SlideShare une entreprise Scribd logo
1  sur  11
Télécharger pour lire hors ligne
Special topics on insulating materials
Winter-Summer 2012
Sujets Spéciaux sur les matériaux isolants en
Electrotechnique
Hiver-Eté 2012
(6MDI855)
HOMEWORK No.2
Presented by:
Koutoua Simon KASSI
MASTER IN ENGINEERING
Professor:
Issouf FOFANA, PhD, P. ENG in QUEBEC, Senior
Member IEEE
Chairholder of Isolime
Applied Sciences Dept.
1 Koutoua Simon KASSI
Table des Matières
Liste des Figures 2
Problème 1: Claquage de matériau isolant solide (15 pts) 3
1. Expression du champ critique EC requis pour causer un claquage thermique de
l’isolation. 3
2. Montrons que le champ critique Ec est indépendant de Tc. 3
Problem 2: Accelerated Ageing Tests for HV Cables (185 pts) 4
1. Computation of A, B of cable A for each endurance tests, using data provided in
figures 1 to 3 of the topic. 4
1.1 Expressions of A and B available for each endurance tests 4
1.2 Values of A, B for tensile strength (TS) ‘figure1 of the topic’ 5
1.3 Values of A, B for Folding Endurance (FE) ‘figure2 of the topic’ 5
1.4 Values of A, B for Degree of Polymerisation (DP) ‘figure3 of the topic ’ 5
2. Computation of the half-life for the selected properties 5
3. Conclusion 7
Bibliographie 8
Annexe 9
2 Koutoua Simon KASSI
Liste des Figures
Figure 1: Half-life for each test (TS, FE, DP) for thickness equal to 0.17 mm ..............................6
Figure 2: Half-life for each test (TS, FE, DP) for thickness equal to 0.13 mm ..............................7
Liste des tableaux
Tableau 1: Half-lives for thickness of 0.13mm ............................................................. 6
Tableau 2: Half-lives for thickness of 0.17mm ............................................................. 6
3 Koutoua Simon KASSI
Problème 1: Claquage de matériau isolant solide (15 pts)
1. Expression du champ critique EC requis pour causer un claquage
thermique de l’isolation.
La quantité de chaleur(déduite des pertes par conduction) produite est
2
. ( ) (1.1)dcW E T
et celle dissipée est [1][2] [3]:
= Qté de chaleur absorbée (par le diélectrique) + Qté de chaleur évacuée(à l'extérieur)
= ( )
T
T v
W
dT
W C div kgradT
dt
 (1.2)
Avec ( ) 0div kgradT 
La relation (1.2) représente le bilan énergétique mis en jeu dans le diélectrique
Le champ minimal entraînant le claquage thermique de l’isolation est atteint lorsque
dc TW W , ce qui implique :
2
2 0 0 0
0
. ( )
- - -
. . . . .
( )
-
.
C
C
C
C V
kTV V C V C V C
C
C c c C ckT
V C
C
C c
dT
E T C
dt
C C T T C T T C T TT
E e
T t t A t AkT t
Ae
C T T
E
AkT t









   

 (1.3)
2. Montrons que le champ critique Ec est indépendant de Tc.
A l’aide de la relation (1.3) et en supposant 0....CT T , on en déduit que :
(1.4)V
C
c
C
E
Akt


4 Koutoua Simon KASSI
Problem 2: Accelerated Ageing Tests for HV Cables (185 pts)
1. Computation of A, B of cable A for each endurance tests, using data
provided in figures 1 to 3 of the topic.
1.1 Expressions of A and B available for each endurance tests
For each endurance test, we will use two types of curves, corresponding to
temperatures T1 and T2.
For the curve of T1, we have:  
 
1 1
0
ln
ln ln .T T
P
k t k
P t


 
     
 
and
1
1
(2.1)
B
T
Tk Ae


For the curve of T2, we have:  
 
2 2
0
ln
ln ln .T T
P
k t k
P t


 
     
 
and
2
2
(2.2)
B
T
Tk Ae


Relation (2.1) divided by (2.2) yields:
1
2
1 2
1 2
1 2
1 2
ln
(2.3)
and A=
T
T
B B
T T
T T
k
TT
k
B
T T
k e k e
 
  
 

 (2.4)
Using the curves of 125°C and 105°C, we have: T1 = 125 + 273 = 398 K;
T2 = 105 + 273 = 378 K.
5 Koutoua Simon KASSI
1.2 Values of A, B for tensile strength (TS) ‘figure1 of the topic’
 
1
ln 4
0.04
100
Tk
t
 
  
 
;
 
2
ln 1
0.001666
600
Tk
t
 
  
 
;
1
2
1 2 23908,966
24398
1 2
0.04ln 398.378.ln
0.001666
= = 23908,966 and A= 0.04 4,91310
398 378
T
T
k
TT
k
B e
T T
 
     
    
 
1.3 Values of A, B for Folding Endurance (FE) ‘figure2 of the topic’
 
1
ln 0.1
0.001428
70
Tk
t
 
  
 
;
 
2
ln 0.1
0.0003448
290
Tk
t
 
  
 
;
1
2
1 2 10689,54
8398
1 2
0.001428ln 398.378.ln
0.0003448
= = 10689,54 and A= 0.001428 6,59.10
398 378
T
T
k
TT
k
B e
T T
 
     
    
 
1.4 Values of A, B for Degree of Polymerisation (DP) ‘figure3 of the topic ’
 
1
ln 0.25
0.005
50
Tk
t
 
  
 
;
 
2
ln 0.25
0.0005319
470
Tk
t
 
  
 
;
1
2
1 2 16855,277
16398
1 2
0.005ln 398.378.ln
0.0005319
= = 16855,277 and A= 0.005 1,234.10
398 378
T
T
k
TT
k
B e
T T
 
     
    
 
2. Computation of the half-life for the selected properties
The half-life [4] of the cables depends on the coefficients A, B and the
temperatures (T1= 398K, T2= 378 K, T3 = 363 K). For each type of test we will
determine the half-life for each temperature. A Matlab code was developped to
calculate automatically the values of the half-lives. Results are summarized in table 1
and 2, and are plotted in the figures 1and 2. The matlab code is presented in annex 1.
6 Koutoua Simon KASSI
Tableau 1: Half-lives for thickness of 0.13mm
Insulation
Thickness
(mm)
Half-life for TS
(days)
Half-life for FE
(days)
Half-life for DP
(days)
T1 T2 T3 T1 T2 T3 T1 T2 T3
0.13 159.6 727.4 2532 6.46 80.38 638.6 126.8 676.7 2682
Tableau 2: Half-lives for thickness of 0.17mm
Insulation
Thickness
(mm)
Half-life for TS
(days)
Half-life for FE
(days)
Half-life for DP
(days)
T1 T2 T3 T1 T2 T3 T1 T2 T3
0.17 128.3 531.6 1711 4.186 72.58 757.94 119.1 785.2 3703
Figure 1: Half-life for each test (TS, FE, DP) for thickness equal to 0.17 mm
360 365 370 375 380 385 390 395 400
0
500
1000
1500
2000
2500
3000
3500
4000
half-life(days)
Temperature(K)
Tensile Strenght(TS)
Folding Endurance(FE)
Degree of Polymerisation(DP)
7 Koutoua Simon KASSI
Figure 2: Half-life for each test (TS, FE, DP) for thickness equal to 0.13 mm
3. Conclusion
According to results above (tables and curves), we can notice that the half-life
decrease with the increasing of the temperature. With the same paper (cable B) the
values of the half-life of test TS and DP are greater than those of the test FE. As
definition the half-life of an insulation paper is the time after which the insulation paper
loses the half of its properties. Taking account this definition we can conclude that:
- Folding Endurance (FE) test is adaptable for predict the condition of a very aged
paper.
- Tensile strength (TS) test is adaptable for predict the condition of a moderately aged
paper.
- Degree of Polymerisation (DP) test is adaptable for predict the condition of a slightly
aged paper.
360 365 370 375 380 385 390 395 400
0
500
1000
1500
2000
2500
3000
half-life(days)
Temperature(K)
Tensile Strength(TS)
Folding Endurance(FE)
Degree of Polymerisation(DP)
8 Koutoua Simon KASSI
Bibliographie
[1] Issouf Fofana, Notes de Cours Sujets Spéciaux sur les Isolants Electriques 6MDI
855, Ete 2012., 1 vols. Chicoutimi: UQAC(Université du Québec à Chicoutimi).
[2] Kwan Chi Kao, Dielectric Phenomena in solids, vol. 1. Elsevier Academic Press
525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s
Road, London WC1X 8RR, UK, 2004.
[3] Issouf Fofana, Notes de Cours Ingénierie de la haute tension, 6MIG 930, 6th ed.,
vol. 1. Chicoutimi: UQAC(Université du Québec à Chicoutimi), 2012.
[4] “Notion de demi-vie d’un matériau,” http://fr.wikipedia.org/wiki/Demi-vie, juillet-
2012. .
9 Koutoua Simon KASSI
Annexe
Annexe 1: Matlab Code of question 2 for problem 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%DEV2_SSISOLANTS_IFofana
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%PARTIE1: epaisseur 0.17mm
clear all
close all
A_TS=1.81*10^9 ;A_FE=3.12e22 ; A_DP=1.27e13 ;
B_TS=10692 ;B_FE=21460 ; B_DP=14187 ;
T=[125 105 90]+273%température en K
for i=1:3
kTS(i)=A_TS*exp(-B_TS/T(i))
demivie_TS(i)=1/(2*kTS(i))
kFE(i)=A_FE*exp(-B_FE/T(i))
demivie_FE(i)=1/(2*kFE(i))
kDP(i)=A_DP*exp(-B_DP/T(i))
demivie_DP(i)=1/(2*kDP(i))
end
plot(T(1:3),demivie_TS,'+r')
hold on
plot(T(1:3),demivie_FE,'*g')
hold on
plot(T(1:3),demivie_DP,'+k')
ylabel('half-life(days) ')
xlabel('Temperature(K)')
legend('First','Second','Third','Location','NorthEastOutside')
grid
%%
%%%%%%PARTIE2: epaisseur 0.13mm
clear all
close all
A_TS=8.84*10^9; A_FE=3.77e19 ; A_DP=2.19e11 ; % valeurs à modifier
B_TS=11410 ;B_FE=18959 ; B_DP=12596 ;
T=[125 105 90]+273%température en K
for i=1:3
kTS(i)=A_TS*exp(-B_TS/T(i))
demivie_TS(i)=1/(2*kTS(i))
kFE(i)=A_FE*exp(-B_FE/T(i))
demivie_FE(i)=1/(2*kFE(i))
kDP(i)=A_DP*exp(-B_DP/T(i))
demivie_DP(i)=1/(2*kDP(i))
end
plot(T(1:3),demivie_TS,'+r')
hold on
plot(T(1:3),demivie_FE,'*g')
10 Koutoua Simon KASSI
hold on
plot(T(1:3),demivie_DP,'+k')
ylabel('half-life(days)')
xlabel('Temperature(K)')
legend('First','Second','Third','Location','NorthEastOutside')
grid

Contenu connexe

Tendances

Periodic table n electron config
Periodic table n electron configPeriodic table n electron config
Periodic table n electron configKarnataka OER
 
Generation of electricity by nuclear fusion
Generation of electricity by nuclear fusionGeneration of electricity by nuclear fusion
Generation of electricity by nuclear fusionSamuel Haspot
 
solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...shayangreen
 
M E C H A N I C S O F S O L I D S J N T U M O D E L P A P E R{Www
M E C H A N I C S  O F  S O L I D S  J N T U  M O D E L  P A P E R{WwwM E C H A N I C S  O F  S O L I D S  J N T U  M O D E L  P A P E R{Www
M E C H A N I C S O F S O L I D S J N T U M O D E L P A P E R{Wwwguest3f9c6b
 
Tang 09 electron shielding
Tang 09   electron shieldingTang 09   electron shielding
Tang 09 electron shieldingmrtangextrahelp
 

Tendances (7)

Periodic table n electron config
Periodic table n electron configPeriodic table n electron config
Periodic table n electron config
 
Generation of electricity by nuclear fusion
Generation of electricity by nuclear fusionGeneration of electricity by nuclear fusion
Generation of electricity by nuclear fusion
 
solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...
 
Nuclear Physics 1
Nuclear Physics 1Nuclear Physics 1
Nuclear Physics 1
 
Atoms and nuclei
Atoms and nucleiAtoms and nuclei
Atoms and nuclei
 
M E C H A N I C S O F S O L I D S J N T U M O D E L P A P E R{Www
M E C H A N I C S  O F  S O L I D S  J N T U  M O D E L  P A P E R{WwwM E C H A N I C S  O F  S O L I D S  J N T U  M O D E L  P A P E R{Www
M E C H A N I C S O F S O L I D S J N T U M O D E L P A P E R{Www
 
Tang 09 electron shielding
Tang 09   electron shieldingTang 09   electron shielding
Tang 09 electron shielding
 

En vedette

En vedette (8)

Grammar book
Grammar bookGrammar book
Grammar book
 
administracion
administracionadministracion
administracion
 
Tugas plkj idul adha
Tugas plkj idul adhaTugas plkj idul adha
Tugas plkj idul adha
 
Chedd 2011 synthese conference biodiversité.vf
Chedd 2011 synthese conference biodiversité.vfChedd 2011 synthese conference biodiversité.vf
Chedd 2011 synthese conference biodiversité.vf
 
Solutionas
SolutionasSolutionas
Solutionas
 
Français
FrançaisFrançais
Français
 
Tugas plkj idul adha
Tugas plkj idul adhaTugas plkj idul adha
Tugas plkj idul adha
 
Talk to git
Talk to gitTalk to git
Talk to git
 

Similaire à Insulating Materials Guide

Temperature characteristics of fiber optic gyroscope sensing coils
Temperature characteristics of fiber  optic gyroscope sensing coilsTemperature characteristics of fiber  optic gyroscope sensing coils
Temperature characteristics of fiber optic gyroscope sensing coilsKurbatov Roman
 
Fire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal AnalysisFire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal AnalysisArshia Mousavi
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Solutionssemihypocrite
 
Temperature Cycling and Fatigue in Electronics
Temperature Cycling and Fatigue in ElectronicsTemperature Cycling and Fatigue in Electronics
Temperature Cycling and Fatigue in ElectronicsCheryl Tulkoff
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 AssignmentCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignmentsemihypocrite
 
Solution Manual for Engineering Heat Transfer 3rd Edition William Janna
Solution Manual for Engineering Heat Transfer 3rd Edition William JannaSolution Manual for Engineering Heat Transfer 3rd Edition William Janna
Solution Manual for Engineering Heat Transfer 3rd Edition William JannaPedroBernalFernandez
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutionssemihypocrite
 
Group 6-4ChEA
Group 6-4ChEAGroup 6-4ChEA
Group 6-4ChEA4ChEAB08
 
4ChEB Group 6
4ChEB Group 64ChEB Group 6
4ChEB Group 64ChEAB08
 
Principles of Cable Sizing
Principles of Cable SizingPrinciples of Cable Sizing
Principles of Cable SizingLeonardo ENERGY
 
F L U I D M E C H A N I C S A N D H E A T T R A N S F E R J N T U M O D...
F L U I D  M E C H A N I C S  A N D  H E A T  T R A N S F E R  J N T U  M O D...F L U I D  M E C H A N I C S  A N D  H E A T  T R A N S F E R  J N T U  M O D...
F L U I D M E C H A N I C S A N D H E A T T R A N S F E R J N T U M O D...guest3f9c6b
 
Heat transfer ies gate ias 20 years question and answers by s k mondal
Heat transfer ies gate ias 20 years question and answers by s k mondalHeat transfer ies gate ias 20 years question and answers by s k mondal
Heat transfer ies gate ias 20 years question and answers by s k mondalbinny 004
 
1998 advanced firedesign
1998 advanced firedesign1998 advanced firedesign
1998 advanced firedesigntanhoi2000
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Electric Vehicle Battery Cells
Electric Vehicle Battery CellsElectric Vehicle Battery Cells
Electric Vehicle Battery CellsMOHAMMED THOUSEEQ
 
TALAT Lecture 2503: Calculation Methods for Fire Design
TALAT Lecture 2503: Calculation Methods for Fire DesignTALAT Lecture 2503: Calculation Methods for Fire Design
TALAT Lecture 2503: Calculation Methods for Fire DesignCORE-Materials
 

Similaire à Insulating Materials Guide (20)

Problem and solution i ph o 31
Problem and solution i ph o 31Problem and solution i ph o 31
Problem and solution i ph o 31
 
Temperature characteristics of fiber optic gyroscope sensing coils
Temperature characteristics of fiber  optic gyroscope sensing coilsTemperature characteristics of fiber  optic gyroscope sensing coils
Temperature characteristics of fiber optic gyroscope sensing coils
 
Thermal Neutrons & X-Ray Diffraction.pdf
Thermal Neutrons & X-Ray Diffraction.pdfThermal Neutrons & X-Ray Diffraction.pdf
Thermal Neutrons & X-Ray Diffraction.pdf
 
Fire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal AnalysisFire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Solutions
 
Temperature Cycling and Fatigue in Electronics
Temperature Cycling and Fatigue in ElectronicsTemperature Cycling and Fatigue in Electronics
Temperature Cycling and Fatigue in Electronics
 
SPIE-9150-72
SPIE-9150-72SPIE-9150-72
SPIE-9150-72
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 AssignmentCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
 
Circuit Analysis Slides
Circuit Analysis SlidesCircuit Analysis Slides
Circuit Analysis Slides
 
Solution Manual for Engineering Heat Transfer 3rd Edition William Janna
Solution Manual for Engineering Heat Transfer 3rd Edition William JannaSolution Manual for Engineering Heat Transfer 3rd Edition William Janna
Solution Manual for Engineering Heat Transfer 3rd Edition William Janna
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
 
Group 6-4ChEA
Group 6-4ChEAGroup 6-4ChEA
Group 6-4ChEA
 
4ChEB Group 6
4ChEB Group 64ChEB Group 6
4ChEB Group 6
 
Principles of Cable Sizing
Principles of Cable SizingPrinciples of Cable Sizing
Principles of Cable Sizing
 
F L U I D M E C H A N I C S A N D H E A T T R A N S F E R J N T U M O D...
F L U I D  M E C H A N I C S  A N D  H E A T  T R A N S F E R  J N T U  M O D...F L U I D  M E C H A N I C S  A N D  H E A T  T R A N S F E R  J N T U  M O D...
F L U I D M E C H A N I C S A N D H E A T T R A N S F E R J N T U M O D...
 
Heat transfer ies gate ias 20 years question and answers by s k mondal
Heat transfer ies gate ias 20 years question and answers by s k mondalHeat transfer ies gate ias 20 years question and answers by s k mondal
Heat transfer ies gate ias 20 years question and answers by s k mondal
 
1998 advanced firedesign
1998 advanced firedesign1998 advanced firedesign
1998 advanced firedesign
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Electric Vehicle Battery Cells
Electric Vehicle Battery CellsElectric Vehicle Battery Cells
Electric Vehicle Battery Cells
 
TALAT Lecture 2503: Calculation Methods for Fire Design
TALAT Lecture 2503: Calculation Methods for Fire DesignTALAT Lecture 2503: Calculation Methods for Fire Design
TALAT Lecture 2503: Calculation Methods for Fire Design
 

Insulating Materials Guide

  • 1. Special topics on insulating materials Winter-Summer 2012 Sujets Spéciaux sur les matériaux isolants en Electrotechnique Hiver-Eté 2012 (6MDI855) HOMEWORK No.2 Presented by: Koutoua Simon KASSI MASTER IN ENGINEERING Professor: Issouf FOFANA, PhD, P. ENG in QUEBEC, Senior Member IEEE Chairholder of Isolime Applied Sciences Dept.
  • 2. 1 Koutoua Simon KASSI Table des Matières Liste des Figures 2 Problème 1: Claquage de matériau isolant solide (15 pts) 3 1. Expression du champ critique EC requis pour causer un claquage thermique de l’isolation. 3 2. Montrons que le champ critique Ec est indépendant de Tc. 3 Problem 2: Accelerated Ageing Tests for HV Cables (185 pts) 4 1. Computation of A, B of cable A for each endurance tests, using data provided in figures 1 to 3 of the topic. 4 1.1 Expressions of A and B available for each endurance tests 4 1.2 Values of A, B for tensile strength (TS) ‘figure1 of the topic’ 5 1.3 Values of A, B for Folding Endurance (FE) ‘figure2 of the topic’ 5 1.4 Values of A, B for Degree of Polymerisation (DP) ‘figure3 of the topic ’ 5 2. Computation of the half-life for the selected properties 5 3. Conclusion 7 Bibliographie 8 Annexe 9
  • 3. 2 Koutoua Simon KASSI Liste des Figures Figure 1: Half-life for each test (TS, FE, DP) for thickness equal to 0.17 mm ..............................6 Figure 2: Half-life for each test (TS, FE, DP) for thickness equal to 0.13 mm ..............................7 Liste des tableaux Tableau 1: Half-lives for thickness of 0.13mm ............................................................. 6 Tableau 2: Half-lives for thickness of 0.17mm ............................................................. 6
  • 4. 3 Koutoua Simon KASSI Problème 1: Claquage de matériau isolant solide (15 pts) 1. Expression du champ critique EC requis pour causer un claquage thermique de l’isolation. La quantité de chaleur(déduite des pertes par conduction) produite est 2 . ( ) (1.1)dcW E T et celle dissipée est [1][2] [3]: = Qté de chaleur absorbée (par le diélectrique) + Qté de chaleur évacuée(à l'extérieur) = ( ) T T v W dT W C div kgradT dt  (1.2) Avec ( ) 0div kgradT  La relation (1.2) représente le bilan énergétique mis en jeu dans le diélectrique Le champ minimal entraînant le claquage thermique de l’isolation est atteint lorsque dc TW W , ce qui implique : 2 2 0 0 0 0 . ( ) - - - . . . . . ( ) - . C C C C V kTV V C V C V C C C c c C ckT V C C C c dT E T C dt C C T T C T T C T TT E e T t t A t AkT t Ae C T T E AkT t                (1.3) 2. Montrons que le champ critique Ec est indépendant de Tc. A l’aide de la relation (1.3) et en supposant 0....CT T , on en déduit que : (1.4)V C c C E Akt  
  • 5. 4 Koutoua Simon KASSI Problem 2: Accelerated Ageing Tests for HV Cables (185 pts) 1. Computation of A, B of cable A for each endurance tests, using data provided in figures 1 to 3 of the topic. 1.1 Expressions of A and B available for each endurance tests For each endurance test, we will use two types of curves, corresponding to temperatures T1 and T2. For the curve of T1, we have:     1 1 0 ln ln ln .T T P k t k P t             and 1 1 (2.1) B T Tk Ae   For the curve of T2, we have:     2 2 0 ln ln ln .T T P k t k P t             and 2 2 (2.2) B T Tk Ae   Relation (2.1) divided by (2.2) yields: 1 2 1 2 1 2 1 2 1 2 ln (2.3) and A= T T B B T T T T k TT k B T T k e k e          (2.4) Using the curves of 125°C and 105°C, we have: T1 = 125 + 273 = 398 K; T2 = 105 + 273 = 378 K.
  • 6. 5 Koutoua Simon KASSI 1.2 Values of A, B for tensile strength (TS) ‘figure1 of the topic’   1 ln 4 0.04 100 Tk t        ;   2 ln 1 0.001666 600 Tk t        ; 1 2 1 2 23908,966 24398 1 2 0.04ln 398.378.ln 0.001666 = = 23908,966 and A= 0.04 4,91310 398 378 T T k TT k B e T T                1.3 Values of A, B for Folding Endurance (FE) ‘figure2 of the topic’   1 ln 0.1 0.001428 70 Tk t        ;   2 ln 0.1 0.0003448 290 Tk t        ; 1 2 1 2 10689,54 8398 1 2 0.001428ln 398.378.ln 0.0003448 = = 10689,54 and A= 0.001428 6,59.10 398 378 T T k TT k B e T T                1.4 Values of A, B for Degree of Polymerisation (DP) ‘figure3 of the topic ’   1 ln 0.25 0.005 50 Tk t        ;   2 ln 0.25 0.0005319 470 Tk t        ; 1 2 1 2 16855,277 16398 1 2 0.005ln 398.378.ln 0.0005319 = = 16855,277 and A= 0.005 1,234.10 398 378 T T k TT k B e T T                2. Computation of the half-life for the selected properties The half-life [4] of the cables depends on the coefficients A, B and the temperatures (T1= 398K, T2= 378 K, T3 = 363 K). For each type of test we will determine the half-life for each temperature. A Matlab code was developped to calculate automatically the values of the half-lives. Results are summarized in table 1 and 2, and are plotted in the figures 1and 2. The matlab code is presented in annex 1.
  • 7. 6 Koutoua Simon KASSI Tableau 1: Half-lives for thickness of 0.13mm Insulation Thickness (mm) Half-life for TS (days) Half-life for FE (days) Half-life for DP (days) T1 T2 T3 T1 T2 T3 T1 T2 T3 0.13 159.6 727.4 2532 6.46 80.38 638.6 126.8 676.7 2682 Tableau 2: Half-lives for thickness of 0.17mm Insulation Thickness (mm) Half-life for TS (days) Half-life for FE (days) Half-life for DP (days) T1 T2 T3 T1 T2 T3 T1 T2 T3 0.17 128.3 531.6 1711 4.186 72.58 757.94 119.1 785.2 3703 Figure 1: Half-life for each test (TS, FE, DP) for thickness equal to 0.17 mm 360 365 370 375 380 385 390 395 400 0 500 1000 1500 2000 2500 3000 3500 4000 half-life(days) Temperature(K) Tensile Strenght(TS) Folding Endurance(FE) Degree of Polymerisation(DP)
  • 8. 7 Koutoua Simon KASSI Figure 2: Half-life for each test (TS, FE, DP) for thickness equal to 0.13 mm 3. Conclusion According to results above (tables and curves), we can notice that the half-life decrease with the increasing of the temperature. With the same paper (cable B) the values of the half-life of test TS and DP are greater than those of the test FE. As definition the half-life of an insulation paper is the time after which the insulation paper loses the half of its properties. Taking account this definition we can conclude that: - Folding Endurance (FE) test is adaptable for predict the condition of a very aged paper. - Tensile strength (TS) test is adaptable for predict the condition of a moderately aged paper. - Degree of Polymerisation (DP) test is adaptable for predict the condition of a slightly aged paper. 360 365 370 375 380 385 390 395 400 0 500 1000 1500 2000 2500 3000 half-life(days) Temperature(K) Tensile Strength(TS) Folding Endurance(FE) Degree of Polymerisation(DP)
  • 9. 8 Koutoua Simon KASSI Bibliographie [1] Issouf Fofana, Notes de Cours Sujets Spéciaux sur les Isolants Electriques 6MDI 855, Ete 2012., 1 vols. Chicoutimi: UQAC(Université du Québec à Chicoutimi). [2] Kwan Chi Kao, Dielectric Phenomena in solids, vol. 1. Elsevier Academic Press 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK, 2004. [3] Issouf Fofana, Notes de Cours Ingénierie de la haute tension, 6MIG 930, 6th ed., vol. 1. Chicoutimi: UQAC(Université du Québec à Chicoutimi), 2012. [4] “Notion de demi-vie d’un matériau,” http://fr.wikipedia.org/wiki/Demi-vie, juillet- 2012. .
  • 10. 9 Koutoua Simon KASSI Annexe Annexe 1: Matlab Code of question 2 for problem 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%DEV2_SSISOLANTS_IFofana %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%PARTIE1: epaisseur 0.17mm clear all close all A_TS=1.81*10^9 ;A_FE=3.12e22 ; A_DP=1.27e13 ; B_TS=10692 ;B_FE=21460 ; B_DP=14187 ; T=[125 105 90]+273%température en K for i=1:3 kTS(i)=A_TS*exp(-B_TS/T(i)) demivie_TS(i)=1/(2*kTS(i)) kFE(i)=A_FE*exp(-B_FE/T(i)) demivie_FE(i)=1/(2*kFE(i)) kDP(i)=A_DP*exp(-B_DP/T(i)) demivie_DP(i)=1/(2*kDP(i)) end plot(T(1:3),demivie_TS,'+r') hold on plot(T(1:3),demivie_FE,'*g') hold on plot(T(1:3),demivie_DP,'+k') ylabel('half-life(days) ') xlabel('Temperature(K)') legend('First','Second','Third','Location','NorthEastOutside') grid %% %%%%%%PARTIE2: epaisseur 0.13mm clear all close all A_TS=8.84*10^9; A_FE=3.77e19 ; A_DP=2.19e11 ; % valeurs à modifier B_TS=11410 ;B_FE=18959 ; B_DP=12596 ; T=[125 105 90]+273%température en K for i=1:3 kTS(i)=A_TS*exp(-B_TS/T(i)) demivie_TS(i)=1/(2*kTS(i)) kFE(i)=A_FE*exp(-B_FE/T(i)) demivie_FE(i)=1/(2*kFE(i)) kDP(i)=A_DP*exp(-B_DP/T(i)) demivie_DP(i)=1/(2*kDP(i)) end plot(T(1:3),demivie_TS,'+r') hold on plot(T(1:3),demivie_FE,'*g')
  • 11. 10 Koutoua Simon KASSI hold on plot(T(1:3),demivie_DP,'+k') ylabel('half-life(days)') xlabel('Temperature(K)') legend('First','Second','Third','Location','NorthEastOutside') grid