SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
1
RF & Microwave Design and Measurement Laboratory
The University of Texas at Dallas
Ahnaf Hassan
Abstract: This lecture and lab course covered fundamentals of microwave design and measurements.
Various microwave components were designed and simulated with CAD tools (Microwave Office, AWR,
AXIEM) and then built and measured to compare performance with theory. The lab involved learning the
basics of accurate microwave measurements, including vector impedance (scattering parameters), scalar
measurements and spectrum analysis.
Keywords: Microwave Office, MWO, AWR, AXIEM, Vector Network Analyzer, VNA, S Parameters,
Resonators, Microstrip, EM Simulation, Power Divider, Coupler, Wilkinson, Filters, LNA, Amplifiers,
MMIC.
i. Introduction
RF components were designed according to given
goals, specified in terms of operating and cutoff
frequencies, gain, return and insertion losses etc.
Microwave Office was used to design and simulate
circuits and microwave implementations. The
components were then milled, and tested in the lab
using network analyzers, power meters etc.
Measured data was compared to simulated
(theoretical) data to test for accuracy and possible
design issues.
ii. Microstrip Resonator
Objective:
Design two quarter-wave resonators, single stub
and double stub, and connect them to a 50Ω
transmission line. In both designs the stub ends
with an open circuit.
Design Goal:
Parameter Design Goal
Resonant Frequency (GHz) 2.5
Input Return Loss (dB) <2
Output Return Loss (dB) <2
Insertion Loss at fo (dB) >20
Table 1: Single Stub Resonator
Parameter Design Goal
Resonant Frequency (GHz) 2.5
Input Return Loss (dB) >20
Output Return Loss (dB) >20
Insertion Loss at fo (dB) <1.0
Table 2: Double Stub Resonator
Design:
Single Stub
Figure 1: Circuit Schematic
Figure 2: Board Layout
MLEF
ID=TL4
W=2.96 mm
L=16.11 mm
MLIN
ID=TL1
W=2.96 mm
L=10 mm
MLIN
ID=TL3
W=2.96 mm
L=10 mm
MSUB
Er=4.45
H=1.57 mm
T=0.017 mm
Rho=0.705
Tand=0.02
ErNom=4.45
Name=SUB1
1 2
3
MTEE$
ID=TL2
MSUB=SUB1
STACKUP
Name=SUB2
EXTRACT
ID=EX1
EM_Doc="EM_Extract_Doc"
Name="EM_Extract"
Simulator=AXIEM
X_Cell_Size=1 mm
Y_Cell_Size=1 mm
STACKUP=""
Override_Options=Yes
Hierarchy=Off
SweepVar_Names=""
PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
2
Figure 3: Milled Design
Double Stub
Figure 4: Circuit Schematic
Figure 5: Board Layout
Figure 6: Milled Design
Performance:
Single Stub
Figure 7: Comparison of simulated and measured data
Double Stub
Figure 8: Comparison of insertion loss
1
2
3
4
MCROSS$
ID=TL2
MLEF
ID=TL4
W=2.96 mm
L=6.891 mm
MLEF
ID=TL5
W=2.96 mm
L=24.08 mm
MLIN
ID=TL1
W=2.96 mm
L=10 mm
MLIN
ID=TL3
W=2.96 mm
L=10 mm
MSUB
Er=4.45
H=1.57 mm
T=0.017 mm
Rho=0.705
Tand=0.02
ErNom=4.45
Name=SUB1
STACKUP
Name=SUB2
EXTRACT
ID=EX1
EM_Doc="EM_Extract_Doc"
Name="EM_Extract"
Simulator=AXIEM
X_Cell_Size=1 mm
Y_Cell_Size=1 mm
STACKUP=""
Override_Options=Yes
Hierarchy=Off
SweepVar_Names=""
PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
1 2 3 4 5
Frequency (GHz)
Comparison between Measured and Simulated Data
-40
-30
-20
-10
0
2.5 GHz
-30.39 dB
2.5 GHz
-30.9 dB
2.5 GHz
-0.3817 dB
2.5 GHz
-0.4127 dB
DB(|S(1,1)|)
Single Stub Resonator AXIEM
DB(|S(2,2)|)
Single Stub Resonator AXIEM
DB(|S(2,1)|)
Single Stub Resonator AXIEM
DB(|S(1,1)|)
SS BETTER
DB(|S(2,2)|)
SS BETTER
DB(|S(2,1)|)
SS BETTER
3
Figure 9: Comparison of return loss
iii. 3-dB Wilkinson Power Divider
Objective:
Design a microstrip 3-dB Wilkinson power
divider on 1.57mm thick FR-4 material and
compare and contrast simulated and
physical design.
Design Goal:
Parameter
Design
Goal
Center Frequency (GHz) 2.5
Power Split -3.0
Insertion Loss <1.0
Relative Phase 0
Input Return Loss >20
Output Return Loss >20
Isolation between Output Ports >20
Table 3: Design goals
Design:
Figure 10: Circuit design
Figure 11: Board layout
Figure 12: Milled design
Performance:
Figure 13: Comparison of input return loss
MCURVE$
ID=TL5
ANG=90 Deg
R=0.775 mm
MSUB=SUB1
MCURVE$
ID=TL7
ANG=90 Deg
R=0.775 mm
MSUB=SUB1
MCURVE$
ID=TL8
ANG=90 Deg
R=1.48 mm
MSUB=SUB1
MCURVE$
ID=TL9
ANG=90 Deg
R=0.775 mm
MSUB=SUB1
MCURVE$
ID=TL10
ANG=90 Deg
R=0.775 mm
MSUB=SUB1
MCURVE$
ID=TL19
ANG=90 Deg
R=1.48 mm
MSUB=SUB1
MLIN
ID=TL1
W=2.96 mm
L=10 mm
MLIN
ID=TL3
W=1.55 mm
L=L1 mm
MLIN
ID=TL6
W=1.55 mm
L=L2 mm
MLIN
ID=TL11
W=1.55 mm
L=L3 mm
MLIN
ID=TL13
W=1.55 mm
L=L1 mm
MLIN
ID=TL14
W=2.96 mm
L=0.762 mm
MLIN
ID=TL15
W=1.55 mm
L=L2 mm
MLIN
ID=TL16
W=2.96 mm
L=10 mm
MLIN
ID=TL17
W=1.55 mm
L=L3 mm
MLIN
ID=TL18
W=2.96 mm
L=0.762 mm
MLIN
ID=TL20
W=2.96 mm
L=10 mm
MSUB
Er=4.45
H=1.57 mm
T=0.017 mm
Rho=0.705
Tand=0.02
ErNom=4.45
Name=SUB1
1
2
3 MTEE$
ID=TL2
MSUB=SUB1
1
2
3
MTEE
ID=TL4
W1=1.55 mm
W2=1.55 mm
W3=2.96 mm
MSUB=SUB1
1
2
3
MTEE
ID=TL12
W1=1.55 mm
W2=1.55 mm
W3=2.96 mm
MSUB=SUB1
RES
ID=R1
R=100 Ohm
STACKUP
Name=SUB2
EXTRACT
ID=EX1
EM_Doc="EM_Extract_Doc"
Name="EM_Extract"
Simulator=AXIEM
X_Cell_Size=1 mm
Y_Cell_Size=1 mm
STACKUP=""
Override_Options=Yes
Hierarchy=Off
SweepVar_Names=""
PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
PORT
P=3
Z=50 Ohm
L3=4.93
L2=5.8
L1=6.9
1 2 3 4 5
Frequency (GHz)
Comparison of Input Retun Loss
-50
-40
-30
-20
-10
0
2.5 GHz
-29.59 dB
2.53 GHz
-29.9 dB
2.5 GHz
-21.73 dB
2.763 GHz
-41.19 dB
DB(|S(1,1)|)
S1TO2 UNTUNED
DB(|S(1,1)|)
Winkinson Milled AXIEM
4
Figure 14: Comparison of insertion loss
Figure 15: Comparison of phase difference
iv. Microwave Directional Coupler
Objective:
Design a 3-dB Quadrature Branch-Line Directional
Coupler (not milled) and a microstrip Edge-Coupled
Coupler (20-dB coupling).
Design Goal:
Branch-line Coupler:
Parameter Design Goal
Center Frequency (GHz) 2.5
Coupling (dB) 3.0
Relative Phase (deg) 90
Input Return Losses(dB) >20
Isolation @fo (dB) TBD
Table 4: Design objectives
Edge-Coupled Coupler:
Parameter Design Goal
Center Frequency (GHz) 2.5
Coupling (dB) 20.0
Relative Phase (deg) 90
Input Return Loss (dB) >20
Isolation @fo (dB) TBD
Table 5: Design objectives
Design:
Branch-line Coupler:
Figure 16: Circuit layout
Edge-Coupled Coupler:
Figure 17: Circuit layout
1 2 3 4 5
Frequency (GHz)
Comparison of Insertion Loss
-6
-5.5
-5
-4.5
-4
-3.5
-3
2.5 GHz
-3.25 dB
2.5 GHz
-3.196 dB 2.5 GHz
-3.273 dB
2.5 GHz
-3.269 dB
DB(|S(2,1)|)
Winkinson Milled AXIEM
DB(|S(3,1)|)
Winkinson Milled AXIEM
DB(|S(2,1)|)
S1TO2 UNTUNED
DB(|S(2,1)|)
S1TO3 UNTUNED
1 2 3 4 5
Frequency (GHz)
Comparion of Output Port Phase Difference
-1
0
1
2
3
2.5 GHz
-0.07258 Deg
2.5 GHz
0.8491 Deg
SDeltaP(Winkinson Milled AXIEM,2,1,3,1) (Deg)
Winkinson Milled AXIEM
SDeltaP(S1TO3 UNTUNED,2,1,2,1) (Deg)
S1TO2 UNTUNED
MLIN
ID=TL1
W=W_Zo mm
L=L_Zo mm
1 2
3
MTEE
ID=TL2
W1=W_Zo mm
W2=W_Zosrt2_trans mm
W3=W_Zo_trans mm
MLIN
ID=TL3
W=W_Zosrt2_trans mm
L=L_Zosrt2_trans mm
1 2
3
MTEE
ID=TL4
W1=W_Zosrt2_trans mm
W2=W_Zo mm
W3=W_Zo_trans mm
MLIN
ID=TL5
W=W_Zo mm
L=L_Zo mm
MLIN
ID=TL6
W=W_Zo mm
L=L_Zo mm
12
3
MTEE
ID=TL7
W1=W_Zosrt2_trans mm
W2=W_Zo mm
W3=W_Zo_trans mm
MLIN
ID=TL8
W=W_Zo_trans mm
L=L_Zo_trans mm
MLIN
ID=TL9
W=W_Zosrt2_trans mm
L=L_Zosrt2_trans mm
12
3
MTEE
ID=TL10
W1=W_Zo mm
W2=W_Zosrt2_trans mm
W3=W_Zo_trans mm
MLIN
ID=TL11
W=W_Zo_trans mm
L=L_Zo_trans mm
MLIN
ID=TL12
W=W_Zo mm
L=L_Zo mm
MSUB
Er=4.45
H=1.57 mm
T=0.017 mm
Rho=0.705
Tand=0.02
ErNom=4.45
Name=SUB1
STACKUP
Name=SUB2
EXTRACT
ID=EX1
EM_Doc="EM_Extract_Doc"
Name="EM_Extract"
Simulator=AXIEM
X_Cell_Size=1 mm
Y_Cell_Size=1 mm
STACKUP=""
Override_Options=Yes
Hierarchy=Off
SweepVar_Names=""
PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
PORT
P=3
Z=50 Ohm
PORT
P=4
Z=50 Ohm
W_Zo = 2.95984
L_Zo = 10
W_Zo_trans = 2.95984
L_Zo_trans=15.1
W_Zosrt2_trans = 5.07209
L_Zosrt2_trans=13.55
W
W
1
2
3
4
MCLIN
ID=TL4
W=Wd mm
S=Sep mm
L=L mm
MCURVE
ID=TL3
W=Wd mm
ANG=90 Deg
R=Ra mm
MCURVE
ID=TL5
W=Wd mm
ANG=90 Deg
R=Ra mm
MCURVE
ID=TL6
W=Wd mm
ANG=90 Deg
R=Ra mm
MCURVE
ID=TL8
W=Wd mm
ANG=90 Deg
R=Ra mm
MLIN
ID=TL1
W=Wd mm
L=L_feed mm
MLIN
ID=TL2
W=Wd mm
L=L_feed mm
MLIN
ID=TL7
W=Wd mm
L=L_feed mm
MLIN
ID=TL9
W=Wd mm
L=L_feed mm
MSUB
Er=2.2
H=1.57 mm
T=0.008 mm
Rho=0.705
Tand=0.0009
ErNom=2.2
Name=SUB1
STACKUP
Name=SUB2
EXTRACT
ID=EX1
EM_Doc="EM_Extract_Doc"
Name="EM_Extract"
Simulator=AXIEM
X_Cell_Size=1 mm
Y_Cell_Size=1 mm
STACKUP=""
Override_Options=Yes
Hierarchy=Off
SweepVar_Names=""
PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
PORT
P=3
Z=50 Ohm
PORT
P=4
Z=50 Ohm
L_feed = 12
Ra = Wd/2
Wd=4.624384765625
L=24.0056840820313
Sep=1.84562629699707
5
Figure 18: Board layout
Figure 19: Milled design
Performance:
Branch-line Coupler:
Figure 20: Coupling, insertion and return losses
Figure 21: Phase measurement
Edge-Coupled Coupler:
Figure 22: Comparison of coupling
Figure 23: Comparison of input return loss
Figure 24: Comparison of phase difference
v. Microstrip Filters
Objective:
Design a Chebychev 0.5dB ripple low pass filter and
a Butterworth low pass filter using microstrip lines.
1 2 3 4 5
Frequency (GHz)
Measurements
-40
-30
-20
-10
0
DB(|S(1,1)|)
3 dB Quadrature Coupler
DB(|S(2,1)|)
3 dB Quadrature Coupler
DB(|S(3,1)|)
3 dB Quadrature Coupler
DB(|S(3,2)|)
3 dB Quadrature Coupler
DB(|S(2,3)|)
3 dB Quadrature Coupler
DB(|S(4,1)|)
3 dB Quadrature Coupler
DB(|S(2,2)|)
3 dB Quadrature Coupler
DB(|S(3,3)|)
3 dB Quadrature Coupler
1 2 3 4 5
Frequency (GHz)
Relative Phase
0
50
100
150
200
2.5 GHz
89.78 Deg
SDeltaP(3 dB Quadrature Coupler,2,1,3,1) (Deg)
3 dB Quadrature Coupler
1 2 3 4 5
Frequency (GHz)
Comparison Coupled Port
-40
-35
-30
-25
-20
-15
-10
2.369 GHz
-19.2 dB
3.02 GHz
-19.01 dB
2.369 GHz
-19.17 dB
1.84 GHz
-18.93 dB
2.5 GHz
-19.24 dB
2.5 GHz
-19.1 dB
DB(|S(3,1)|)
Edge Coupled AXIEM
DB(|S(2,1)|)
P1TOP3
1 2 3 4 5
Frequency (GHz)
Comparison Input Return Loss at Port 1
-80
-60
-40
-20
0
2.5 GHz
-41.8 dB
2.5 GHz
-22.42 dB
2.9 GHz
-36.07 dB
2.395 GHz
-44.48 dB
DB(|S(1,1)|)
P1TOP3
DB(|S(1,1)|)
Edge Coupled AXIEM
1 2 3 4 5
Frequency (GHz)
Comparison Phase Difference
-100
-50
0
50
100
2.369 GHz
-86.2 Deg
2.369 GHz
-84.65 Deg
2.5 GHz
-85.88 Deg
2.5 GHz
-84.8 Deg
SDeltaP(Edge Coupled AXIEM,2,1,3,1) (Deg)
Edge Coupled AXIEM
SDeltaP(P1TOP3,2,1,2,1) (Deg)
P1TOP2
6
Design Goal:
Chebychev:
Parameter Design Goal
Center Frequency, fc (GHz) 2.5
Ripple (dB) 0.5
Insertion Loss at 5GHz (2fc) (dB) >40
Table 6: Design parameters
Butterworth:
Parameter Design Goal
Center Frequency, fc (GHz) 2.5
Insertion Loss at 5GHz (2fc) (dB) >40
Table 7: Design parameters
Design:
Chebychev:
Figure 25: Circuit layout
Figure 26: 2D mesh layout
Figure 27: Milled design
Butterworth:
Figure 28: Circuit layout
Figure 29: 2D mesh layout
Figure 30: Milled design
Performance:
Chebychev:
Figure 31: Comparison of return loss at port 1
Figure 32: Comparison of return loss at port 2
MLEF
ID=TL5
W=4.12123 mm
L=7.99355 mm
MLEF
ID=TL7
W=4.12123 mm
L=7.99355 mm
MLIN
ID=TL1
W=2.95984 mm
L=10 mm
MLIN
ID=TL3
W=0.370715 mm
L=6.87825 mm
MLIN
ID=TL6
W=0.370715 mm
L=9.03204 mm
MLIN
ID=TL9
W=0.370715 mm
L=6.87825 mm
MLIN
ID=TL11
W=2.95984 mm
L=10 mm
MSTEP$
ID=TL2
MSTEP$
ID=TL10
MSUB
Er=4.45
H=1.57 mm
T=0.017 mm
Rho=0.705
Tand=0.02
ErNom=4.45
Name=SUB1
1 2
3
MTEE$
ID=TL4
MSUB=SUB1
1 2
3
MTEE$
ID=TL8
MSUB=SUB1
STACKUP
Name=SUB2
EXTRACT
ID=EX1
EM_Doc="EM_Extract_Doc"
Name="EM_Extract"
Simulator=AXIEM
X_Cell_Size=1 mm
Y_Cell_Size=1 mm
STACKUP=""
Override_Options=Yes
Hierarchy=Off
SweepVar_Names=""PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
21
MLIN
ID=TL6
W=Wzh mm
L=L_2 mm
MSUB=SUB1
MLIN
ID=TL7
W=Wzl mm
L=C_1 mm
MSUB=SUB1
MLIN
ID=TL4
W=Wzh mm
L=L_4 mm
MSUB=SUB1
MLIN
ID=TL3
W=Wzl mm
L=C_3 mm
MSUB=SUB1
MLIN
ID=TL5
W=Wzl mm
L=C_3 mm
MSUB=SUB1
MSUB
Er=2.2
H=1.57 mm
T=0.008 mm
Rho=0.689
Tand=0.0009
ErNom=2.2
Name=SUB1
MLIN
ID=TL1
W=Wzl mm
L=C_1 mm
MSUB=SUB1
MLIN
ID=TL2
W=Wzh mm
L=L_2 mm
MSUB=SUB1
PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
Zh = 80
Zl = 20
Wzl = 16.1814
C_1 = 2.37832
L_2 = 11.0609
C_3 = 10.2292
L_4 = 17.8139
Wzh = 2.20076
2 1
0.1 2.1 4.1 6.1 8
Frequency (GHz)
Chebychev Filter Comparison
-60
-40
-20
0
20
DB(|S(1,1)|)
CP1TOP2
DB(|S(1,1)|)
AXIEM
0.1 2.1 4.1 6.1 8
Frequency (GHz)
Chebychev Filter Comparison
-60
-40
-20
0
20
DB(|S(2,2)|)
CP1TOP2
DB(|S(2,2)|)
AXIEM
7
Figure 33: Comparison of insertion loss
Figure 34: Ripples in the passband
Butterworth:
Figure 35: Comparison of return loss at port 1
Figure 36: Comparison of return loss at port 2
Figure 37: Comparison of insertion loss
vi. Microwave Amplifier
Objective:
Design a microwave RF amplifier using NEC32584C
transistor. To satisfy design, microstrip input and
output matching networks and a quarter
wavelength transformer need to be designed as
well. A feedback loop is to be designed using a
series capacitor and resistor.
Design Goals:
Parameter Design Goal
Frequency Range (GHz) 0.7 – 1.0
Liner Gain (dB) >8
Gain Flatness across band (dB) <1.0
Input Return Loss (dB) >15
Output Return Loss (dB) >15
VD (volts) 2
IDS (mA) 10
k-Factor (over 0.5-3GHz) >1
Table 8: Design requirements
0.1 2.1 4.1 6.1 8
Frequency (GHz)
Chebychev Filter Comparison
-60
-50
-40
-30
-20
-10
0
2.361 GHz
-1.338 dB
2.569 GHz
-1.24 dB
5 GHz
-42.04 dB
5.138 GHz
-48.11 dB
5 GHz
-50 dB
4.722 GHz
-42.11 dB
DB(|S(2,1)|)
CP1TOP2
DB(|S(2,1)|)
AXIEM
0.1 2.1 4.1 6.1 8
Frequency (GHz)
Chebychev Filter Comparison
-2
-1.5
-1
-0.5
0
0.1 GHz
-0.07592 dB
2.19 GHz
-0.8422 dB
2.423 GHz
-0.738 dB
1.94 GHz
-1.043 dB
2.083 GHz
-0.9812 dB
1.27 GHz
-0.3516 dB
1.275 GHz
-0.2913 dB
0.7343 GHz
-0.5429 dB
0.73 GHz
-0.5782 dB
2.361 GHz
-1.338 dB
2.569 GHz
-1.24 dB
DB(|S(2,1)|)
CP1TOP2
DB(|S(2,1)|)
AXIEM
0.1 2.1 4.1 6.1 8
Frequency (GHz)
Butterworth Filter Comparison
-60
-50
-40
-30
-20
-10
0
DB(|S(1,1)|)
BP1TOP2
DB(|S(1,1)|)
AXIEM
0.1 2.1 4.1 6.1 8
Frequency (GHz)
Butterworth Filter Comparison
-60
-50
-40
-30
-20
-10
0
DB(|S(2,2)|)
BP1TOP2
DB(|S(2,2)|)
AXIEM
0.1 2.1 4.1 6.1 8
Frequency (GHz)
Butterworth Filter Comparison
-40
-30
-20
-10
0
5 GHz
-25.21 dB
4.384 GHz
-28.15 dB
2.192 GHz
-3.104 dB
5 GHz
-19.64 dB
2.051 GHz
-3.039 dB
4.102 GHz
-26.25 dB
DB(|S(2,1)|)
BP1TOP2
DB(|S(2,1)|)
AXIEM
8
Design:
Figure 38:Circuit layout
Figure 39: Board layout
Figure 40: Milled design
Performance:
Figure 41: Comparison of achievable gain
Figure 42: Comparison of input return loss
Figure 43: Comparison of output return loss
Figure 44: Comparison of stability (K-Factor)
vii. MMIC Filters on GaAs Substrate
Objective:
Design two MMIC Butterworth filters (low-pass and
high-pass) on GaAs substrate with a center
frequency of 5GHz while achieving maximum figure
CAP
ID=C1
C=4.7e-5 uF
MBENDA
ID=TL10
W=1.09176 mm
ANG=90 Deg
MSUB=SUB1
MBENDA
ID=TL12
W=1.09176 mm
ANG=90 Deg
MSUB=SUB1
MBENDA
ID=TL14
W=1.09176 mm
ANG=90 Deg
MSUB=SUB1
MBENDA
ID=TL16
W=1.09176 mm
ANG=90 Deg
MSUB=SUB1
MLIN
ID=TL2
W=2.95758 mm
L=10 mm
MSUB=SUB1
MLIN
ID=TL4
W=2.95758 mm
L=15 mm
MSUB=SUB1
MLIN
ID=TL7
W=1.09176 mm
L=10 mm
MSUB=SUB1
MLIN
ID=TL11
W=1.09176 mm
L=len mm
MSUB=SUB1
MLIN
ID=TL13
W=1.09176 mm
L=10 mm
MSUB=SUB1
MLIN
ID=TL15
W=1.09176 mm
L=len mm
MSUB=SUB1
MLIN
ID=TL17
W=1.09176 mm
L=5 mm
MSUB=SUB1
MSTEP
ID=TL3
W1=1.09176 mm
W2=2.95758 mm
MSUB=SUB1
MSUB
Er=4.45
H=1.57 mm
T=0.017 mm
Rho=0.705
Tand=0.02
ErNom=4.45
Name=SUB1
RES
ID=R1
R=250 Ohm
RES
ID=R2
R=250 Ohm
1 2
3
SUBCKT
ID=S1
NET="lab8v2"
PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
len=6
100 3100 6100 8500
Frequency (MHz)
Gain Comparison
-20
-15
-10
-5
0
5
10
1000 MHz700 MHz
850 MHz
5.228 dB
850 MHz
9.51 dB
DB(|S(2,1)|)
Lab8
DB(|S(2,1)|)
AMPSS_PARAMETERS02
100 3100 6100 8500
Frequency (MHz)
Comparison of Input Return Loss
-50
-40
-30
-20
-10
0
1000 MHz700 MHz
1220 MHz
-5.996 dB
2168 MHz
-3.072 dB
DB(|S(1,1)|)
Lab8
DB(|S(1,1)|)
AMPSS_PARAMETERS02
100 3100 6100 8500
Frequency (MHz)
Comparison of Output Return Loss
-50
-40
-30
-20
-10
0
1000 MHz700 MHz
610 MHz
-11.6 dB
2890 MHz
-4.442 dB
DB(|S(2,2)|)
Lab8
DB(|S(2,2)|)
AMPSS_PARAMETERS02
100 3100 6100 8500
Frequency (MHz)
Comparison of Stability
-10
10
30
50
70
90
110
120
K()
Lab8
K()
AMPSS_PARAMETERS02
9
of merit (small size and high rejection at 2fc) for
both designs.
Design Goals:
Parameter
Design
Goal
Cutoff Frequency (GHz) 5.0
Rejection at 2fc for low pass (dB) >25
Rejection at 0.5fc for high pass (dB) >25
Size Minimum
Cost Minimum
Figure of Merit, M Maximum
Table 9: Design goals for both filters
Design:
Low-pass Filter:
Figure 45: Circuit layout
Figure 46: Board layout
High-pass Filter:
Figure 47: Circuit layout
Figure 48: Board layout
Performance:
Low-pass Filter:
Figure 49: Insertion and return losses
High-pass Filter:
Figure 50: Insertion and return losses
- END -
MSUB
Er=12.9
H=150 um
T=2 um
Rho=1
Tand=0.0005
ErNom=12.9
Name=SUB1
TFC2
ID=TFC1
W=width um
L=len um
T=0.2 um
ER=6.8
RHO=1
TAND=0
MSUB=SUB1
TFC2
ID=TFC2
W=width um
L=len um
T=0.2 um
ER=6.8
RHO=1
TAND=0
MSUB=SUB1
12
3
MTEE$
ID=TL1
MSUB=SUB1
MVIA1P
ID=V1
D=60 um
H=150 um
T=2 um
W=100 um
RHO=1
MSUB=SUB1
12
3
MTEE$
ID=TL2
MSUB=SUB1
MVIA1P
ID=V2
D=60 um
H=150 um
T=2 um
W=100 um
RHO=1
MSUB=SUB1
MLIN
ID=TL3
W=12.5 um
L=100 um
MSUB=SUB1
MLIN
ID=TL4
W=width um
L=10 um
MSUB=SUB1
MLIN
ID=TL5
W=12.5 um
L=10 um
MSUB=SUB1
MLIN
ID=TL6
W=12.5 um
L=100 um
MSUB=SUB1
MLIN
ID=TL7
W=width um
L=10 um
MSUB=SUB1
MLIN
ID=TL8
W=12.5 um
L=100 um
MSUB=SUB1
MLIN
ID=TL9
W=100 um
L=100 um
MSUB=SUB1
MLIN
ID=TL10
W=100 um
L=100 um
MSUB=SUB1
MCINDS
ID=MSP1
NT=2.93
W=12.5 um
S=7.24 um
R=20.5 um
AB=0
WB=10 um
HB=2.06 um
LB=0 um
EPSB=1
TDB=0
TB=1.05 um
RhoB=1
MSUB=SUB1
MCINDS
ID=MSP3
NT=2.93
W=12.5 um
S=7.24 um
R=20.5 um
AB=0
WB=10 um
HB=2.06 um
LB=0 um
EPSB=1
TDB=0
TB=1.05 um
RhoB=1
MSUB=SUB1
MCINDS
ID=MSP2
NT=4.69
W=12.5 um
S=7.24 um
R=19.6 um
AB=0
WB=10 um
HB=1.97 um
LB=0 um
EPSB=1
TDB=0
TB=1.05 um
RhoB=1
MSUB=SUB1
MLIN
ID=TL12
W=12.5 um
L=10 um
MSUB=SUB1
MCURVE$
ID=TL11
ANG=90 Deg
R=10 um
MSUB=SUB1
MCURVE$
ID=TL13
ANG=-90 Deg
R=50 um
MSUB=SUB1
MSTEP$
ID=TL15
MSUB=SUB1
MLIN
ID=TL14
W=12.5 um
L=160 um
MSUB=SUB1
MLIN
ID=TL16
W=12.5 um
L=171 um
MSUB=SUB1
MSTEP$
ID=TL17
MSUB=SUB1
MCURVE$
ID=TL18
ANG=90 Deg
R=10 um
MSUB=SUB1
MLIN
ID=TL19
W=12.5 um
L=312 um
MSUB=SUB1
MVIA1P
ID=V4
D=60 um
H=150 um
T=2 um
W=100 um
RHO=1
MSUB=SUB1
MVIA1P
ID=V3
D=60 um
H=150 um
T=2 um
W=100 um
RHO=1
MSUB=SUB1
MCURVE$
ID=TL22
ANG=-90 Deg
R=10 um
MSUB=SUB1
MLIN
ID=TL23
W=12.5 um
L=230 um
MSUB=SUB1
MVIA1P
ID=V5
D=60 um
H=150 um
T=2 um
W=100 um
RHO=1
MSUB=SUB1
MVIA1P
ID=V6
D=60 um
H=150 um
T=2 um
W=100 um
RHO=1
MSUB=SUB1
PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
len=59.79
width=54.99
MCINDS
ID=MSP1
NT=3.55
W=42.5 um
S=6.63 um
R=16.2 um
AB=0
WB=11.3 um
HB=2.18 um
LB=0 um
EPSB=1
TDB=0
TB=12.5 um
RhoB=1
MVIA1P
ID=V1
D=60 um
H=150 um
T=2 um
W=65 um
RHO=1
MSUB=SUB1
1 2
3
MTEE$
ID=TL1
TFC2
ID=TFC1
W=w um
L=l um
T=0.2 um
ER=6.8
RHO=1
TAND=0
MCINDS
ID=MSP2
NT=2.25
W=42.9 um
S=7.08 um
R=17.4 um
AB=0
WB=11.3 um
HB=2.21 um
LB=0 um
EPSB=1
TDB=0
TB=12.5 um
RhoB=1
MVIA1P
ID=V2
D=60 um
H=150 um
T=2 um
W=65 um
RHO=1
MSUB=SUB1
TFC2
ID=TFC2
W=w um
L=l um
T=0.2 um
ER=6.8
RHO=1
TAND=0
1 2
3
MTEE$
ID=TL2
1 2
3
MTEE$
ID=TL3
MCINDS
ID=MSP3
NT=3.55
W=42.5 um
S=6.63 um
R=16.2 um
AB=0
WB=11.3 um
HB=2.18 um
LB=0 um
EPSB=1
TDB=0
TB=12.5 um
RhoB=1MVIA1P
ID=V3
D=60 um
H=150 um
T=2 um
W=65 um
RHO=1
MSUB=SUB1
MLIN
ID=TL4
W=w um
L=10 um
MLIN
ID=TL5
W=w um
L=10 um
MSUB
Er=12.9
H=150 um
T=2 um
Rho=1
Tand=0.0005
ErNom=12.9
Name=SUB1
MLIN
ID=TL6
W=w um
L=200 um
MSUB=SUB1
MLIN
ID=TL7
W=w um
L=200 um
MSUB=SUB1
MLIN
ID=TL8
W=w um
L=200 um
MSUB=SUB1
MLIN
ID=TL9
W=w um
L=200 um
MSUB=SUB1
MLIN
ID=TL10
W=12.5 um
L=108.827 um
MSUB=SUB1
MLIN
ID=TL11
W=12.5 um
L=108.827 um
MSUB=SUB1
MLIN
ID=TL12
W=12.5 um
L=108.827 um
MSUB=SUB1
MCURVE$
ID=TL13
ANG=90 Deg
R=20 um
MSUB=SUB1
MLIN
ID=TL14
W=w um
L=100 um
MSUB=SUB1
MSTEP$
ID=TL15
MSUB=SUB1
MLIN
ID=TL16
W=100 um
L=100 um
MSUB=SUB1
MCURVE$
ID=TL17
ANG=90 Deg
R=20 um
MSUB=SUB1
MLIN
ID=TL18
W=w um
L=100 um
MSUB=SUB1
MLIN
ID=TL19
W=100 um
L=100 um
MSUB=SUB1
MSTEP$
ID=TL20
MSUB=SUB1
MVIA1P
ID=V4
D=60 um
H=150 um
T=2 um
W=wv um
RHO=1
MSUB=SUB1
MVIA1P
ID=V5
D=60 um
H=150 um
T=2 um
W=wv um
RHO=1
MSUB=SUB1
MVIA1P
ID=V6
D=60 um
H=150 um
T=2 um
W=wv um
RHO=1
MSUB=SUB1
MVIA1P
ID=V7
D=60 um
H=150 um
T=2 um
W=wv um
RHO=1
MSUB=SUB1
PORT
P=1
Z=50 Ohm
PORT
P=2
Z=50 Ohm
w=33.95
l=32.95
wv = 100
0.1 5.1 10.1 15
Frequency (GHz)
Low Pass Filter
-60
-50
-40
-30
-20
-10
0
0.1 GHz
-0.4531 dB
5 GHz
-3.641 dB
10 GHz
-33.98 dB
DB(|S(2,1)|)
LPF
DB(|S(1,1)|)
LPF
0.1 5.1 10.1 15
Frequency (GHz)
High Pass Filter
-200
-150
-100
-50
0
12.65 GHz
-0.2404 dB
2.5 GHz
-33.58 dB
5 GHz
-3.246 dB
DB(|S(2,1)|)
HPF
DB(|S(1,1)|)
HPF

Contenu connexe

Tendances

Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
Design World
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
altaf423
 
Journal On LDO From IJEETC
Journal On LDO From IJEETCJournal On LDO From IJEETC
Journal On LDO From IJEETC
Sadanand Patil
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
Claudia Sin
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
Claudia Sin
 

Tendances (20)

Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Journal On LDO From IJEETC
Journal On LDO From IJEETCJournal On LDO From IJEETC
Journal On LDO From IJEETC
 
Chapter 13
Chapter 13Chapter 13
Chapter 13
 
Smart Power Amplifier
Smart Power AmplifierSmart Power Amplifier
Smart Power Amplifier
 
Unit 3
Unit 3Unit 3
Unit 3
 
Tutorial on Distance and Over Current Protection
Tutorial on Distance and Over  Current ProtectionTutorial on Distance and Over  Current Protection
Tutorial on Distance and Over Current Protection
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched Capacitor
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 
Chapter 05
Chapter 05Chapter 05
Chapter 05
 
Smh presentación jmsc depc
Smh presentación  jmsc depcSmh presentación  jmsc depc
Smh presentación jmsc depc
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
Small signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiersSmall signal analysis of bjt amplifiers
Small signal analysis of bjt amplifiers
 
3.7 GHz Microwave Amplifier Design
3.7 GHz Microwave Amplifier Design3.7 GHz Microwave Amplifier Design
3.7 GHz Microwave Amplifier Design
 

En vedette (8)

Antenna alignment tool
Antenna alignment toolAntenna alignment tool
Antenna alignment tool
 
52528672 microwave-planning-and-design
52528672 microwave-planning-and-design52528672 microwave-planning-and-design
52528672 microwave-planning-and-design
 
Jannatul Ferdous_2_resume
Jannatul Ferdous_2_resumeJannatul Ferdous_2_resume
Jannatul Ferdous_2_resume
 
Twta and sspa
Twta and sspaTwta and sspa
Twta and sspa
 
Awr1page - Sanity checking time instrumentation in AWR reports
Awr1page - Sanity checking time instrumentation in AWR reportsAwr1page - Sanity checking time instrumentation in AWR reports
Awr1page - Sanity checking time instrumentation in AWR reports
 
Microwave- directional coupler paramets & applications
Microwave- directional coupler paramets & applicationsMicrowave- directional coupler paramets & applications
Microwave- directional coupler paramets & applications
 
Point to point microwave
Point to point microwavePoint to point microwave
Point to point microwave
 
Directional couplers ppt for microwave engineering
Directional couplers  ppt for microwave engineeringDirectional couplers  ppt for microwave engineering
Directional couplers ppt for microwave engineering
 

Similaire à RF Lab Summary

Tutorial simulations-elec 380
Tutorial simulations-elec 380Tutorial simulations-elec 380
Tutorial simulations-elec 380
Moez Ansary
 

Similaire à RF Lab Summary (20)

Original Transistor NPN MPSA18 MPS A18 TO 92 New ON
Original Transistor NPN MPSA18 MPS A18 TO 92 New ONOriginal Transistor NPN MPSA18 MPS A18 TO 92 New ON
Original Transistor NPN MPSA18 MPS A18 TO 92 New ON
 
Multitester,Wire resistivity
Multitester,Wire resistivityMultitester,Wire resistivity
Multitester,Wire resistivity
 
nfc
nfcnfc
nfc
 
5th Semester Electronic and Communication Engineering (2013-December) Questio...
5th Semester Electronic and Communication Engineering (2013-December) Questio...5th Semester Electronic and Communication Engineering (2013-December) Questio...
5th Semester Electronic and Communication Engineering (2013-December) Questio...
 
17 session 2 fey - example sensitivity analysis
17 session 2   fey - example sensitivity analysis17 session 2   fey - example sensitivity analysis
17 session 2 fey - example sensitivity analysis
 
PSpice Tutorial
PSpice TutorialPSpice Tutorial
PSpice Tutorial
 
FINAL
FINALFINAL
FINAL
 
Analog Communication Lab Manual
Analog Communication Lab ManualAnalog Communication Lab Manual
Analog Communication Lab Manual
 
Analog Communication Engineering Lab Manual
Analog Communication Engineering Lab ManualAnalog Communication Engineering Lab Manual
Analog Communication Engineering Lab Manual
 
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
 
HCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITED
HCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITEDHCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITED
HCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITED
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
 
Original Transistor NPN BC337 BC337-25 TO-92 New
Original Transistor NPN BC337 BC337-25 TO-92 NewOriginal Transistor NPN BC337 BC337-25 TO-92 New
Original Transistor NPN BC337 BC337-25 TO-92 New
 
Bc337 d
Bc337 dBc337 d
Bc337 d
 
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code NewOriginal NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
 
Tutorial simulations-elec 380
Tutorial simulations-elec 380Tutorial simulations-elec 380
Tutorial simulations-elec 380
 
Si Intro(100413)
Si Intro(100413)Si Intro(100413)
Si Intro(100413)
 
Original Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 New
Original Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 NewOriginal Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 New
Original Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 New
 
Low pass filter
Low pass filterLow pass filter
Low pass filter
 
11. Linear Models
11. Linear Models11. Linear Models
11. Linear Models
 

RF Lab Summary

  • 1. 1 RF & Microwave Design and Measurement Laboratory The University of Texas at Dallas Ahnaf Hassan Abstract: This lecture and lab course covered fundamentals of microwave design and measurements. Various microwave components were designed and simulated with CAD tools (Microwave Office, AWR, AXIEM) and then built and measured to compare performance with theory. The lab involved learning the basics of accurate microwave measurements, including vector impedance (scattering parameters), scalar measurements and spectrum analysis. Keywords: Microwave Office, MWO, AWR, AXIEM, Vector Network Analyzer, VNA, S Parameters, Resonators, Microstrip, EM Simulation, Power Divider, Coupler, Wilkinson, Filters, LNA, Amplifiers, MMIC. i. Introduction RF components were designed according to given goals, specified in terms of operating and cutoff frequencies, gain, return and insertion losses etc. Microwave Office was used to design and simulate circuits and microwave implementations. The components were then milled, and tested in the lab using network analyzers, power meters etc. Measured data was compared to simulated (theoretical) data to test for accuracy and possible design issues. ii. Microstrip Resonator Objective: Design two quarter-wave resonators, single stub and double stub, and connect them to a 50Ω transmission line. In both designs the stub ends with an open circuit. Design Goal: Parameter Design Goal Resonant Frequency (GHz) 2.5 Input Return Loss (dB) <2 Output Return Loss (dB) <2 Insertion Loss at fo (dB) >20 Table 1: Single Stub Resonator Parameter Design Goal Resonant Frequency (GHz) 2.5 Input Return Loss (dB) >20 Output Return Loss (dB) >20 Insertion Loss at fo (dB) <1.0 Table 2: Double Stub Resonator Design: Single Stub Figure 1: Circuit Schematic Figure 2: Board Layout MLEF ID=TL4 W=2.96 mm L=16.11 mm MLIN ID=TL1 W=2.96 mm L=10 mm MLIN ID=TL3 W=2.96 mm L=10 mm MSUB Er=4.45 H=1.57 mm T=0.017 mm Rho=0.705 Tand=0.02 ErNom=4.45 Name=SUB1 1 2 3 MTEE$ ID=TL2 MSUB=SUB1 STACKUP Name=SUB2 EXTRACT ID=EX1 EM_Doc="EM_Extract_Doc" Name="EM_Extract" Simulator=AXIEM X_Cell_Size=1 mm Y_Cell_Size=1 mm STACKUP="" Override_Options=Yes Hierarchy=Off SweepVar_Names="" PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm
  • 2. 2 Figure 3: Milled Design Double Stub Figure 4: Circuit Schematic Figure 5: Board Layout Figure 6: Milled Design Performance: Single Stub Figure 7: Comparison of simulated and measured data Double Stub Figure 8: Comparison of insertion loss 1 2 3 4 MCROSS$ ID=TL2 MLEF ID=TL4 W=2.96 mm L=6.891 mm MLEF ID=TL5 W=2.96 mm L=24.08 mm MLIN ID=TL1 W=2.96 mm L=10 mm MLIN ID=TL3 W=2.96 mm L=10 mm MSUB Er=4.45 H=1.57 mm T=0.017 mm Rho=0.705 Tand=0.02 ErNom=4.45 Name=SUB1 STACKUP Name=SUB2 EXTRACT ID=EX1 EM_Doc="EM_Extract_Doc" Name="EM_Extract" Simulator=AXIEM X_Cell_Size=1 mm Y_Cell_Size=1 mm STACKUP="" Override_Options=Yes Hierarchy=Off SweepVar_Names="" PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm 1 2 3 4 5 Frequency (GHz) Comparison between Measured and Simulated Data -40 -30 -20 -10 0 2.5 GHz -30.39 dB 2.5 GHz -30.9 dB 2.5 GHz -0.3817 dB 2.5 GHz -0.4127 dB DB(|S(1,1)|) Single Stub Resonator AXIEM DB(|S(2,2)|) Single Stub Resonator AXIEM DB(|S(2,1)|) Single Stub Resonator AXIEM DB(|S(1,1)|) SS BETTER DB(|S(2,2)|) SS BETTER DB(|S(2,1)|) SS BETTER
  • 3. 3 Figure 9: Comparison of return loss iii. 3-dB Wilkinson Power Divider Objective: Design a microstrip 3-dB Wilkinson power divider on 1.57mm thick FR-4 material and compare and contrast simulated and physical design. Design Goal: Parameter Design Goal Center Frequency (GHz) 2.5 Power Split -3.0 Insertion Loss <1.0 Relative Phase 0 Input Return Loss >20 Output Return Loss >20 Isolation between Output Ports >20 Table 3: Design goals Design: Figure 10: Circuit design Figure 11: Board layout Figure 12: Milled design Performance: Figure 13: Comparison of input return loss MCURVE$ ID=TL5 ANG=90 Deg R=0.775 mm MSUB=SUB1 MCURVE$ ID=TL7 ANG=90 Deg R=0.775 mm MSUB=SUB1 MCURVE$ ID=TL8 ANG=90 Deg R=1.48 mm MSUB=SUB1 MCURVE$ ID=TL9 ANG=90 Deg R=0.775 mm MSUB=SUB1 MCURVE$ ID=TL10 ANG=90 Deg R=0.775 mm MSUB=SUB1 MCURVE$ ID=TL19 ANG=90 Deg R=1.48 mm MSUB=SUB1 MLIN ID=TL1 W=2.96 mm L=10 mm MLIN ID=TL3 W=1.55 mm L=L1 mm MLIN ID=TL6 W=1.55 mm L=L2 mm MLIN ID=TL11 W=1.55 mm L=L3 mm MLIN ID=TL13 W=1.55 mm L=L1 mm MLIN ID=TL14 W=2.96 mm L=0.762 mm MLIN ID=TL15 W=1.55 mm L=L2 mm MLIN ID=TL16 W=2.96 mm L=10 mm MLIN ID=TL17 W=1.55 mm L=L3 mm MLIN ID=TL18 W=2.96 mm L=0.762 mm MLIN ID=TL20 W=2.96 mm L=10 mm MSUB Er=4.45 H=1.57 mm T=0.017 mm Rho=0.705 Tand=0.02 ErNom=4.45 Name=SUB1 1 2 3 MTEE$ ID=TL2 MSUB=SUB1 1 2 3 MTEE ID=TL4 W1=1.55 mm W2=1.55 mm W3=2.96 mm MSUB=SUB1 1 2 3 MTEE ID=TL12 W1=1.55 mm W2=1.55 mm W3=2.96 mm MSUB=SUB1 RES ID=R1 R=100 Ohm STACKUP Name=SUB2 EXTRACT ID=EX1 EM_Doc="EM_Extract_Doc" Name="EM_Extract" Simulator=AXIEM X_Cell_Size=1 mm Y_Cell_Size=1 mm STACKUP="" Override_Options=Yes Hierarchy=Off SweepVar_Names="" PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm PORT P=3 Z=50 Ohm L3=4.93 L2=5.8 L1=6.9 1 2 3 4 5 Frequency (GHz) Comparison of Input Retun Loss -50 -40 -30 -20 -10 0 2.5 GHz -29.59 dB 2.53 GHz -29.9 dB 2.5 GHz -21.73 dB 2.763 GHz -41.19 dB DB(|S(1,1)|) S1TO2 UNTUNED DB(|S(1,1)|) Winkinson Milled AXIEM
  • 4. 4 Figure 14: Comparison of insertion loss Figure 15: Comparison of phase difference iv. Microwave Directional Coupler Objective: Design a 3-dB Quadrature Branch-Line Directional Coupler (not milled) and a microstrip Edge-Coupled Coupler (20-dB coupling). Design Goal: Branch-line Coupler: Parameter Design Goal Center Frequency (GHz) 2.5 Coupling (dB) 3.0 Relative Phase (deg) 90 Input Return Losses(dB) >20 Isolation @fo (dB) TBD Table 4: Design objectives Edge-Coupled Coupler: Parameter Design Goal Center Frequency (GHz) 2.5 Coupling (dB) 20.0 Relative Phase (deg) 90 Input Return Loss (dB) >20 Isolation @fo (dB) TBD Table 5: Design objectives Design: Branch-line Coupler: Figure 16: Circuit layout Edge-Coupled Coupler: Figure 17: Circuit layout 1 2 3 4 5 Frequency (GHz) Comparison of Insertion Loss -6 -5.5 -5 -4.5 -4 -3.5 -3 2.5 GHz -3.25 dB 2.5 GHz -3.196 dB 2.5 GHz -3.273 dB 2.5 GHz -3.269 dB DB(|S(2,1)|) Winkinson Milled AXIEM DB(|S(3,1)|) Winkinson Milled AXIEM DB(|S(2,1)|) S1TO2 UNTUNED DB(|S(2,1)|) S1TO3 UNTUNED 1 2 3 4 5 Frequency (GHz) Comparion of Output Port Phase Difference -1 0 1 2 3 2.5 GHz -0.07258 Deg 2.5 GHz 0.8491 Deg SDeltaP(Winkinson Milled AXIEM,2,1,3,1) (Deg) Winkinson Milled AXIEM SDeltaP(S1TO3 UNTUNED,2,1,2,1) (Deg) S1TO2 UNTUNED MLIN ID=TL1 W=W_Zo mm L=L_Zo mm 1 2 3 MTEE ID=TL2 W1=W_Zo mm W2=W_Zosrt2_trans mm W3=W_Zo_trans mm MLIN ID=TL3 W=W_Zosrt2_trans mm L=L_Zosrt2_trans mm 1 2 3 MTEE ID=TL4 W1=W_Zosrt2_trans mm W2=W_Zo mm W3=W_Zo_trans mm MLIN ID=TL5 W=W_Zo mm L=L_Zo mm MLIN ID=TL6 W=W_Zo mm L=L_Zo mm 12 3 MTEE ID=TL7 W1=W_Zosrt2_trans mm W2=W_Zo mm W3=W_Zo_trans mm MLIN ID=TL8 W=W_Zo_trans mm L=L_Zo_trans mm MLIN ID=TL9 W=W_Zosrt2_trans mm L=L_Zosrt2_trans mm 12 3 MTEE ID=TL10 W1=W_Zo mm W2=W_Zosrt2_trans mm W3=W_Zo_trans mm MLIN ID=TL11 W=W_Zo_trans mm L=L_Zo_trans mm MLIN ID=TL12 W=W_Zo mm L=L_Zo mm MSUB Er=4.45 H=1.57 mm T=0.017 mm Rho=0.705 Tand=0.02 ErNom=4.45 Name=SUB1 STACKUP Name=SUB2 EXTRACT ID=EX1 EM_Doc="EM_Extract_Doc" Name="EM_Extract" Simulator=AXIEM X_Cell_Size=1 mm Y_Cell_Size=1 mm STACKUP="" Override_Options=Yes Hierarchy=Off SweepVar_Names="" PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm PORT P=3 Z=50 Ohm PORT P=4 Z=50 Ohm W_Zo = 2.95984 L_Zo = 10 W_Zo_trans = 2.95984 L_Zo_trans=15.1 W_Zosrt2_trans = 5.07209 L_Zosrt2_trans=13.55 W W 1 2 3 4 MCLIN ID=TL4 W=Wd mm S=Sep mm L=L mm MCURVE ID=TL3 W=Wd mm ANG=90 Deg R=Ra mm MCURVE ID=TL5 W=Wd mm ANG=90 Deg R=Ra mm MCURVE ID=TL6 W=Wd mm ANG=90 Deg R=Ra mm MCURVE ID=TL8 W=Wd mm ANG=90 Deg R=Ra mm MLIN ID=TL1 W=Wd mm L=L_feed mm MLIN ID=TL2 W=Wd mm L=L_feed mm MLIN ID=TL7 W=Wd mm L=L_feed mm MLIN ID=TL9 W=Wd mm L=L_feed mm MSUB Er=2.2 H=1.57 mm T=0.008 mm Rho=0.705 Tand=0.0009 ErNom=2.2 Name=SUB1 STACKUP Name=SUB2 EXTRACT ID=EX1 EM_Doc="EM_Extract_Doc" Name="EM_Extract" Simulator=AXIEM X_Cell_Size=1 mm Y_Cell_Size=1 mm STACKUP="" Override_Options=Yes Hierarchy=Off SweepVar_Names="" PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm PORT P=3 Z=50 Ohm PORT P=4 Z=50 Ohm L_feed = 12 Ra = Wd/2 Wd=4.624384765625 L=24.0056840820313 Sep=1.84562629699707
  • 5. 5 Figure 18: Board layout Figure 19: Milled design Performance: Branch-line Coupler: Figure 20: Coupling, insertion and return losses Figure 21: Phase measurement Edge-Coupled Coupler: Figure 22: Comparison of coupling Figure 23: Comparison of input return loss Figure 24: Comparison of phase difference v. Microstrip Filters Objective: Design a Chebychev 0.5dB ripple low pass filter and a Butterworth low pass filter using microstrip lines. 1 2 3 4 5 Frequency (GHz) Measurements -40 -30 -20 -10 0 DB(|S(1,1)|) 3 dB Quadrature Coupler DB(|S(2,1)|) 3 dB Quadrature Coupler DB(|S(3,1)|) 3 dB Quadrature Coupler DB(|S(3,2)|) 3 dB Quadrature Coupler DB(|S(2,3)|) 3 dB Quadrature Coupler DB(|S(4,1)|) 3 dB Quadrature Coupler DB(|S(2,2)|) 3 dB Quadrature Coupler DB(|S(3,3)|) 3 dB Quadrature Coupler 1 2 3 4 5 Frequency (GHz) Relative Phase 0 50 100 150 200 2.5 GHz 89.78 Deg SDeltaP(3 dB Quadrature Coupler,2,1,3,1) (Deg) 3 dB Quadrature Coupler 1 2 3 4 5 Frequency (GHz) Comparison Coupled Port -40 -35 -30 -25 -20 -15 -10 2.369 GHz -19.2 dB 3.02 GHz -19.01 dB 2.369 GHz -19.17 dB 1.84 GHz -18.93 dB 2.5 GHz -19.24 dB 2.5 GHz -19.1 dB DB(|S(3,1)|) Edge Coupled AXIEM DB(|S(2,1)|) P1TOP3 1 2 3 4 5 Frequency (GHz) Comparison Input Return Loss at Port 1 -80 -60 -40 -20 0 2.5 GHz -41.8 dB 2.5 GHz -22.42 dB 2.9 GHz -36.07 dB 2.395 GHz -44.48 dB DB(|S(1,1)|) P1TOP3 DB(|S(1,1)|) Edge Coupled AXIEM 1 2 3 4 5 Frequency (GHz) Comparison Phase Difference -100 -50 0 50 100 2.369 GHz -86.2 Deg 2.369 GHz -84.65 Deg 2.5 GHz -85.88 Deg 2.5 GHz -84.8 Deg SDeltaP(Edge Coupled AXIEM,2,1,3,1) (Deg) Edge Coupled AXIEM SDeltaP(P1TOP3,2,1,2,1) (Deg) P1TOP2
  • 6. 6 Design Goal: Chebychev: Parameter Design Goal Center Frequency, fc (GHz) 2.5 Ripple (dB) 0.5 Insertion Loss at 5GHz (2fc) (dB) >40 Table 6: Design parameters Butterworth: Parameter Design Goal Center Frequency, fc (GHz) 2.5 Insertion Loss at 5GHz (2fc) (dB) >40 Table 7: Design parameters Design: Chebychev: Figure 25: Circuit layout Figure 26: 2D mesh layout Figure 27: Milled design Butterworth: Figure 28: Circuit layout Figure 29: 2D mesh layout Figure 30: Milled design Performance: Chebychev: Figure 31: Comparison of return loss at port 1 Figure 32: Comparison of return loss at port 2 MLEF ID=TL5 W=4.12123 mm L=7.99355 mm MLEF ID=TL7 W=4.12123 mm L=7.99355 mm MLIN ID=TL1 W=2.95984 mm L=10 mm MLIN ID=TL3 W=0.370715 mm L=6.87825 mm MLIN ID=TL6 W=0.370715 mm L=9.03204 mm MLIN ID=TL9 W=0.370715 mm L=6.87825 mm MLIN ID=TL11 W=2.95984 mm L=10 mm MSTEP$ ID=TL2 MSTEP$ ID=TL10 MSUB Er=4.45 H=1.57 mm T=0.017 mm Rho=0.705 Tand=0.02 ErNom=4.45 Name=SUB1 1 2 3 MTEE$ ID=TL4 MSUB=SUB1 1 2 3 MTEE$ ID=TL8 MSUB=SUB1 STACKUP Name=SUB2 EXTRACT ID=EX1 EM_Doc="EM_Extract_Doc" Name="EM_Extract" Simulator=AXIEM X_Cell_Size=1 mm Y_Cell_Size=1 mm STACKUP="" Override_Options=Yes Hierarchy=Off SweepVar_Names=""PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm 21 MLIN ID=TL6 W=Wzh mm L=L_2 mm MSUB=SUB1 MLIN ID=TL7 W=Wzl mm L=C_1 mm MSUB=SUB1 MLIN ID=TL4 W=Wzh mm L=L_4 mm MSUB=SUB1 MLIN ID=TL3 W=Wzl mm L=C_3 mm MSUB=SUB1 MLIN ID=TL5 W=Wzl mm L=C_3 mm MSUB=SUB1 MSUB Er=2.2 H=1.57 mm T=0.008 mm Rho=0.689 Tand=0.0009 ErNom=2.2 Name=SUB1 MLIN ID=TL1 W=Wzl mm L=C_1 mm MSUB=SUB1 MLIN ID=TL2 W=Wzh mm L=L_2 mm MSUB=SUB1 PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm Zh = 80 Zl = 20 Wzl = 16.1814 C_1 = 2.37832 L_2 = 11.0609 C_3 = 10.2292 L_4 = 17.8139 Wzh = 2.20076 2 1 0.1 2.1 4.1 6.1 8 Frequency (GHz) Chebychev Filter Comparison -60 -40 -20 0 20 DB(|S(1,1)|) CP1TOP2 DB(|S(1,1)|) AXIEM 0.1 2.1 4.1 6.1 8 Frequency (GHz) Chebychev Filter Comparison -60 -40 -20 0 20 DB(|S(2,2)|) CP1TOP2 DB(|S(2,2)|) AXIEM
  • 7. 7 Figure 33: Comparison of insertion loss Figure 34: Ripples in the passband Butterworth: Figure 35: Comparison of return loss at port 1 Figure 36: Comparison of return loss at port 2 Figure 37: Comparison of insertion loss vi. Microwave Amplifier Objective: Design a microwave RF amplifier using NEC32584C transistor. To satisfy design, microstrip input and output matching networks and a quarter wavelength transformer need to be designed as well. A feedback loop is to be designed using a series capacitor and resistor. Design Goals: Parameter Design Goal Frequency Range (GHz) 0.7 – 1.0 Liner Gain (dB) >8 Gain Flatness across band (dB) <1.0 Input Return Loss (dB) >15 Output Return Loss (dB) >15 VD (volts) 2 IDS (mA) 10 k-Factor (over 0.5-3GHz) >1 Table 8: Design requirements 0.1 2.1 4.1 6.1 8 Frequency (GHz) Chebychev Filter Comparison -60 -50 -40 -30 -20 -10 0 2.361 GHz -1.338 dB 2.569 GHz -1.24 dB 5 GHz -42.04 dB 5.138 GHz -48.11 dB 5 GHz -50 dB 4.722 GHz -42.11 dB DB(|S(2,1)|) CP1TOP2 DB(|S(2,1)|) AXIEM 0.1 2.1 4.1 6.1 8 Frequency (GHz) Chebychev Filter Comparison -2 -1.5 -1 -0.5 0 0.1 GHz -0.07592 dB 2.19 GHz -0.8422 dB 2.423 GHz -0.738 dB 1.94 GHz -1.043 dB 2.083 GHz -0.9812 dB 1.27 GHz -0.3516 dB 1.275 GHz -0.2913 dB 0.7343 GHz -0.5429 dB 0.73 GHz -0.5782 dB 2.361 GHz -1.338 dB 2.569 GHz -1.24 dB DB(|S(2,1)|) CP1TOP2 DB(|S(2,1)|) AXIEM 0.1 2.1 4.1 6.1 8 Frequency (GHz) Butterworth Filter Comparison -60 -50 -40 -30 -20 -10 0 DB(|S(1,1)|) BP1TOP2 DB(|S(1,1)|) AXIEM 0.1 2.1 4.1 6.1 8 Frequency (GHz) Butterworth Filter Comparison -60 -50 -40 -30 -20 -10 0 DB(|S(2,2)|) BP1TOP2 DB(|S(2,2)|) AXIEM 0.1 2.1 4.1 6.1 8 Frequency (GHz) Butterworth Filter Comparison -40 -30 -20 -10 0 5 GHz -25.21 dB 4.384 GHz -28.15 dB 2.192 GHz -3.104 dB 5 GHz -19.64 dB 2.051 GHz -3.039 dB 4.102 GHz -26.25 dB DB(|S(2,1)|) BP1TOP2 DB(|S(2,1)|) AXIEM
  • 8. 8 Design: Figure 38:Circuit layout Figure 39: Board layout Figure 40: Milled design Performance: Figure 41: Comparison of achievable gain Figure 42: Comparison of input return loss Figure 43: Comparison of output return loss Figure 44: Comparison of stability (K-Factor) vii. MMIC Filters on GaAs Substrate Objective: Design two MMIC Butterworth filters (low-pass and high-pass) on GaAs substrate with a center frequency of 5GHz while achieving maximum figure CAP ID=C1 C=4.7e-5 uF MBENDA ID=TL10 W=1.09176 mm ANG=90 Deg MSUB=SUB1 MBENDA ID=TL12 W=1.09176 mm ANG=90 Deg MSUB=SUB1 MBENDA ID=TL14 W=1.09176 mm ANG=90 Deg MSUB=SUB1 MBENDA ID=TL16 W=1.09176 mm ANG=90 Deg MSUB=SUB1 MLIN ID=TL2 W=2.95758 mm L=10 mm MSUB=SUB1 MLIN ID=TL4 W=2.95758 mm L=15 mm MSUB=SUB1 MLIN ID=TL7 W=1.09176 mm L=10 mm MSUB=SUB1 MLIN ID=TL11 W=1.09176 mm L=len mm MSUB=SUB1 MLIN ID=TL13 W=1.09176 mm L=10 mm MSUB=SUB1 MLIN ID=TL15 W=1.09176 mm L=len mm MSUB=SUB1 MLIN ID=TL17 W=1.09176 mm L=5 mm MSUB=SUB1 MSTEP ID=TL3 W1=1.09176 mm W2=2.95758 mm MSUB=SUB1 MSUB Er=4.45 H=1.57 mm T=0.017 mm Rho=0.705 Tand=0.02 ErNom=4.45 Name=SUB1 RES ID=R1 R=250 Ohm RES ID=R2 R=250 Ohm 1 2 3 SUBCKT ID=S1 NET="lab8v2" PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm len=6 100 3100 6100 8500 Frequency (MHz) Gain Comparison -20 -15 -10 -5 0 5 10 1000 MHz700 MHz 850 MHz 5.228 dB 850 MHz 9.51 dB DB(|S(2,1)|) Lab8 DB(|S(2,1)|) AMPSS_PARAMETERS02 100 3100 6100 8500 Frequency (MHz) Comparison of Input Return Loss -50 -40 -30 -20 -10 0 1000 MHz700 MHz 1220 MHz -5.996 dB 2168 MHz -3.072 dB DB(|S(1,1)|) Lab8 DB(|S(1,1)|) AMPSS_PARAMETERS02 100 3100 6100 8500 Frequency (MHz) Comparison of Output Return Loss -50 -40 -30 -20 -10 0 1000 MHz700 MHz 610 MHz -11.6 dB 2890 MHz -4.442 dB DB(|S(2,2)|) Lab8 DB(|S(2,2)|) AMPSS_PARAMETERS02 100 3100 6100 8500 Frequency (MHz) Comparison of Stability -10 10 30 50 70 90 110 120 K() Lab8 K() AMPSS_PARAMETERS02
  • 9. 9 of merit (small size and high rejection at 2fc) for both designs. Design Goals: Parameter Design Goal Cutoff Frequency (GHz) 5.0 Rejection at 2fc for low pass (dB) >25 Rejection at 0.5fc for high pass (dB) >25 Size Minimum Cost Minimum Figure of Merit, M Maximum Table 9: Design goals for both filters Design: Low-pass Filter: Figure 45: Circuit layout Figure 46: Board layout High-pass Filter: Figure 47: Circuit layout Figure 48: Board layout Performance: Low-pass Filter: Figure 49: Insertion and return losses High-pass Filter: Figure 50: Insertion and return losses - END - MSUB Er=12.9 H=150 um T=2 um Rho=1 Tand=0.0005 ErNom=12.9 Name=SUB1 TFC2 ID=TFC1 W=width um L=len um T=0.2 um ER=6.8 RHO=1 TAND=0 MSUB=SUB1 TFC2 ID=TFC2 W=width um L=len um T=0.2 um ER=6.8 RHO=1 TAND=0 MSUB=SUB1 12 3 MTEE$ ID=TL1 MSUB=SUB1 MVIA1P ID=V1 D=60 um H=150 um T=2 um W=100 um RHO=1 MSUB=SUB1 12 3 MTEE$ ID=TL2 MSUB=SUB1 MVIA1P ID=V2 D=60 um H=150 um T=2 um W=100 um RHO=1 MSUB=SUB1 MLIN ID=TL3 W=12.5 um L=100 um MSUB=SUB1 MLIN ID=TL4 W=width um L=10 um MSUB=SUB1 MLIN ID=TL5 W=12.5 um L=10 um MSUB=SUB1 MLIN ID=TL6 W=12.5 um L=100 um MSUB=SUB1 MLIN ID=TL7 W=width um L=10 um MSUB=SUB1 MLIN ID=TL8 W=12.5 um L=100 um MSUB=SUB1 MLIN ID=TL9 W=100 um L=100 um MSUB=SUB1 MLIN ID=TL10 W=100 um L=100 um MSUB=SUB1 MCINDS ID=MSP1 NT=2.93 W=12.5 um S=7.24 um R=20.5 um AB=0 WB=10 um HB=2.06 um LB=0 um EPSB=1 TDB=0 TB=1.05 um RhoB=1 MSUB=SUB1 MCINDS ID=MSP3 NT=2.93 W=12.5 um S=7.24 um R=20.5 um AB=0 WB=10 um HB=2.06 um LB=0 um EPSB=1 TDB=0 TB=1.05 um RhoB=1 MSUB=SUB1 MCINDS ID=MSP2 NT=4.69 W=12.5 um S=7.24 um R=19.6 um AB=0 WB=10 um HB=1.97 um LB=0 um EPSB=1 TDB=0 TB=1.05 um RhoB=1 MSUB=SUB1 MLIN ID=TL12 W=12.5 um L=10 um MSUB=SUB1 MCURVE$ ID=TL11 ANG=90 Deg R=10 um MSUB=SUB1 MCURVE$ ID=TL13 ANG=-90 Deg R=50 um MSUB=SUB1 MSTEP$ ID=TL15 MSUB=SUB1 MLIN ID=TL14 W=12.5 um L=160 um MSUB=SUB1 MLIN ID=TL16 W=12.5 um L=171 um MSUB=SUB1 MSTEP$ ID=TL17 MSUB=SUB1 MCURVE$ ID=TL18 ANG=90 Deg R=10 um MSUB=SUB1 MLIN ID=TL19 W=12.5 um L=312 um MSUB=SUB1 MVIA1P ID=V4 D=60 um H=150 um T=2 um W=100 um RHO=1 MSUB=SUB1 MVIA1P ID=V3 D=60 um H=150 um T=2 um W=100 um RHO=1 MSUB=SUB1 MCURVE$ ID=TL22 ANG=-90 Deg R=10 um MSUB=SUB1 MLIN ID=TL23 W=12.5 um L=230 um MSUB=SUB1 MVIA1P ID=V5 D=60 um H=150 um T=2 um W=100 um RHO=1 MSUB=SUB1 MVIA1P ID=V6 D=60 um H=150 um T=2 um W=100 um RHO=1 MSUB=SUB1 PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm len=59.79 width=54.99 MCINDS ID=MSP1 NT=3.55 W=42.5 um S=6.63 um R=16.2 um AB=0 WB=11.3 um HB=2.18 um LB=0 um EPSB=1 TDB=0 TB=12.5 um RhoB=1 MVIA1P ID=V1 D=60 um H=150 um T=2 um W=65 um RHO=1 MSUB=SUB1 1 2 3 MTEE$ ID=TL1 TFC2 ID=TFC1 W=w um L=l um T=0.2 um ER=6.8 RHO=1 TAND=0 MCINDS ID=MSP2 NT=2.25 W=42.9 um S=7.08 um R=17.4 um AB=0 WB=11.3 um HB=2.21 um LB=0 um EPSB=1 TDB=0 TB=12.5 um RhoB=1 MVIA1P ID=V2 D=60 um H=150 um T=2 um W=65 um RHO=1 MSUB=SUB1 TFC2 ID=TFC2 W=w um L=l um T=0.2 um ER=6.8 RHO=1 TAND=0 1 2 3 MTEE$ ID=TL2 1 2 3 MTEE$ ID=TL3 MCINDS ID=MSP3 NT=3.55 W=42.5 um S=6.63 um R=16.2 um AB=0 WB=11.3 um HB=2.18 um LB=0 um EPSB=1 TDB=0 TB=12.5 um RhoB=1MVIA1P ID=V3 D=60 um H=150 um T=2 um W=65 um RHO=1 MSUB=SUB1 MLIN ID=TL4 W=w um L=10 um MLIN ID=TL5 W=w um L=10 um MSUB Er=12.9 H=150 um T=2 um Rho=1 Tand=0.0005 ErNom=12.9 Name=SUB1 MLIN ID=TL6 W=w um L=200 um MSUB=SUB1 MLIN ID=TL7 W=w um L=200 um MSUB=SUB1 MLIN ID=TL8 W=w um L=200 um MSUB=SUB1 MLIN ID=TL9 W=w um L=200 um MSUB=SUB1 MLIN ID=TL10 W=12.5 um L=108.827 um MSUB=SUB1 MLIN ID=TL11 W=12.5 um L=108.827 um MSUB=SUB1 MLIN ID=TL12 W=12.5 um L=108.827 um MSUB=SUB1 MCURVE$ ID=TL13 ANG=90 Deg R=20 um MSUB=SUB1 MLIN ID=TL14 W=w um L=100 um MSUB=SUB1 MSTEP$ ID=TL15 MSUB=SUB1 MLIN ID=TL16 W=100 um L=100 um MSUB=SUB1 MCURVE$ ID=TL17 ANG=90 Deg R=20 um MSUB=SUB1 MLIN ID=TL18 W=w um L=100 um MSUB=SUB1 MLIN ID=TL19 W=100 um L=100 um MSUB=SUB1 MSTEP$ ID=TL20 MSUB=SUB1 MVIA1P ID=V4 D=60 um H=150 um T=2 um W=wv um RHO=1 MSUB=SUB1 MVIA1P ID=V5 D=60 um H=150 um T=2 um W=wv um RHO=1 MSUB=SUB1 MVIA1P ID=V6 D=60 um H=150 um T=2 um W=wv um RHO=1 MSUB=SUB1 MVIA1P ID=V7 D=60 um H=150 um T=2 um W=wv um RHO=1 MSUB=SUB1 PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm w=33.95 l=32.95 wv = 100 0.1 5.1 10.1 15 Frequency (GHz) Low Pass Filter -60 -50 -40 -30 -20 -10 0 0.1 GHz -0.4531 dB 5 GHz -3.641 dB 10 GHz -33.98 dB DB(|S(2,1)|) LPF DB(|S(1,1)|) LPF 0.1 5.1 10.1 15 Frequency (GHz) High Pass Filter -200 -150 -100 -50 0 12.65 GHz -0.2404 dB 2.5 GHz -33.58 dB 5 GHz -3.246 dB DB(|S(2,1)|) HPF DB(|S(1,1)|) HPF