SlideShare une entreprise Scribd logo
1  sur  8
Heat Diffusion Equation
Apply this equation to a solid undergoing conduction heat
transfer as shown where:
E = mcpT= (rV)cpT = r(dxdydz)cpT
Energy balance equation:
dE
dt
dE
dt
g
     
q q E E
dW
dt
in out
 
1 2
x
qx qx+dx
q KA
T
x
K dydz
T
x
q q dq q
q
x
dx
x
x x
x dx x x x
x
 


 


   



( )
= 0
Heat diffusion equation – mod 11/27/01
dy
dx
y
Steady State Conduction
The above equation states:
Rate of change of total energy (dE/dt) = Rate of energy generated (dEg/dt) +
Rate of Heat Transfer in (qin) - Rate of Heat Transfer out (qout)
qin =
qout =
Heat Diffusion Equation (cont’d, page 2)
Generalized to three-dimensions
Note: partial differential operator
is used since T = T(x,y,z,t)
Substituting in the Energy Balance equation, we obtain:
 
Energy Storage = Energy Generation + Net Heat Transfer
t
( )
( )
( ) ( ) ( )
p x x dx
x
p x x
p
c T dxdydz qdxdydz q q
q
T
c dxdydz qdxdydz q q dx
t x
T
qdxdydz k dxdydz
x x
T T T T
c q k k k
t x x y y z z
r
r
r


  



   
 
 
  
 
      
   
      
dE/dt dEg/dt qin -qout
=>
r
r
c
T
t
q
x
k
T
x y
k
T
y z
k
T
z
c
T
t
k
T
x
T
y
T
z
q k T q
where
x y z
T
T
x
T
y
T
z
p
p


 

























   
 











 









 ( ) ( ) ( )

( )  ,

,
Special case1: no generation q = 0
Special case 2: constant thermal conductivity k = constant
is the Laplacian operator
Special case 3:
t
and q = 0
The famous Laplace'
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0 s equation
Heat Diffusion Equation (cont’d, page 3)
1-D, Steady State Conduction
Assume steady and no generation, 1- D Laplace' s equation
function of x coordinate alone
Note: ordinary differential operator is used since T = T(x) only
The general solution of this equation can be determined by integting twice:
First integration leads to
dT
dx
Integrate again T(x) = C
Second order differential equation: need two boundary conditions to
determine the two constants C and C
1
1 2
d T
dx
T x y x t T x
cons t C
x C
2
2
1
2
0
 
 

, ( , , , ) ( ),
tan .
.
Example:
T(x=0)=100°C=C2
T(x=1 m)=20°C=C1+C2, C1=-80°C
T(x)=100-80x (°C)
100
20
T
x
Constant
1-D Heat, Steady State Heat Transfer
Thermal Resistance (Electrical Circuit Analogy)
Recall Fourier' s Law:
q = -kA
dT
dx
If the temperature gradient is a constant
q = constent (heat transfer rate is a constant)
dT
dx
where
,
, ( ) , ( )


   
T T
L
T x T T x L T
2 1
1 2
0
T1 T2
x
L
q kA
dT
dx
kA
T T
L
T T
L kA
q
T T
R
where R
L
kA
  






1 2 1 2
1 2
( / )
, :thermal resistance
q (I)
T1 (V1) T2 (V2)
R (R)
This is analogous to an electrical circuit
I = (V1-V2)/R
Constant
Thermal Resistance - Composite Wall Heat Transfer
T2
T1
R1=L1/(k1A) R2=L2/(k2A)
T
1 2 1 2 1 2
1 2 1 2
1 2
1 1
1 1 1
1 1
T
Also, q= ,
T T T T T T
q
R R R L L
k A k A
T L
T T qR T q
R k A
  
  
    

   
   
 

     
 
T1 T2
L1 L2
k1 k2
T
Use of the thermal resistance concept make the analysis of complex geometries
relatively easy, as discussed in the example below.
However, note that the thermal heat resistance concept can only be applied for
steady state heat transfer with no heat generation.
Example: Consider a composite wall made of two different materials
Composite Wall Heat Transfer (cont’d)
R1=L1/(k1A) R2=L2/(k2A)
T2
T1 T
T1 T2
L1 L2
k1 k2
T
•Now consider the case where we have 2 different fluids on either sides of the wall at
temperatures, T,1 and T,2 , respectively.
• There is heat transfer by convection from the first fluid (on left) to material 1
and from material 2 to the second fluid (on right).
• Similar to conduction resistance, we can determine the convection resistance,
where Rconv = 1/hA
T,1 T,2
T,1
T,2
Rconv,1= 1/(h1A)
Rconv,2= 1/(h2A)
1
1
1
,
1
2
, 2
,
2
,
R
T
T
R
T
T
R
T
T
Q
conv
tot





 
 

where
2
,
2
,
2
2 2
conv
R
T
T
R
T
T 




This approach can be extended to much more complex geometries
(see YAC, 8-4 and 8-5)
“R” value of insulations
Q: Why is the Rvalue given by L/k ?
A: From previous slide, we know that the thermal resistance to conduction is
defined as the temperature difference across the insulation by the heat flux going
through it, hence:
R
T
q
T
k T
x
x
k
  
 



"
Example:
The typical space inside the residential frame wall is 3.5 in. Find the R-value if
the wall cavity is filled with fiberglass batt. (k=0.046 W/m.K=0.027 Btu/h.ft.R)
R
x
k
ft
Btu h ft R
R ft h Btu R
    
 0 292
0 027
10 8 11
2
.
. / . .
. ( . . / )
In the US, insulation materials are often specified in terms of their thermal
resistance, denoted as R values, where Rvalue = L/k (thickness/thermal conductivity)
In the US, it has units of (hr ft2 °F)/Btu (Note: 1 Btu=1055 J)
R-11 for wall, R-19 to R-31 for ceiling.

Contenu connexe

Tendances

Radiation heat transfer
Radiation heat transferRadiation heat transfer
Radiation heat transferNEERAJ JAIN
 
1. signal and systems basics
1. signal and systems basics1. signal and systems basics
1. signal and systems basicsskysunilyadav
 
A Study Of BVP4C Method For Solving Boundary.pptx
A Study Of BVP4C Method For Solving Boundary.pptxA Study Of BVP4C Method For Solving Boundary.pptx
A Study Of BVP4C Method For Solving Boundary.pptxbushratufail3
 
Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Muhammad Waqas
 
013 fundamental of thermal radiation
013 fundamental of thermal radiation013 fundamental of thermal radiation
013 fundamental of thermal radiationSaranyu Pilai
 
EES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transferEES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transfertmuliya
 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaAleksandar Micic
 
Derivation and solution of the heat equation in 1-D
Derivation and solution of the heat equation in 1-DDerivation and solution of the heat equation in 1-D
Derivation and solution of the heat equation in 1-DIJESM JOURNAL
 
004 2 steady state heat conduction_thai
004 2 steady state heat conduction_thai004 2 steady state heat conduction_thai
004 2 steady state heat conduction_thaiSaranyu Pilai
 
Transient heat-conduction-Part-I
Transient heat-conduction-Part-ITransient heat-conduction-Part-I
Transient heat-conduction-Part-Itmuliya
 
heat conduction equations
heat conduction equationsheat conduction equations
heat conduction equationsZahir Baloch
 
Emissivity Measurement Apparatus
Emissivity Measurement ApparatusEmissivity Measurement Apparatus
Emissivity Measurement ApparatusManjunathBL3
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesYuri Melliza
 
Thick and thin cylinders
Thick and thin cylindersThick and thin cylinders
Thick and thin cylindersshashank sinnha
 
Fins equation & lumped heat capacity system
Fins equation & lumped heat capacity systemFins equation & lumped heat capacity system
Fins equation & lumped heat capacity systemN/A
 

Tendances (20)

Radiation heat transfer
Radiation heat transferRadiation heat transfer
Radiation heat transfer
 
1. signal and systems basics
1. signal and systems basics1. signal and systems basics
1. signal and systems basics
 
A Study Of BVP4C Method For Solving Boundary.pptx
A Study Of BVP4C Method For Solving Boundary.pptxA Study Of BVP4C Method For Solving Boundary.pptx
A Study Of BVP4C Method For Solving Boundary.pptx
 
Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1
 
The wave equation
The wave equationThe wave equation
The wave equation
 
013 fundamental of thermal radiation
013 fundamental of thermal radiation013 fundamental of thermal radiation
013 fundamental of thermal radiation
 
EES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transferEES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transfer
 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteria
 
Convolution
ConvolutionConvolution
Convolution
 
Derivation and solution of the heat equation in 1-D
Derivation and solution of the heat equation in 1-DDerivation and solution of the heat equation in 1-D
Derivation and solution of the heat equation in 1-D
 
NS Equation .pdf
NS Equation .pdfNS Equation .pdf
NS Equation .pdf
 
004 2 steady state heat conduction_thai
004 2 steady state heat conduction_thai004 2 steady state heat conduction_thai
004 2 steady state heat conduction_thai
 
Transient heat-conduction-Part-I
Transient heat-conduction-Part-ITransient heat-conduction-Part-I
Transient heat-conduction-Part-I
 
heat conduction equations
heat conduction equationsheat conduction equations
heat conduction equations
 
Emissivity Measurement Apparatus
Emissivity Measurement ApparatusEmissivity Measurement Apparatus
Emissivity Measurement Apparatus
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notes
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Thick and thin cylinders
Thick and thin cylindersThick and thin cylinders
Thick and thin cylinders
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Fins equation & lumped heat capacity system
Fins equation & lumped heat capacity systemFins equation & lumped heat capacity system
Fins equation & lumped heat capacity system
 

Similaire à Heat Diffusion Equation Explained

Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008Yash Dobariya
 
Conducción de calor en estado estacionario
Conducción de calor en estado estacionarioConducción de calor en estado estacionario
Conducción de calor en estado estacionarioNorman Rivera
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Heat conduction equation
Heat conduction equationHeat conduction equation
Heat conduction equationYashawantha K M
 
lecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdflecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdfAtmacaDevrim
 
Mit2 092 f09_lec20
Mit2 092 f09_lec20Mit2 092 f09_lec20
Mit2 092 f09_lec20Rahman Hakim
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in indiaEdhole.com
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptxYaredAssefa10
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsDr.Jagadish Tawade
 
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdfRaviShankar269655
 

Similaire à Heat Diffusion Equation Explained (20)

Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008
 
Lec11 lumped h capacity no mark.pdf
Lec11 lumped h capacity no mark.pdfLec11 lumped h capacity no mark.pdf
Lec11 lumped h capacity no mark.pdf
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Conducción de calor en estado estacionario
Conducción de calor en estado estacionarioConducción de calor en estado estacionario
Conducción de calor en estado estacionario
 
UNIT-1 CONDUCTION
UNIT-1 CONDUCTIONUNIT-1 CONDUCTION
UNIT-1 CONDUCTION
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Aaallleeetttaas
AaallleeetttaasAaallleeetttaas
Aaallleeetttaas
 
Heat conduction equation
Heat conduction equationHeat conduction equation
Heat conduction equation
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 
lecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdflecture pf control system_thermal system_206.pdf
lecture pf control system_thermal system_206.pdf
 
Heat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutionsHeat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutions
 
Mit2 092 f09_lec20
Mit2 092 f09_lec20Mit2 092 f09_lec20
Mit2 092 f09_lec20
 
UNIT I_4.pdf
UNIT I_4.pdfUNIT I_4.pdf
UNIT I_4.pdf
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
Lec7 fin1 types 1.pptx
Lec7 fin1 types 1.pptxLec7 fin1 types 1.pptx
Lec7 fin1 types 1.pptx
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptx
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 

Plus de 056JatinGavel

heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt056JatinGavel
 
Solid Solution -Alloy -Compund.pptx
Solid Solution -Alloy -Compund.pptxSolid Solution -Alloy -Compund.pptx
Solid Solution -Alloy -Compund.pptx056JatinGavel
 
Difussion -3rd Sem-Phy Met- Unit 1 -MKC-NITRR.ppt
Difussion -3rd Sem-Phy Met- Unit 1 -MKC-NITRR.pptDifussion -3rd Sem-Phy Met- Unit 1 -MKC-NITRR.ppt
Difussion -3rd Sem-Phy Met- Unit 1 -MKC-NITRR.ppt056JatinGavel
 
GP_Training_Plastic-molding_RevAF.pptx
GP_Training_Plastic-molding_RevAF.pptxGP_Training_Plastic-molding_RevAF.pptx
GP_Training_Plastic-molding_RevAF.pptx056JatinGavel
 
GP_Training_Plastic-molding_RevAF.pptx
GP_Training_Plastic-molding_RevAF.pptxGP_Training_Plastic-molding_RevAF.pptx
GP_Training_Plastic-molding_RevAF.pptx056JatinGavel
 
Metal alloys-WPS Office.pdf
Metal alloys-WPS Office.pdfMetal alloys-WPS Office.pdf
Metal alloys-WPS Office.pdf056JatinGavel
 

Plus de 056JatinGavel (8)

VT_-Safety.ppt
VT_-Safety.pptVT_-Safety.ppt
VT_-Safety.ppt
 
ISM.pptx
ISM.pptxISM.pptx
ISM.pptx
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
 
Solid Solution -Alloy -Compund.pptx
Solid Solution -Alloy -Compund.pptxSolid Solution -Alloy -Compund.pptx
Solid Solution -Alloy -Compund.pptx
 
Difussion -3rd Sem-Phy Met- Unit 1 -MKC-NITRR.ppt
Difussion -3rd Sem-Phy Met- Unit 1 -MKC-NITRR.pptDifussion -3rd Sem-Phy Met- Unit 1 -MKC-NITRR.ppt
Difussion -3rd Sem-Phy Met- Unit 1 -MKC-NITRR.ppt
 
GP_Training_Plastic-molding_RevAF.pptx
GP_Training_Plastic-molding_RevAF.pptxGP_Training_Plastic-molding_RevAF.pptx
GP_Training_Plastic-molding_RevAF.pptx
 
GP_Training_Plastic-molding_RevAF.pptx
GP_Training_Plastic-molding_RevAF.pptxGP_Training_Plastic-molding_RevAF.pptx
GP_Training_Plastic-molding_RevAF.pptx
 
Metal alloys-WPS Office.pdf
Metal alloys-WPS Office.pdfMetal alloys-WPS Office.pdf
Metal alloys-WPS Office.pdf
 

Dernier

Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 

Dernier (20)

Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 

Heat Diffusion Equation Explained

  • 1. Heat Diffusion Equation Apply this equation to a solid undergoing conduction heat transfer as shown where: E = mcpT= (rV)cpT = r(dxdydz)cpT Energy balance equation: dE dt dE dt g       q q E E dW dt in out   1 2 x qx qx+dx q KA T x K dydz T x q q dq q q x dx x x x x dx x x x x                ( ) = 0 Heat diffusion equation – mod 11/27/01 dy dx y Steady State Conduction The above equation states: Rate of change of total energy (dE/dt) = Rate of energy generated (dEg/dt) + Rate of Heat Transfer in (qin) - Rate of Heat Transfer out (qout) qin = qout =
  • 2. Heat Diffusion Equation (cont’d, page 2) Generalized to three-dimensions Note: partial differential operator is used since T = T(x,y,z,t) Substituting in the Energy Balance equation, we obtain:   Energy Storage = Energy Generation + Net Heat Transfer t ( ) ( ) ( ) ( ) ( ) p x x dx x p x x p c T dxdydz qdxdydz q q q T c dxdydz qdxdydz q q dx t x T qdxdydz k dxdydz x x T T T T c q k k k t x x y y z z r r r                                        dE/dt dEg/dt qin -qout =>
  • 3. r r c T t q x k T x y k T y z k T z c T t k T x T y T z q k T q where x y z T T x T y T z p p                                                           ( ) ( ) ( )  ( )  ,  , Special case1: no generation q = 0 Special case 2: constant thermal conductivity k = constant is the Laplacian operator Special case 3: t and q = 0 The famous Laplace' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 s equation Heat Diffusion Equation (cont’d, page 3)
  • 4. 1-D, Steady State Conduction Assume steady and no generation, 1- D Laplace' s equation function of x coordinate alone Note: ordinary differential operator is used since T = T(x) only The general solution of this equation can be determined by integting twice: First integration leads to dT dx Integrate again T(x) = C Second order differential equation: need two boundary conditions to determine the two constants C and C 1 1 2 d T dx T x y x t T x cons t C x C 2 2 1 2 0      , ( , , , ) ( ), tan . . Example: T(x=0)=100°C=C2 T(x=1 m)=20°C=C1+C2, C1=-80°C T(x)=100-80x (°C) 100 20 T x Constant
  • 5. 1-D Heat, Steady State Heat Transfer Thermal Resistance (Electrical Circuit Analogy) Recall Fourier' s Law: q = -kA dT dx If the temperature gradient is a constant q = constent (heat transfer rate is a constant) dT dx where , , ( ) , ( )       T T L T x T T x L T 2 1 1 2 0 T1 T2 x L q kA dT dx kA T T L T T L kA q T T R where R L kA          1 2 1 2 1 2 ( / ) , :thermal resistance q (I) T1 (V1) T2 (V2) R (R) This is analogous to an electrical circuit I = (V1-V2)/R Constant
  • 6. Thermal Resistance - Composite Wall Heat Transfer T2 T1 R1=L1/(k1A) R2=L2/(k2A) T 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 T Also, q= , T T T T T T q R R R L L k A k A T L T T qR T q R k A                                T1 T2 L1 L2 k1 k2 T Use of the thermal resistance concept make the analysis of complex geometries relatively easy, as discussed in the example below. However, note that the thermal heat resistance concept can only be applied for steady state heat transfer with no heat generation. Example: Consider a composite wall made of two different materials
  • 7. Composite Wall Heat Transfer (cont’d) R1=L1/(k1A) R2=L2/(k2A) T2 T1 T T1 T2 L1 L2 k1 k2 T •Now consider the case where we have 2 different fluids on either sides of the wall at temperatures, T,1 and T,2 , respectively. • There is heat transfer by convection from the first fluid (on left) to material 1 and from material 2 to the second fluid (on right). • Similar to conduction resistance, we can determine the convection resistance, where Rconv = 1/hA T,1 T,2 T,1 T,2 Rconv,1= 1/(h1A) Rconv,2= 1/(h2A) 1 1 1 , 1 2 , 2 , 2 , R T T R T T R T T Q conv tot           where 2 , 2 , 2 2 2 conv R T T R T T      This approach can be extended to much more complex geometries (see YAC, 8-4 and 8-5)
  • 8. “R” value of insulations Q: Why is the Rvalue given by L/k ? A: From previous slide, we know that the thermal resistance to conduction is defined as the temperature difference across the insulation by the heat flux going through it, hence: R T q T k T x x k         " Example: The typical space inside the residential frame wall is 3.5 in. Find the R-value if the wall cavity is filled with fiberglass batt. (k=0.046 W/m.K=0.027 Btu/h.ft.R) R x k ft Btu h ft R R ft h Btu R       0 292 0 027 10 8 11 2 . . / . . . ( . . / ) In the US, insulation materials are often specified in terms of their thermal resistance, denoted as R values, where Rvalue = L/k (thickness/thermal conductivity) In the US, it has units of (hr ft2 °F)/Btu (Note: 1 Btu=1055 J) R-11 for wall, R-19 to R-31 for ceiling.