lipid. Endosulfan sulfate was found in one individual at 42.9 ng/g of lipid (Olea, personal communication). In women of reproductive age the highest concentration of α-endosulfan, β-endosulfan and endosulfan sulfate were found in fat corresponding to 11 ± 86 µg/kg fat, 6.5 ± 20 µg/kg fat and 16 ± 93 µg/kg fat, respectively (Cerrillo et al., 2005). 6.3. Metabolism Biotransformation in mammals is by oxidation, hydrolysis and subsequent conjugation of α- and β-endosulfan. The major portion of metabolites in the excreta and/or tissues consisted of http://www.efsa.eu.int Page 20 of 31
  • 21. The EFSA Journal (2005) 234, 1 - 31 unidentified polar metabolites that could not be extracted from the matrix, whereas the non- polar metabolites including sulfate, diol, α-hydroxyether, and ether derivatives of endosulfan, represented only minor amounts (Dorough et al., 1978). In sheep, endosulfan sulfate was detected in the faeces and endosulfan diol and α-hydroxyether were detected in urine (Gorbach et al., 1968). Of all the metabolites of endosulfan, the sulfate appears to be the one that accumulates, predominantly in the liver and kidneys. The β-isomer is more resistant to oxidation to endosulfan sulfate than the α-isomer and hence is more persistent in living organisms (Sutherland et al., 2004). Residues associated with endosulfan comprise both isomers and endosulfan sulfate, the latter being the major residue detected in animal tissues after exposure (Sutherland et al., 2004). This has important consequences in regard to the monitoring issue since endosulfan sulfate has equivalent mammalian toxicity to α-endosulfan (Goebel et al., 1982). Endosulfan is slowly metabolised in fish and endosulfan sulfate is the main metabolite (Rao et al., 1981). Other metabolism data for fish dietary exposed to endosulfan were not identified. 6.4. Excretion Elimination occurs mainly in the faeces and to lesser extent in urine, less that 15 % is retained after 5 days. In a study using rats treated with a single oral dose of 14C-endosulfan (2 mg/kg b.w.), Dorough et al. (1978) found that 82 and 72 % of the dose was found in faeces, whereas 12 and 22 % was excreted in urine for males and females, respectively. Biliary excretion of radio labelled compounds in male rats given 1.2 mg/kg b.w. as a single dose was approximately 50 % for the α-isomer and 30 % for the ß-isomer over 48 hours. There appeared to be little enterohepatic circulation. In sheep receiving a single dose of 14C-endosulfan (Gorbach et al., 1968), radiolabelled compounds were excreted mainly via the urine (41 %) and faeces (50 %). About half of the 50 % in faeces was unmetabolised endosulfan. When treatment ceased after dietary administration of 14C-endosulfan for 14 days (Dorough et al., 1978), the estimated residues half-lives were approximately one week for kidney and three days in liver. 7. Carry over and tissue concentration In pigs fed a diet containing 2 mg endosulfan/kg feed for up to 81 days, the compound was detected in fat at concentrations of 70, 90 and 40 µg/kg after 27, 54 and 81 days of treatment, respectively, suggesting that endosulfan does not bioaccumulate. 27 days after the exposure ceased concentrations in fat were below the limit of detection (Maier-Bode, 1966). Groups of three lactating Holstein cows were given diets containing 0, 0.3, 3, or 30 mg/kg 14 C-endosulfan for 30 days. Between days 7 and 29, the average concentrations in milk were http://www.efsa.eu.int Page 21 of 31
  • 22. The EFSA Journal (2005) 234, 1 - 31 3.4, 40, and 462 µg/kg endosulfan in the three dose groups (Bowman, 1959). The concentrations of tissue residues found at the three doses were: liver, 0.35, 2.45, and 25.3 mg/kg; kidney, 0.05, 0.35, and 6.29 mg/kg; and omental fat, 0.07, 0.71, and 7.08 mg/kg (Keller, 1959). After feeding 0.5 to 2 g technical endosulfan per day to dairy cows for 11 days, the parent compound endosulfan was not found in milk, but merely the oxidation product endosulfan sulfate (McCaskey and Liska, 1967). Braun and Lobb (1976) determined endosulfan concentrations in different tissues of a dairy herd acutely intoxicated by endosulfan. In post mortem samples from the carcass 1270 mg/kg was found in rumen content, whereas the concentrations in liver (4.2 mg/kg), kidneys (1.1 mg/kg) and muscle (0.6 mg/kg) were much lower. In animals which survived the concentrations in the milk decreased rapidly, with a biological half life of about 3.9 days. Two lactating sheep were given a single oral dose of 0.3 mg/kg b.w. 14C-endosulfan and were killed after 40 days (Gorbach et al., 1968). The elimination of radio labelled compounds via milk during 17 days was 0.37 % and 1.82 % of the dose in the two sheep. Fat, kidney, and liver of the sheep contained 0.02 - 0.03 µg/g endosulfan; all of the remaining tissues had considerably lower concentrations. The total amount of radio labelled compounds found in organs and tissues accounted for less than 1 % of the administered dose. In lactating goats receiving endosulfan in gelatine capsules at a dose of 1 mg/kg b.w. per day for 28 days, the levels of total residues (α- and β-endosulfan and endosulfan sulfate) were generally low, the highest being detected on the first day after cessation of treatment, with 0.29 mg/kg in kidney, 0.2 mg/kg in the gastrointestinal tract, 0.12 mg/kg in liver and 0.02 mg/kg in milk (Indraningsih et al., 1993). The concentration in the kidney was increased to 0.49 mg/kg one week after the treatment ceased, but no residues were detected 21 days after end of treatment. Endosulfan residues did not accumulate in the fat; the concentrations reached 0.06 mg/kg on day 1 after the end of treatment, but no residues were detected one week 8 after treatment. Naqvi and Vaishnavi (1993) reviewed bioaccumulation factors for aquatic animals. For different organisms the reported bioconcentration factors were between 10 and 600. In an ATSDR review (ATSDR, 2000) maximum bioconcentration factors in aquatic systems are usually less than 3,000 and residues are eliminated within 2 weeks after transfer of fish to endosulfan-free water. The tests with 14C-labelled endosulfan revealed that fish are capable of forming water-soluble endosulfan metabolites in the liver. Analyses suggest that endosulfan diol is formed, which conjugated with glucuronic acid and is passed via bile to the faeces and excreted (Goebel et al., 1982). Bargar et al. (2001a,b) studied the transfer of endosulfan injected in laying hens to the eggs. About 0.04 to 0.12 % of the dose injected was transferred to the eggs (Bargar et al., 2001b). During incubation of the fertilized eggs most of the endosulfan could be found in yolk and albumin. There seemed an excretion and reabsorption of endosulfan and metabolites into/from the allantoic fluid during the development of the embryo. http://www.efsa.eu.int Page 22 of 31
  • 23. The EFSA Journal (2005) 234, 1 - 31 Endosulfan has been detected in breast milk of women environmentally exposed to a number of contaminants in rural Kazakhstan (Lutter et al., 1998) and in Spain (Cerillo et al., 2005), indicating that transfer to children can occur during lactation. No data on levels were reported in the Kazakhstan study, but in the Spanish study a mean endosulfan (α plus β) concentration of 11.38 ng/mL milk was found. 8. Human dietary exposure and comparison with ADI The most important routes of exposure to endosulfan for the general population are ingestion of food and the use of tobacco products with endosulfan residues remaining after treatment (ATSDR, 2000). A total diet study performed between 1993 and 1996 in Canada revealed an average daily dietary intake for total endosulfan 23.8 ng/kg b.w. (Health Canada, 2003). In a recent Canadian study (Rawn et al., 2004) on a single location maximum intake of endosulfan could be observed in 5 - 11 year old children (0.03 µg/kg b.w./day). These values correspond with the results of an US study (0.05 µg/kg b.w./day) (Gunderson, 1995). In Hsinchu, Taiwan, the dietary intake of α- and β-endosulfan was studied from June 1996 to April 1997 (Doong et al., 1999). β-Endosulfan was not detected in any of the 14 different foods studied, including fruits, meats, seafood, and cereal, and α-endosulfan, by contrast, was found in 78 of 149 samples at an average concentration of 2.8 ng/g wet weight. Data on endosulfan sulfate were not reported in this study. Based on the average Taiwanese diet, the estimated daily intake of α-endosulfan was 0.62 µg/person. Converted to body weight this results at approximately 0.01 µg/kg b.w. (Doong et al., 1999). In Europe, the Czech Republic reported results of dietary intake for the sum of α-, β-endosulfan and endosulfan sulphate. Median of summary exposure to endosulfan in 1994 was 0.015 µg/kg b.w./day (Ruprich et al., 1995). Mean intake 0.003 µg/kg b.w./day has been reported in 2002 (Ruprich et al., 2003). 4136 samples representing all major food groups after processing were analysed during the period 1994 - 2002. Most frequently contaminated foods were offal (30 %) and fish and fish products (28 %) but concentrations were low (up to 15 µg/kg of sample). CONCLUSIONS Chemistry and environmental fate • Once released into the environment, α- and β-endosulfan, which are the major constituents of the technical-grade pesticide endosulfan, can be broken down by hydrolysis, biodegradation. β-endosulfan is more persistent than the α- isomer. Endosulfan sulfate is the main degradation product of both isomers. It is equally toxic and more persistent in vivo than its parent compounds. Therefore, it is mandatory that analysis of endosulfan residues in feed and food includes the parent compounds α- and β-endosulfan as well as their major degradation product endosulfan sulfate. Adverse effect in animals • Fish show high sensitivity to endosulfan exposure via water. Oral exposure studies have shown effects on thyroxin level and thyroid hormone metabolism at dietary http://www.efsa.eu.int Page 23 of 31
  • 24. The EFSA Journal (2005) 234, 1 - 31 concentration of 100 µg/kg (Nile tilapia), and ultrastructural alterations of the liver and intestinal tract at dietary concentration of 0.5 µg/kg (common carp). These effects were subtle, possibly adaptive, and not considered to represent adverse effects. • The dominant toxic effect in mammals is stimulation and disturbance of the nervous system. • A NOAEL for clinical toxicity of 1.1 mg/kg b.w. was found in young steers, fed endosulfan for 60 days, corresponding to a concentration in the diet of 40 mg/kg dry matter. This concentration in feed is 400 times higher than the current ML for the corresponding feed product. • For chicken fed endosulfan for eight weeks a lowest observed adverse effect level of 30 mg/kg feed (LOAEL of 3 mg/kg b.w.) was found. This concentration in feed is 300 times higher than the current ML for the corresponding feed product. • In dogs, orally dosed endosulfan for one year, a no observed adverse effect level of 10 mg/kg feed (NOAEL of 0.8 mg/kg b.w.) was found. This concentration in feed is 100 times higher than the current ML for the corresponding feed product. Occurrence in feed and carry over • Residues of endosulfan in feed are mostly reported by the Member States to the Commission as condensed overall summaries just giving the number of compliant and non compliant samples. Thus, primary data are not accessible, and as a consequence, detailed occurrence levels of endosulfan in feed are scarce. • The limited data available on the occurrence of endosulfan and endosulfan sulfate in various feed categories, including fish feed, show only a limited number of samples containing residues (usually below 1 µg/kg product). • Endosulfan does not significantly bioaccumulate in mammals. • In living organisms, β-endosulfan is more persistent than α-endosulfan. • Depending on species and duration of exposure, residues (parent compounds and endosulfan sulfate) are predominantly found in kidney, fat and liver. Transfer of residues to milk and eggs occurs to a limited extent. • Based on the limited data on animal exposure via feed produced according to good agricultural practice, it is not likely that terrestrial animals will be exposed to levels that could cause toxic effects. Human exposure • Limited exposure data collected in the 1990s in Canada, United States and Taiwan show a mean daily dietary intake between 0.01 and 0.05 µg total endosulfan/kg body weight. Recent data on human endosulfan exposure in European adults are reported from the Czech Republic for the years 1994 - 2002. These show a mean daily dietary http://www.efsa.eu.int Page 24 of 31
  • 25. The EFSA Journal (2005) 234, 1 - 31 intake between 0.003 and 0.015 µg total endosulfan/kg body weight. A similar dietary exposure can be assumed for other EU Member States based on the occurrence data of endosulfan in various food commodities measured in co-ordinated European monitoring programmes since 1997. • Endosulfan does not significantly bioaccumulate in humans. During the latest WHO field study 27 human milk pools from 16 European and non-European countries were analysed for pesticides and showed no endosulfan contamination at a limit of detection of 1 µg/kg milk fat. • The limited data available indicate that human dietary exposure to endosulfan is well below the ADI at 6 µg/kg b.w. set by JMPR in 1998. Important gaps in the database • Detailed data on residues of endosulfan and its metabolites in feedingstuffs and food of animal origin are scarce. • Only limited information on oral toxicity of endosulfan exposure in fish and no data on laying hens are available. RECOMMENDATION • Most of the surveillance data from Member States are required by the European Commission to be reported as compliant or non-compliant. To allow for a better intake assessment it is necessary that the actual levels as well as the contaminant are reported. • Studies on carry-over, accumulation and oral toxicity of endosulfan, especially in farmed fish and laying hens, should be performed. http://www.efsa.eu.int Page 25 of 31
  • 26. The EFSA Journal (2005) 234, 1 - 31 REFERENCES Amin, A.E. and Abdalla, G.A. 1995. Effects of endosulfan and amitraz on feedlot performance, carcass yield and meat quality characteristics of Nubian goats. Vet Hum Toxicol 37:113-115. Ansari, R.A., Siddiqui, M.K.J. and Gupta, P.K. 1984. Toxicity of endosulfan: Distribution of alpha- and beta-isomers of racemic endosulfan following oral administration in rats. Toxicol Lett 21:29-33. Aslani, M.R. 1996. Endosulfan toxicosis in calves. Vet Hum Toxicol 38:364. ATSDR (Agency for Toxic Substances and Disease Registry), 2000. Toxicological profile for endosulfan. Atlanta GA. USA. Bargar, T.A., Scott, G.I. and Cobb, G.B. 2001a. Uptake and distribution of three PCB conceners and endosulfan by developing white leghorn chicken embryos (Gallus domesticus). Arch Environ Contam Toxicol 41, 508 – 514. Bargar, T.A., Scott, G.I. and Cobb, G.P. 2001b. Maternal transfer of contaminants: case study of the excretion of three polychlorinated biphenyl congeners and technical-grade endosulfan into eggs by white leghorn chickens (Gallus domesticus). Environ. Toxicol Chem 20, 61-67. Beck, E.W., Johnson, J.C. Jr., Woodham, D.W., Leuck, D.B., Dawsey, L.H., Robbins, J.E. and Bowman, M.C. 1966. Residues of endosulfan in meat and milk of cattle fed treated forages. J Econ Entomol 59:1444-1450. Boereboom, F.T., van Dijk. A., van Zoonen, P. and Meulenbelt, J. 1998. Nonaccidental endosulfan intoxication: A case report with toxicokinetic calculations and tissue concentrations. Clin Toxicol 36(4):345-352. Bowman, J.S. 1959. Preliminary report: Subacute feeding – dairy cows. Unpublished report from Hazleton Laboratories, USA. Hoechst document No. A14205. Submitted to WHO by Hoechst Schering AgrEvo GmbH, Frankfurt-am-Main, Germany. Braun, H.E. and Lobb, B.T. 1976. Residues in milk and organs in a dairy herd following acute endosulfan intoxication. Can J Anim Sci 56:373-376. Braunbeck, T. and Appelbaum, S. 1999. Ultrastructural alterations in the liver and intestine af carp Cyprinus carpio induced orally by ultra-low doses of endosulfan. Dis Aquat Org 36: 183-200. Cerrillo, I., Granada, A., Lopez-Espinosa, M.J., Olmos, B., Jimenez, M., Cano, A., Olea, N. and Fatima Olea-Serrano, M. 2005. Endosulfan and its metabolites in fertile women, placenta, cord blood, and human milk. Environ Res 98(2):233-9. Coimbra, A.M., Reis-Henriques, M.A. and Darras, V.M. 2005. Circulating thyroid hormone levels and iodothyronine deiodinase activities in Nile tilapia (Oreochromis niloticus) following dietary exposure to endosulfan and Arochlor 1254. Comp Biochem Physiol 141C: 8-14. Dalela, R.C., Bhatnagar, M.C., Tyagi, A.K. and Verma, S.R. 1979. Histological damage of gills in Channa gachua after acute and subacute exposure to endosulfan and rogor. Mikroskopie 35:301-307. http://www.efsa.eu.int Page 26 of 31
  • 27. The EFSA Journal (2005) 234, 1 - 31 Deema, P., Thompson, E. and Ware, G.W. 1966. Metabolism, storage and excretion of C-14- endosulfan in the mouse. J Econ Entomol 59:546-550. Devi, A.P., Rato, D.M.R., Tilak, K.S. and Murty, A.S. 1981. Relative toxicity of the technical grade material, isomers, and formulations of endosulfan to the fish Channa punctata. Bull Environ Contam Toxicol 27:239-243. Dickie, S.M., McKenzie, K.M. and Rao, G.N. 1981. Teratology study with FMC 5462 in rabbits. Raltech Sci Serv, US Report No A23192 (unpublished study). Doong, R.A., Lee, C.-Y. and Sun, Y.-C. 1999. Dietary intake and residues of organochlorine pesticides in food from Hsinchu, Taiwan. J AOAC Int 82:677-682. Dorough, H.W., Huhtanen, K., Marshall, T.C. and Bryant, H.E. 1978. Fate of endosulfan in rats and toxicological considerations of apolar metabolites. Pest Biochem Physiol 8:241- 252. FAO/WHO (Food and Agriculture Organization/World Health Organization), 1998. Joint FAO/WHO Meeting on Pesticide Residues (JMPR). Endosulfan, part II, toxicology. http://www.inchem.org/documents/jmpr/jmpmono/v098pr08.htm. Fransson-Steen R., Flodström, S. and Wärngård, L. 1992. The insecticide endosulfan and its two stereoisomerspromotethe growth of altered hepatic foci in rats. Carcinogenesis 13 (12):2299-2303. Fürst, P. 2004. Personal communication. Goebel, H., Gorbach, S., Knauf, W., Rimpau, R.H. and Hüttenbach, H. 1982. Properties, effects, residues, and analytics of the insecticide endosulfan. Res Rev 83:1-165. Gopal, K., Anand, M., Khanna, R.N. and Misra, D. 1980. Endosulfan induced changes in blood glucose of catfish, Clarias batrachus. J Adv Zool 1:68-71. Gopinath, C. and Cannon, M.W.J. 1990. Photomicrographic addendum to histopathology report No. Hst/289 Endosulfan, active ingredient technical (code: Hoe 002671 OI ZD97 0003) combined chronic toxicity/carcinogenicity study (104-week feeding in rats). Huntingdon Research Centre Ltd, Huntingdon, Cambridgeshire, United Kingdom. Unpublished Hoechst document No. A44604. Submitted to WHO by Hoechst Schering AgrEvo GmbH, Frankfurt-am-Main, Germany. Gorbach, S.G., Christ, O.E., Kellner, H.-M., Kloss, G. and Borner, E. 1968. Metabolism of endosulfan in milk sheep. J Agric Food Chem 16:950-953. Gunderson, E.L. 1995. FDA total diet study, July 1986 – April 1991, dietary intakes of pesticides, selected elements, and other chemicals. J AOAC Int 78:1353- 1363. Hack, R., Ebert, E. and Leist, K.H. 1995. Chronic toxicity and carcinogenicity studies with the insecticide endosulfan in rats and mice. Food Chem Toxicol 33:941-950. Health Canada, 2003. Average dietary intakes (ng/kg b.w./day) of pesticide residues for Canadians in different age-sex groups from the 1993 to 1996 Total Diet Study. http://www.hc-sc.gc.ca/food-aliment/cs-ipc/fr-ra/e_pesticide_intake_93-96.html http://www.efsa.eu.int Page 27 of 31
  • 28. The EFSA Journal (2005) 234, 1 - 31 Hoechst, 1975. Beta-endosulfan purew (analysis GOE 1485): Acute oral toxicity in female SPF-Wistar rats. Hoechts Aktiengesellschaft, Frankfurt, Germany. Doc #A05270 (unpublished study). Hoechst, 1987. Endosulfan - active ingredient technical (code HOE 02671 OI ZD97 0003): 30-Day feeding study in adult male Wistar rats. Hoechst Aktiengesellschaft, Frankfurt, Germany. Project no. 87.0129 (unpublished study). Hoechst, 1988. Endosulfan - active ingredient technical (code HOE 02671 OI ZD97 0003): Carcinogenicity study in mice: 24-Month feeding study. Hoechst Aktiengesellschaft, Frankfurt, Germany. TOXN no. 83 0113 (unpublished study). Hoechst, 1989. Endosulfan - active ingredient technical (code HOE 02671 OI ZD97 0003): Combined chronic toxicity/carcinogenicity study: 104-Week feeding in rats. Conducted for Hoechst Aktiengesellschaft, Frankfurt, Germany. Huntington Research Centre, Cambridgeshire, England. Project no. HST 289/881067 (unpublished study). Hoechst, 1990. Summary and evaluation of the toxicity datafor endosulfan – substance technical (code HOE 002671) Hoechts Aktiengesellschaft, Frankfurt, Germany. Report no. 90 0848 (unpublished study). Hudson, R.H., Tucker, R.K. and Haegele, M.A. 1972. Effect of age on sensitivity: acute oral toxicity of 14 pesticides to mallard ducks of several ages. Toxicol Appl Pharmacol 22(4):556-61. Humphreys, D.J. 1988. Chlorinated hydrocarbon insecticides. In Humphreys, D.J. Veterinary Toxicology. 3. ed. Bailliere Tindall, London, p. 142-156. Indraningsih, McSweeney, C.S. and Ladds, P.W. 1993. Residues of endosulfan in the tissues of lactating goats. Aust Vet J 70(2):59-62. Kelch, W.J. and Kerr, L.A. 1997. Acute toxicosis in cattle sprayed with endosulfan. Vet Hum Toxicol 39:29-30. Keller, J.G. 1959. Subacute feeding - dairy cows. Hazleton Laboratories, USA. Unpublished Hoechst document No. A14206. Submitted to WHO by Hoechst Schering AgrEvo GmbH, Frankfurt-am-Main, Germany. Kenne, K., Fransson-Steen, R., Honkasalo, S. and Warngard, L. 1994. Two inhibitors of gap junctional intercellular communication, TPA and endosulfan: Different effects on phosphorylation of connexion 43 in the rat liver epitheliar cell line IAR 20. Carcinogenesis 15(6):1161-1165. Knauf, W. and Scultze, E.-F. 1973. New findings on the toxicity of endosulfan and its metabolites to aqatic organisms. Meded Fac Lanbouwwet Rijksuniv Gent 38:717-732. Lutter, C., Iyengar, V., Barnes, R., Chuvakova, T., Kazbekova, G. and Sharmanov, T. 1998. Breast milk contamination in Kazakhstan: implications for infant feeding. Chemosphere 37(9-12):1761-72. Macek, K.J., Hutchinson, C. and Cope, O.B. 1969. Effects of temperature on the susceptibility of blugills and rainbow trout to selected pesticides. Bull Environ Contam Toxicol 4:174-183. http://www.efsa.eu.int Page 28 of 31
  • 29. The EFSA Journal (2005) 234, 1 - 31 MAFF-UK (Ministry of Agriculture, Fisheries and Food in UK), 1998. Annual Report of the Working Party on Pesticides Residues: Supplement to The Pesticides Monitor 1999, MAFF Publications. p 18. Maier-Bode, H. 1966. Investigations on the persistence of the insecticide endosulfan in the vegetable and animal organism. Pharmakologisches Institut der Rheinischen Friedrich Wilhelms Universität. Unpublished Hoechst document No. A4047. Submitted to WHO by Hoechst Schering AgrEvo GmbH, Frankfurt-am-Main, Germany. Maier-Bode, H. 1968. Properties, effects, residues and analytics of the insecticide endosulfan. Res Rev 22:1-44. Malisch, R., Kypke, K., van Leeuwen, R. and Moy, G. 2004. Unpublished data from the 3rd WHO human milk field study. Matthiessen, P. and Roberts, R.J. 1982. Histopathological changes in the liver and brain of fish exposed to endosulfan insecticide during tsetse fly control operations in Botswana. J Fish Dis 5:153-159. Mc Caskey, T.A. and Liska, B.J. 1967. Effect of milk processing methods on endosulfan, endosulfan sulfate, and chlordane residues in milk. J Dairy Sci 50:1991-1993. Mor, F. and Ozmen, O. 2003. Acute endosulfan poisoning in cattle. Vet Hum Toxicol 45:323- 324. Naqvi, S.M. and Vaishnavi, C. 1993. Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals. Comp Biochem Physiol 105C:347 – 361. Nath, G, and Dikshith, T.S.S. 1979. Endosulfan residues in rat tissues. Natl Acad Sci Lett 2:278-279. Pandey, N., Gundevia, F., Prem, A.S. and Ray, P.K. 1990. Studies on the genotoxicity of endosulfan, and organochlorine insecticide, in mammalian germ cells. Mutat Res 242:1-7. Peres, T.B., Papini, S., Marchetti, M. and Luchini, L.C. 2004. Dissipação de endossulfan em amostras de dois tipos de solos brasileiros tratadas em laboratório. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente 14:11-18. Pond, W.G., Church, D.C. and Pond, K.R. 1995. Basic animal nutrition and feeding. 4th ed. John Wiley & Sons, NewYork. Rao, D.M.R., Devi, A.P. and Murty, A.S. 1980. Relative toxicity of of endosulfan, its isomers, and formulated products to the freshwater fish Labeo rohita. J Toxicol Environ Health 6:825-834. Rao, D.M.R., Devi, A.P. and Murty, A.S. 1981. Toxicity and metabolism of endosulfan and its effect on oxygen consumption and total nitrogen excretion of the fish, Macrognathus aculeatum. Pestic Biochem Physiol 15:282-287. Rasmussen, R.R, Poulsen, M.E. and Hansen, H.C.B. 2003. Distribution of multiple pesticide residues in apple segments after home processing. Food Additives and Contaminants 20(11):1044–1063. http://www.efsa.eu.int Page 29 of 31
  • 30. The EFSA Journal (2005) 234, 1 - 31 Rawn, D.F.K., Cao, X.-L., Doucet, J., Davies, D.J., Sun, W.-F., Dabeka, R.W. and Newsome, W.H. 2004. Canadian total diet study in 1998: pesiticide levels in foods from whitehorse, yukon, canada, and corresponding dietary intake estimates. Food Add Contam 21:232-250. Reno, F.E. 1975. Acute oral toxicity study in rats. Endosulfan technical. Unpublished final report, 18 December 1975, from Hazleton Laboratories America. Hoechst document No. A33732. Submitted to WHO by Hoechst Schering AgrEvo GmbH, Frankfurt-am-Main, Germany. Riuz Mendez , M.V., Perez de la Rosa, I., Jimenez Marquez, A.and Ojeda, M.U. 2005. Elimination of pesticides in olive oil by refining using bleaching and deodorization. Food Add Contam 22:23-30. Ruckman, S.A., Waterson, L.A., Crook, D., Gopinath, C., Majeed, S.K., Anderson, A. and Chanter, D.O. 1989. Endosulfan, active ingredient technical (code: Hoe 002671 OI ZD97 0003). Combined chronic toxicity/carcinogenicity study (104-week feeding study in rats). Huntingdon Research Centre, Huntingdon, Cambridgeshire, United Kingdom. Unpublished Hoechst document No.A40440. Submitted to WHO by Hoechst Schering AgrEvo GmbH, Frankfurt-am-Main, Germany. Ruprich, J., Řehůřková, I., Steinhauserová, I. and Ostrý, V. 1995. Health impact of exposure to xenobiotics from food chains: alimentary diseases (1993) and dietary exposure (1994). National Institute of Public Health in Prague, 275 p., ISBN 80-900066-7-1. Ruprich, J. Adamikova, V., Borkovcova, I., Bouskova, E., Dofkova, M., Karasek, K.,Karlikova, D., Karpiskova, K., Kolackova, I., Kopriva, V., Krajcovicova, R., Rajcovicova, R., Krbuskova, M., Markova, E., Ostry, V., Rehakova, J., Ehakova, J., Resova, D, Rehurkova, I., Slavikova, S., Skarkova, J. and Vokounova, S. 2003. Health impact of exposure to xenobiotics from food chain in 2002: reported alimentary diseases, bacteriological and mycological analyse of foods and dietary exposure of human beings. (in Czech). National Institute of Public Health in Prague, 2003. ISBN 80-7071-228-7. Selvaraj, J., Balasubramaniam, G.A., Titus George, V. and Balachandran, C. 2001a. Effect of dietary endosulfan on the growth rate of broiler chicken. Indian Vet J 78:798-800. Selvaraj, J., Balasubramaniam, G.A., Titus George, V. and Balachandran, C. 2001b. Studies on biochemical changes in endosulfan toxicity in broiler chicken. Indian Vet J 78:896-899. Singh, N.N. and Srivastava, A.K. 1981. Effects of endosulfan on fish carbohydrate metabolism. Ecotoxicol Environ Saf 5:412-417. Sutherland, T.D., Horne, I., Weir, K.M., Russell, R.J. and Oakeshott, J.G. 2004. Toxicity and residues of endosulfan isomers. Rev. Environ. Contam. Toxicol 183:99-113. Terblanche, J. and Minne, J.A. 1968. Thiodan poisoning of cattle – a case report. Jl S Afr Vet Med Ass 39:91-92. Thompson, G.E. 1966. Poisoning of cattle following accidental spraying with Thiodan. J S Afr Vet Med Ass 37:81-83. Umweltbundesamt, 2004. Endosulfan - Draft Dossier prepared in support of a proposal of endosulfan to be considered as a candidate for inclusion in the UN-ECE LRTAP protocol http://www.efsa.eu.int Page 30 of 31
  • 31. The EFSA Journal (2005) 234, 1 - 31 on persistent organic pollutants. German Federal Environment Agency – Umweltbundesamt, Berlin September 2004. US National Cancer Institute, 1978. 78-week dietary study in Osborne-Mendel rats and B6C3F1 mice. NCI study No. NCI-CG-TR62, Technical Report Series No. 62, Bethesda, Maryland, USA. Van Dyk, L.P. and Greeff, C.G. 1977. Endosulfan pollution of rivers and streams in the Loskop Dam cotton-growing area. Agrochemophysica 9:71. Verma, S.R., Rani, S., Tonk, I.P. and Dalela, R.C. 1983. Pesticide-induced dysfunction in carbohydrate metabolism in three freshwater fishes. Environ Res 32:127-133. WHO (World Health Organisation), 1984. Endosulfan. Environmental Health Criteria 40. International Programme on Chemical Safety. World Health Organization, Geneva, Switzerland. SCIENTIFIC PANEL MEMBERS Jan Alexander, Herman Autrup, Denis Bard, Angelo Carere, Lucio Guido Costa, Jean-Pierre Cravedi, Alessandro Di Domenico, Roberto Fanelli, Johanna Fink-Gremmels, John Gilbert, Philippe Grandjean, Niklas Johansson, Agneta Oskarsson, Andrew Renwick, Jirí Ruprich, Josef Schlatter, Greet Schoeters, Dieter Schrenk, Rolaf van Leeuwen, Philippe Verger. ACKNOWLEDGEMENT The Scientific Panel on Contaminants in the Food Chain wishes to thank Jan Alexander, Aksel Bernhoft, George Bories, Jean-Pierre Cravedi, Peter Fürst, Niklas Johansson and Hans Schenkel for the contributions to the draft opinion. DOCUMENTATION PROVIDED TO EFSA Submission of occurrence data Belgium, The Federal Agency for the Safety of the Food Chain, 2000-2004. Czech Republic, Central Institute for Testing and Supervising in Agriculture, 2004, and National Institute of Public Health, 1994 - 2004. Germany, Chemisches Landes- und Staatliches, Veterinäruntersuchungsamt Münster, 2003 and 2004. European Feed Manufacturers' Federation. http://www.efsa.eu.int Page 31 of 31