SlideShare une entreprise Scribd logo
1  sur  17
Télécharger pour lire hors ligne
TCA 785




Phase Control IC                                                                        TCA 785
                                                                                        Bipolar IC
Features
q   Reliable recognition of zero passage
q   Large application scope
q   May be used as zero point switch
q   LSL compatible
q   Three-phase operation possible (3 ICs)
q   Output current 250 mA
q   Large ramp current range
q   Wide temperature range                                        P-DIP-16-1



Type              Ordering Code             Package
TCA 785           Q67000-A2321              P-DIP-16-1


This phase control IC is intended to control thyristors, triacs, and transistors. The trigger pulses
can be shifted within a phase angle between 0 ˚ and 180 ˚. Typical applications include
converter circuits, AC controllers and three-phase current controllers.
This IC replaces the previous types TCA 780 and TCA 780 D.


                                                 Pin Definitions and Functions
                                                 Pin          Symbol       Function
                                                 1            GND          Ground
                                                 2            Q2           Output 2 inverted
                                                 3            QU           Output U
                                                 4            Q2           Output 1 inverted
                                                 5            VSYNC        Synchronous voltage
                                                 6            I            Inhibit
                                                 7            QZ           Output Z
                                                 8            V REF        Stabilized voltage
                                                 9            R9           Ramp resistance
                                                 10           C10          Ramp capacitance
                                                 11           V11          Control voltage
                                                 12           C12          Pulse extension
                                                 13           L            Long pulse
                                                 14           Q1           Output 1
Pin Configuration                                15           Q2           Output 2
(top view)                                       16           VS           Supply voltage

Semiconductor Group                              1                                           09.94
TCA 785




Functional Description
The synchronization signal is obtained via a high-ohmic resistance from the line voltage
(voltage V5). A zero voltage detector evaluates the zero passages and transfers them to the
synchronization register.
This synchronization register controls a ramp generator, the capacitor C10 of which is charged
by a constant current (determined by R9). If the ramp voltage V10 exceeds the control voltage
V11 (triggering angle ϕ), a signal is processed to the logic. Dependent on the magnitude of the
control voltage V11, the triggering angle ϕ can be shifted within a phase angle of 0˚ to 180˚.
For every half wave, a positive pulse of approx. 30 µs duration appears at the outputs Q 1 and
Q 2. The pulse duration can be prolonged up to 180˚ via a capacitor C12. If pin 12 is connected
to ground, pulses with a duration between ϕ and 180˚ will result.
Outputs Q 1 and Q 2 supply the inverse signals of Q 1 and Q 2.
A signal of ϕ +180˚ which can be used for controlling an external logic,is available at pin 3.
A signal which corresponds to the NOR link of Q 1 and Q 2 is available at output Q Z (pin 7).
The inhibit input can be used to disable outputs Q1, Q2 and Q 1 , Q 2 .
Pin 13 can be used to extend the outputs Q 1 and Q 2 to full pulse length (180˚ – ϕ).




Block Diagram

Semiconductor Group                           2
TCA 785




Pulse Diagram




Semiconductor Group   3
TCA 785




Absolute Maximum Ratings

Parameter                                             Symbol             Limit Values          Unit
                                                                 min.            max.
Supply voltage                                        VS         – 0.5           18            V
Output current at pin 14, 15                          IQ         – 10            400           mA
Inhibit voltage                                       V6         – 0.5           VS            V
Control voltage                                       V11        – 0.5           VS            V
Voltage short-pulse circuit                           V13        – 0.5           VS            V
Synchronization input current                         V5         – 200           ± 200         µA

Output voltage at pin 14, 15                          VQ                         VS            V
Output current at pin 2, 3, 4, 7                      IQ                         10            mA
Output voltage at pin 2, 3, 4, 7                      VQ                         VS            V
Junction temperature                                  Tj                         150           ˚C
Storage temperature                                   Tstg       – 55            125           ˚C
Thermal resistance
system - air                                          Rth SA                     80            K/W

Operating Range

Supply voltage                                        VS         8               18            V
Operating frequency                                   f          10              500           Hz
Ambient temperature                                   TA         – 25            85            ˚C



Characteristics
8 ≤ VS ≤ 18 V; – 25 ˚C ≤ TA ≤ 85 ˚C; f = 50 Hz

Parameter                          Symbol             Limit Values                    Unit Test
                                                                                           Circuit
                                             min.         typ.        max.
Supply current consumption         IS        4.5          6.5         10              mA 1
S1 … S6 open
V11 = 0 V
C 10 = 47 nF; R 9 = 100 kΩ
Synchronization pin 5
Input current                      I5 rms    30                       200             µA   1
R 2 varied
Offset voltage                     ∆V5                    30          75              mV 4
Control input pin 11
Control voltage range              V11       0.2                      V10 peak        V    1
Input resistance                   R11                    15                          kΩ   5

Semiconductor Group                               4
TCA 785




Characteristics (cont’d)
8 ≤ VS ≤ 18 V; – 25 ˚C ≤ TA ≤ 85 ˚C; f = 50 Hz

Parameter                          Symbol              Limit Values        Unit Test
                                                                                Circuit
                                              min.     typ.       max.
Ramp generator
Charge current                     I10        10                  1000     µA
Max. ramp voltage                  V10                            V2 – 2   V     1
Saturation voltage at capacitor    V10        100      225        350      mV    1.6
Ramp resistance                    R9         3                   300      kΩ    1
Sawtooth return time               tf                  80                  µs    1
Inhibit pin 6
switch-over of pin 7
Outputs disabled                   V6 L                3.3        2.5      V     1
Outputs enabled                    V6 H       4        3.3                 V     1
Signal transition time             tr         1                   5        µs    1
Input current                      I6 H                500        800      µA    1
V6 = 8 V
Input current                      – I6 L     80       150        200      µA    1
V6 = 1.7 V
Deviation of I10                   I10        –5                  5        %     1
R 9 = const.
VS = 12 V; C10 = 47 nF
Deviation of I10                   I10        – 20                20       %     1
R 9 = const.
VS = 8 V to 18 V
Deviation of the ramp voltage
between 2 following
half-waves, VS = const.            ∆V10 max            ±1                  %
Long pulse switch-over
pin 13
switch-over of S8
Short pulse at output              V13 H      3.5      2.5                 V     1
Long pulse at output               V13 L               2.5        2        V     1
Input current                      I13 H                          10       µA    1
V13 = 8 V
Input current                      – I13 L    45       65         100      µA    1
V13 = 1.7 V
Outputs pin 2, 3, 4, 7
Reverse current                    ICEO                           10       µA    2.6
VQ = VS
Saturation voltage                 Vsat       0.1      0.4        2        V     2.6
IQ = 2 mA




Semiconductor Group                                5
TCA 785




Characteristics (cont’d)
8 ≤ VS ≤ 18 V; – 25 ˚C ≤ TA ≤ 85 ˚C; f = 50 Hz

Parameter                          Symbol              Limit Values              Unit Test
                                                                                      Circuit
                                              min.     typ.         max.
Outputs pin 14, 15
H-output voltage                   V14/15 H   VS – 3   VS – 2.5     VS – 1.0     V      3.6
– I Q = 250 mA
L-output voltage                   V14/15 L   0.3      0.8          2            V      2.6
IQ = 2 mA
Pulse width (short pulse)          tp         20       30           40           µs     1
S9 open
Pulse width (short pulse)          tp         530      620          760          µs/    1
with C12                                                                         nF
Internal voltage control
Reference voltage                  VREF       2.8      3.1          3.4          V      1
Parallel connection of
10 ICs possible
TC of reference voltage            αREF                2 × 10 – 4   5 × 10 – 4   1/K 1




Semiconductor Group                                6
TCA 785




Application Hints for External Components

                                    min              max
Ramp capacitance C10                500 pF           1 µF1)   The minimum and maximum values of I10
                                                              are to be observed
                                    V11 × R9 × C10   2)
Triggering point            tTr =
                                      VREF × K
                                                              Ramp voltage
                                      VREF × K       2)                                  VREF × K × t   2)
Charge current              I10 =                             V10 max = VS – 2 V V10 =
                                          R9                                              R9 × C10


 Pulse Extension versus Temperature




1)   Attention to flyback times
2)   K = 1.10 ± 20 %




Semiconductor Group                                       7
TCA 785




Output Voltage measured to + VS




Supply Current versus Supply Voltage




Semiconductor Group                    8
TCA 785




                 It is necessary for all measurements to adjust the ramp with
                 the aid of C10 and R 9 in the way that 3 V ≤ Vramp max ≤ V S – 2 V
                 e.g. C10 = 47 nF; 18 V: R 9 = 47 kΩ; 8 V: R 9 = 120 kΩ




Test Circuit 1

Semiconductor Group                               9
TCA 785




                 The remaining pins are connected as in test circuit 1


Test Circuit 2




                 The remaining pins are connected as in test circuit 1

Test Circuit 3




Semiconductor Group                       10
TCA 785




                 Remaining pins are connected as in test circuit 1
                 The 10 µF capacitor at pin 5 serves only for test purposes

Test Circuit 4




Test Circuit 5                                   Test Circuit 6

Semiconductor Group                         11
TCA 785




Inhibit 6                  Long Pulse 13




Pulse Extension 12         Reference Voltage 8




Semiconductor Group   12
TCA 785




Application Examples
Triac Control for up to 50 mA Gate Trigger Current




A phase control with a directly controlled triac is shown in the figure. The triggering angle of
the triac can be adjusted continuously between 0˚ and 180˚ with the aid of an external
potentiometer. During the positive half-wave of the line voltage, the triac receives a positive
gate pulse from the IC output pin 15. During the negative half-wave, it also receives a positive
trigger pulse from pin 14. The trigger pulse width is approx. 100 µs.


Semiconductor Group                           13
TCA 785




Fully Controlled AC Power Controller
Circuit for Two High-Power Thyristors

Shown is the possibility to trigger two antiparalleled thyristors with one IC TCA 785. The trigger
pulse can be shifted continuously within a phase angle between 0˚ and 180˚ by means of a
potentiometer. During the negative line half-wave the trigger pulse of pin 14 is fed to the
relevant thyristor via a trigger pulse transformer. During the positive line half-wave, the gate of
the second thyristor is triggered by a trigger pulse transformer at pin 15.

Semiconductor Group                             14
TCA 785




Half-Controlled Single-Phase Bridge Circuit with Trigger Pulse Transformer and Direct
Control for Low-Power Thyristors

Semiconductor Group                      15
TCA 785




Half-Controlled Single-Phase Bridge Circuit with Two Trigger Pulse Transformers for
Low-Power Thyristors

Semiconductor Group                     16
This datasheet has been download from:

      www.datasheetcatalog.com

Datasheets for electronics components.

Contenu connexe

Tendances

DISEÑO ANALOGICO - AMPLIFICADOR DE INSTRUMENTACION INA114 Y LM741
DISEÑO ANALOGICO - AMPLIFICADOR DE INSTRUMENTACION INA114 Y LM741DISEÑO ANALOGICO - AMPLIFICADOR DE INSTRUMENTACION INA114 Y LM741
DISEÑO ANALOGICO - AMPLIFICADOR DE INSTRUMENTACION INA114 Y LM741Fernando Marcos Marcos
 
Parallel Inverter
Parallel InverterParallel Inverter
Parallel InverterSmit Shah
 
Difference of CT & PT
Difference of CT & PT Difference of CT & PT
Difference of CT & PT Jay Ranvir
 
Unit 4 ac voltage controller
Unit 4 ac voltage controllerUnit 4 ac voltage controller
Unit 4 ac voltage controllerEr.Meraj Akhtar
 
ANÁLISIS DE TRANSISTORES BJT EN PEQUEÑA SEÑAL
ANÁLISIS DE TRANSISTORES BJT EN PEQUEÑA SEÑAL ANÁLISIS DE TRANSISTORES BJT EN PEQUEÑA SEÑAL
ANÁLISIS DE TRANSISTORES BJT EN PEQUEÑA SEÑAL Ing. Jesus A. López K.
 
Principio de funcionamiento driver de disparo tca785
Principio de funcionamiento driver de disparo tca785Principio de funcionamiento driver de disparo tca785
Principio de funcionamiento driver de disparo tca785mario gonzalez
 
Three phase-controlled-rectifiers
Three phase-controlled-rectifiersThree phase-controlled-rectifiers
Three phase-controlled-rectifiersTejas Deshpande
 
voltage regulators
voltage regulatorsvoltage regulators
voltage regulatorsRahul Jadhav
 
Speed control in 3 phase induction motor
Speed control in 3 phase induction motorSpeed control in 3 phase induction motor
Speed control in 3 phase induction motorKakul Gupta
 
Synchronous Generator Loading Characteristics
Synchronous Generator Loading CharacteristicsSynchronous Generator Loading Characteristics
Synchronous Generator Loading CharacteristicsAhmed A. Arefin
 
Principio de funcionamiento de las Ups
Principio de funcionamiento de las UpsPrincipio de funcionamiento de las Ups
Principio de funcionamiento de las Upsjyanis
 
Amplificador de instrumentación
Amplificador de instrumentaciónAmplificador de instrumentación
Amplificador de instrumentaciónSaul Perez
 
Curso De Electronica Practica
Curso De Electronica PracticaCurso De Electronica Practica
Curso De Electronica PracticaHéctor
 
Aplicaciones transistor
Aplicaciones transistorAplicaciones transistor
Aplicaciones transistorkalel32291
 
Comparator, Zero Crossing Detector and schmitt trigger using opamp
Comparator, Zero Crossing Detector and schmitt trigger using opampComparator, Zero Crossing Detector and schmitt trigger using opamp
Comparator, Zero Crossing Detector and schmitt trigger using opampDivyanshu Rai
 
Unit-1 Power Semiconductor devices
Unit-1 Power Semiconductor devicesUnit-1 Power Semiconductor devices
Unit-1 Power Semiconductor devicesjohny renoald
 
Medidas con el osciloscopio
Medidas con el osciloscopioMedidas con el osciloscopio
Medidas con el osciloscopioYohany Acosta
 

Tendances (20)

DISEÑO ANALOGICO - AMPLIFICADOR DE INSTRUMENTACION INA114 Y LM741
DISEÑO ANALOGICO - AMPLIFICADOR DE INSTRUMENTACION INA114 Y LM741DISEÑO ANALOGICO - AMPLIFICADOR DE INSTRUMENTACION INA114 Y LM741
DISEÑO ANALOGICO - AMPLIFICADOR DE INSTRUMENTACION INA114 Y LM741
 
Parallel Inverter
Parallel InverterParallel Inverter
Parallel Inverter
 
Difference of CT & PT
Difference of CT & PT Difference of CT & PT
Difference of CT & PT
 
Sample and hold circuit
Sample and hold circuitSample and hold circuit
Sample and hold circuit
 
Unit 4 ac voltage controller
Unit 4 ac voltage controllerUnit 4 ac voltage controller
Unit 4 ac voltage controller
 
ANÁLISIS DE TRANSISTORES BJT EN PEQUEÑA SEÑAL
ANÁLISIS DE TRANSISTORES BJT EN PEQUEÑA SEÑAL ANÁLISIS DE TRANSISTORES BJT EN PEQUEÑA SEÑAL
ANÁLISIS DE TRANSISTORES BJT EN PEQUEÑA SEÑAL
 
Principio de funcionamiento driver de disparo tca785
Principio de funcionamiento driver de disparo tca785Principio de funcionamiento driver de disparo tca785
Principio de funcionamiento driver de disparo tca785
 
Three phase-controlled-rectifiers
Three phase-controlled-rectifiersThree phase-controlled-rectifiers
Three phase-controlled-rectifiers
 
voltage regulators
voltage regulatorsvoltage regulators
voltage regulators
 
Speed control in 3 phase induction motor
Speed control in 3 phase induction motorSpeed control in 3 phase induction motor
Speed control in 3 phase induction motor
 
Single Phase Converter
Single Phase ConverterSingle Phase Converter
Single Phase Converter
 
Synchronous Generator Loading Characteristics
Synchronous Generator Loading CharacteristicsSynchronous Generator Loading Characteristics
Synchronous Generator Loading Characteristics
 
Principio de funcionamiento de las Ups
Principio de funcionamiento de las UpsPrincipio de funcionamiento de las Ups
Principio de funcionamiento de las Ups
 
Amplificador de instrumentación
Amplificador de instrumentaciónAmplificador de instrumentación
Amplificador de instrumentación
 
Curso De Electronica Practica
Curso De Electronica PracticaCurso De Electronica Practica
Curso De Electronica Practica
 
Aplicaciones transistor
Aplicaciones transistorAplicaciones transistor
Aplicaciones transistor
 
Comparator, Zero Crossing Detector and schmitt trigger using opamp
Comparator, Zero Crossing Detector and schmitt trigger using opampComparator, Zero Crossing Detector and schmitt trigger using opamp
Comparator, Zero Crossing Detector and schmitt trigger using opamp
 
Thyristor family
Thyristor familyThyristor family
Thyristor family
 
Unit-1 Power Semiconductor devices
Unit-1 Power Semiconductor devicesUnit-1 Power Semiconductor devices
Unit-1 Power Semiconductor devices
 
Medidas con el osciloscopio
Medidas con el osciloscopioMedidas con el osciloscopio
Medidas con el osciloscopio
 

En vedette

Los tiristores y sus métodos de disparo para el blog
Los tiristores y sus métodos de disparo para el blogLos tiristores y sus métodos de disparo para el blog
Los tiristores y sus métodos de disparo para el blogvillalbastalin
 
l control single phase rectifier
l control single phase rectifierl control single phase rectifier
l control single phase rectifierZahid Nawaz
 
PowerXR Programmable Power Technology
PowerXR  Programmable Power TechnologyPowerXR  Programmable Power Technology
PowerXR Programmable Power TechnologyPremier Farnell
 
Free Ebooks Download
Free Ebooks DownloadFree Ebooks Download
Free Ebooks DownloadEdhole.com
 
Eltherm ELSR-Ramp Heat Trace Cable - Spec Sheet
Eltherm ELSR-Ramp Heat Trace Cable - Spec SheetEltherm ELSR-Ramp Heat Trace Cable - Spec Sheet
Eltherm ELSR-Ramp Heat Trace Cable - Spec SheetThorne & Derrick UK
 
Hv instructions
Hv instructionsHv instructions
Hv instructionsfriends
 
DC Power Analyzer, Modular, 600W and Four Slots: N6705A
DC Power Analyzer, Modular, 600W and   Four Slots: N6705ADC Power Analyzer, Modular, 600W and   Four Slots: N6705A
DC Power Analyzer, Modular, 600W and Four Slots: N6705APremier Farnell
 
ADC - Dual Slope Integrator
ADC - Dual Slope IntegratorADC - Dual Slope Integrator
ADC - Dual Slope IntegratorManjunath Meti
 
Function Generator
Function GeneratorFunction Generator
Function Generatorraj singh
 
Back corona model
Back corona model Back corona model
Back corona model IRS srl
 
Cro (emmi) (1)
Cro (emmi) (1)Cro (emmi) (1)
Cro (emmi) (1)Ravi Anand
 
Embarquer Linux et des systèmes libres, méthodes et apports
Embarquer Linux et des systèmes libres, méthodes et apportsEmbarquer Linux et des systèmes libres, méthodes et apports
Embarquer Linux et des systèmes libres, méthodes et apportsguest3be047
 
Tracabilite & Identification Automatique par Bernard JEANNE-BEYLOT @JB Thèque
Tracabilite & Identification Automatique par Bernard JEANNE-BEYLOT @JB ThèqueTracabilite & Identification Automatique par Bernard JEANNE-BEYLOT @JB Thèque
Tracabilite & Identification Automatique par Bernard JEANNE-BEYLOT @JB ThèqueBernard Jeanne-Beylot
 
Séminaire Captronic Yocto 24 février 2015
Séminaire Captronic Yocto 24 février 2015Séminaire Captronic Yocto 24 février 2015
Séminaire Captronic Yocto 24 février 2015Christian Charreyre
 
Concevoir un système Linux embarqué avec Yocto Project
Concevoir un système Linux embarqué avec Yocto ProjectConcevoir un système Linux embarqué avec Yocto Project
Concevoir un système Linux embarqué avec Yocto ProjectChristian Charreyre
 
Tasich-Koyani, Mindy, Conestoga-Rovers Associates, Waste Reduction Strategies...
Tasich-Koyani, Mindy, Conestoga-Rovers Associates, Waste Reduction Strategies...Tasich-Koyani, Mindy, Conestoga-Rovers Associates, Waste Reduction Strategies...
Tasich-Koyani, Mindy, Conestoga-Rovers Associates, Waste Reduction Strategies...Kevin Perry
 

En vedette (20)

Fundamentos de la TCA
Fundamentos de la TCAFundamentos de la TCA
Fundamentos de la TCA
 
Los tiristores y sus métodos de disparo para el blog
Los tiristores y sus métodos de disparo para el blogLos tiristores y sus métodos de disparo para el blog
Los tiristores y sus métodos de disparo para el blog
 
l control single phase rectifier
l control single phase rectifierl control single phase rectifier
l control single phase rectifier
 
PowerXR Programmable Power Technology
PowerXR  Programmable Power TechnologyPowerXR  Programmable Power Technology
PowerXR Programmable Power Technology
 
Free Ebooks Download
Free Ebooks DownloadFree Ebooks Download
Free Ebooks Download
 
Eltherm ELSR-Ramp Heat Trace Cable - Spec Sheet
Eltherm ELSR-Ramp Heat Trace Cable - Spec SheetEltherm ELSR-Ramp Heat Trace Cable - Spec Sheet
Eltherm ELSR-Ramp Heat Trace Cable - Spec Sheet
 
Hv instructions
Hv instructionsHv instructions
Hv instructions
 
DC Power Analyzer, Modular, 600W and Four Slots: N6705A
DC Power Analyzer, Modular, 600W and   Four Slots: N6705ADC Power Analyzer, Modular, 600W and   Four Slots: N6705A
DC Power Analyzer, Modular, 600W and Four Slots: N6705A
 
ADC - Dual Slope Integrator
ADC - Dual Slope IntegratorADC - Dual Slope Integrator
ADC - Dual Slope Integrator
 
Unit 4 ei
Unit 4 eiUnit 4 ei
Unit 4 ei
 
ABB Instrumentation Overview
ABB Instrumentation OverviewABB Instrumentation Overview
ABB Instrumentation Overview
 
Function Generator
Function GeneratorFunction Generator
Function Generator
 
Back corona model
Back corona model Back corona model
Back corona model
 
Cro (emmi) (1)
Cro (emmi) (1)Cro (emmi) (1)
Cro (emmi) (1)
 
Energie maison
Energie maisonEnergie maison
Energie maison
 
Embarquer Linux et des systèmes libres, méthodes et apports
Embarquer Linux et des systèmes libres, méthodes et apportsEmbarquer Linux et des systèmes libres, méthodes et apports
Embarquer Linux et des systèmes libres, méthodes et apports
 
Tracabilite & Identification Automatique par Bernard JEANNE-BEYLOT @JB Thèque
Tracabilite & Identification Automatique par Bernard JEANNE-BEYLOT @JB ThèqueTracabilite & Identification Automatique par Bernard JEANNE-BEYLOT @JB Thèque
Tracabilite & Identification Automatique par Bernard JEANNE-BEYLOT @JB Thèque
 
Séminaire Captronic Yocto 24 février 2015
Séminaire Captronic Yocto 24 février 2015Séminaire Captronic Yocto 24 février 2015
Séminaire Captronic Yocto 24 février 2015
 
Concevoir un système Linux embarqué avec Yocto Project
Concevoir un système Linux embarqué avec Yocto ProjectConcevoir un système Linux embarqué avec Yocto Project
Concevoir un système Linux embarqué avec Yocto Project
 
Tasich-Koyani, Mindy, Conestoga-Rovers Associates, Waste Reduction Strategies...
Tasich-Koyani, Mindy, Conestoga-Rovers Associates, Waste Reduction Strategies...Tasich-Koyani, Mindy, Conestoga-Rovers Associates, Waste Reduction Strategies...
Tasich-Koyani, Mindy, Conestoga-Rovers Associates, Waste Reduction Strategies...
 

Similaire à tca785 (20)

Lpc662
Lpc662Lpc662
Lpc662
 
Ne555
Ne555Ne555
Ne555
 
Lm741
Lm741Lm741
Lm741
 
M62502FPのデータシート
M62502FPのデータシートM62502FPのデータシート
M62502FPのデータシート
 
Tda8511 j
Tda8511 jTda8511 j
Tda8511 j
 
Datasheet 555
Datasheet 555Datasheet 555
Datasheet 555
 
L298n dATA sHEET
L298n dATA sHEETL298n dATA sHEET
L298n dATA sHEET
 
4057
40574057
4057
 
Datasheet of 2SK2287
Datasheet of 2SK2287Datasheet of 2SK2287
Datasheet of 2SK2287
 
St Lm358 N
St Lm358 NSt Lm358 N
St Lm358 N
 
Amplificador tda7057 aq
Amplificador tda7057 aqAmplificador tda7057 aq
Amplificador tda7057 aq
 
Datasheet of 2SJ374
Datasheet of 2SJ374Datasheet of 2SJ374
Datasheet of 2SJ374
 
2SK2886のデータシート
2SK2886のデータシート2SK2886のデータシート
2SK2886のデータシート
 
Datasheet 3
Datasheet 3Datasheet 3
Datasheet 3
 
Uc3845
Uc3845Uc3845
Uc3845
 
MUSES8920の英語のデータシート
MUSES8920の英語のデータシートMUSES8920の英語のデータシート
MUSES8920の英語のデータシート
 
P700; 75-150A Programmable Power Controller
P700; 75-150A Programmable Power ControllerP700; 75-150A Programmable Power Controller
P700; 75-150A Programmable Power Controller
 
Si1029X
Si1029XSi1029X
Si1029X
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
 
Datasheet of 2SK2233
Datasheet of 2SK2233Datasheet of 2SK2233
Datasheet of 2SK2233
 

Dernier

Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 

Dernier (20)

Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 

tca785

  • 1. TCA 785 Phase Control IC TCA 785 Bipolar IC Features q Reliable recognition of zero passage q Large application scope q May be used as zero point switch q LSL compatible q Three-phase operation possible (3 ICs) q Output current 250 mA q Large ramp current range q Wide temperature range P-DIP-16-1 Type Ordering Code Package TCA 785 Q67000-A2321 P-DIP-16-1 This phase control IC is intended to control thyristors, triacs, and transistors. The trigger pulses can be shifted within a phase angle between 0 ˚ and 180 ˚. Typical applications include converter circuits, AC controllers and three-phase current controllers. This IC replaces the previous types TCA 780 and TCA 780 D. Pin Definitions and Functions Pin Symbol Function 1 GND Ground 2 Q2 Output 2 inverted 3 QU Output U 4 Q2 Output 1 inverted 5 VSYNC Synchronous voltage 6 I Inhibit 7 QZ Output Z 8 V REF Stabilized voltage 9 R9 Ramp resistance 10 C10 Ramp capacitance 11 V11 Control voltage 12 C12 Pulse extension 13 L Long pulse 14 Q1 Output 1 Pin Configuration 15 Q2 Output 2 (top view) 16 VS Supply voltage Semiconductor Group 1 09.94
  • 2. TCA 785 Functional Description The synchronization signal is obtained via a high-ohmic resistance from the line voltage (voltage V5). A zero voltage detector evaluates the zero passages and transfers them to the synchronization register. This synchronization register controls a ramp generator, the capacitor C10 of which is charged by a constant current (determined by R9). If the ramp voltage V10 exceeds the control voltage V11 (triggering angle ϕ), a signal is processed to the logic. Dependent on the magnitude of the control voltage V11, the triggering angle ϕ can be shifted within a phase angle of 0˚ to 180˚. For every half wave, a positive pulse of approx. 30 µs duration appears at the outputs Q 1 and Q 2. The pulse duration can be prolonged up to 180˚ via a capacitor C12. If pin 12 is connected to ground, pulses with a duration between ϕ and 180˚ will result. Outputs Q 1 and Q 2 supply the inverse signals of Q 1 and Q 2. A signal of ϕ +180˚ which can be used for controlling an external logic,is available at pin 3. A signal which corresponds to the NOR link of Q 1 and Q 2 is available at output Q Z (pin 7). The inhibit input can be used to disable outputs Q1, Q2 and Q 1 , Q 2 . Pin 13 can be used to extend the outputs Q 1 and Q 2 to full pulse length (180˚ – ϕ). Block Diagram Semiconductor Group 2
  • 4. TCA 785 Absolute Maximum Ratings Parameter Symbol Limit Values Unit min. max. Supply voltage VS – 0.5 18 V Output current at pin 14, 15 IQ – 10 400 mA Inhibit voltage V6 – 0.5 VS V Control voltage V11 – 0.5 VS V Voltage short-pulse circuit V13 – 0.5 VS V Synchronization input current V5 – 200 ± 200 µA Output voltage at pin 14, 15 VQ VS V Output current at pin 2, 3, 4, 7 IQ 10 mA Output voltage at pin 2, 3, 4, 7 VQ VS V Junction temperature Tj 150 ˚C Storage temperature Tstg – 55 125 ˚C Thermal resistance system - air Rth SA 80 K/W Operating Range Supply voltage VS 8 18 V Operating frequency f 10 500 Hz Ambient temperature TA – 25 85 ˚C Characteristics 8 ≤ VS ≤ 18 V; – 25 ˚C ≤ TA ≤ 85 ˚C; f = 50 Hz Parameter Symbol Limit Values Unit Test Circuit min. typ. max. Supply current consumption IS 4.5 6.5 10 mA 1 S1 … S6 open V11 = 0 V C 10 = 47 nF; R 9 = 100 kΩ Synchronization pin 5 Input current I5 rms 30 200 µA 1 R 2 varied Offset voltage ∆V5 30 75 mV 4 Control input pin 11 Control voltage range V11 0.2 V10 peak V 1 Input resistance R11 15 kΩ 5 Semiconductor Group 4
  • 5. TCA 785 Characteristics (cont’d) 8 ≤ VS ≤ 18 V; – 25 ˚C ≤ TA ≤ 85 ˚C; f = 50 Hz Parameter Symbol Limit Values Unit Test Circuit min. typ. max. Ramp generator Charge current I10 10 1000 µA Max. ramp voltage V10 V2 – 2 V 1 Saturation voltage at capacitor V10 100 225 350 mV 1.6 Ramp resistance R9 3 300 kΩ 1 Sawtooth return time tf 80 µs 1 Inhibit pin 6 switch-over of pin 7 Outputs disabled V6 L 3.3 2.5 V 1 Outputs enabled V6 H 4 3.3 V 1 Signal transition time tr 1 5 µs 1 Input current I6 H 500 800 µA 1 V6 = 8 V Input current – I6 L 80 150 200 µA 1 V6 = 1.7 V Deviation of I10 I10 –5 5 % 1 R 9 = const. VS = 12 V; C10 = 47 nF Deviation of I10 I10 – 20 20 % 1 R 9 = const. VS = 8 V to 18 V Deviation of the ramp voltage between 2 following half-waves, VS = const. ∆V10 max ±1 % Long pulse switch-over pin 13 switch-over of S8 Short pulse at output V13 H 3.5 2.5 V 1 Long pulse at output V13 L 2.5 2 V 1 Input current I13 H 10 µA 1 V13 = 8 V Input current – I13 L 45 65 100 µA 1 V13 = 1.7 V Outputs pin 2, 3, 4, 7 Reverse current ICEO 10 µA 2.6 VQ = VS Saturation voltage Vsat 0.1 0.4 2 V 2.6 IQ = 2 mA Semiconductor Group 5
  • 6. TCA 785 Characteristics (cont’d) 8 ≤ VS ≤ 18 V; – 25 ˚C ≤ TA ≤ 85 ˚C; f = 50 Hz Parameter Symbol Limit Values Unit Test Circuit min. typ. max. Outputs pin 14, 15 H-output voltage V14/15 H VS – 3 VS – 2.5 VS – 1.0 V 3.6 – I Q = 250 mA L-output voltage V14/15 L 0.3 0.8 2 V 2.6 IQ = 2 mA Pulse width (short pulse) tp 20 30 40 µs 1 S9 open Pulse width (short pulse) tp 530 620 760 µs/ 1 with C12 nF Internal voltage control Reference voltage VREF 2.8 3.1 3.4 V 1 Parallel connection of 10 ICs possible TC of reference voltage αREF 2 × 10 – 4 5 × 10 – 4 1/K 1 Semiconductor Group 6
  • 7. TCA 785 Application Hints for External Components min max Ramp capacitance C10 500 pF 1 µF1) The minimum and maximum values of I10 are to be observed V11 × R9 × C10 2) Triggering point tTr = VREF × K Ramp voltage VREF × K 2) VREF × K × t 2) Charge current I10 = V10 max = VS – 2 V V10 = R9 R9 × C10 Pulse Extension versus Temperature 1) Attention to flyback times 2) K = 1.10 ± 20 % Semiconductor Group 7
  • 8. TCA 785 Output Voltage measured to + VS Supply Current versus Supply Voltage Semiconductor Group 8
  • 9. TCA 785 It is necessary for all measurements to adjust the ramp with the aid of C10 and R 9 in the way that 3 V ≤ Vramp max ≤ V S – 2 V e.g. C10 = 47 nF; 18 V: R 9 = 47 kΩ; 8 V: R 9 = 120 kΩ Test Circuit 1 Semiconductor Group 9
  • 10. TCA 785 The remaining pins are connected as in test circuit 1 Test Circuit 2 The remaining pins are connected as in test circuit 1 Test Circuit 3 Semiconductor Group 10
  • 11. TCA 785 Remaining pins are connected as in test circuit 1 The 10 µF capacitor at pin 5 serves only for test purposes Test Circuit 4 Test Circuit 5 Test Circuit 6 Semiconductor Group 11
  • 12. TCA 785 Inhibit 6 Long Pulse 13 Pulse Extension 12 Reference Voltage 8 Semiconductor Group 12
  • 13. TCA 785 Application Examples Triac Control for up to 50 mA Gate Trigger Current A phase control with a directly controlled triac is shown in the figure. The triggering angle of the triac can be adjusted continuously between 0˚ and 180˚ with the aid of an external potentiometer. During the positive half-wave of the line voltage, the triac receives a positive gate pulse from the IC output pin 15. During the negative half-wave, it also receives a positive trigger pulse from pin 14. The trigger pulse width is approx. 100 µs. Semiconductor Group 13
  • 14. TCA 785 Fully Controlled AC Power Controller Circuit for Two High-Power Thyristors Shown is the possibility to trigger two antiparalleled thyristors with one IC TCA 785. The trigger pulse can be shifted continuously within a phase angle between 0˚ and 180˚ by means of a potentiometer. During the negative line half-wave the trigger pulse of pin 14 is fed to the relevant thyristor via a trigger pulse transformer. During the positive line half-wave, the gate of the second thyristor is triggered by a trigger pulse transformer at pin 15. Semiconductor Group 14
  • 15. TCA 785 Half-Controlled Single-Phase Bridge Circuit with Trigger Pulse Transformer and Direct Control for Low-Power Thyristors Semiconductor Group 15
  • 16. TCA 785 Half-Controlled Single-Phase Bridge Circuit with Two Trigger Pulse Transformers for Low-Power Thyristors Semiconductor Group 16
  • 17. This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.