SlideShare une entreprise Scribd logo
1  sur  5
Télécharger pour lire hors ligne
Economic value of Water:
Water provides goods (e.g. drinking-water, irrigation water) and services (e.g.
hydroelectricity generation, recreation and amenity) that are utilized by agriculture,
industry and households. Provision of many of these goods and services is interrelated,
determined by the quantity and quality of available water. Management and allocation of
water entails consideration of its unique characteristics as a resource. These are discussed
in brief below.
Water used for irrigation can be pumped from reserves of groundwater, or abstracted from
rivers or bodies of stored surface water. It is applied to crops by flooding, via channels, as a
spray or drips from nozzles. Crops also obtain water from precipitation. Water infiltrates
into the soil, evaporates, or runs off as surface water. Of the water that infiltrates the soil,
some is taken up by plants (and later lost through transpiration) and some percolates more
deeply, recharging groundwater. This water can be polluted with agrochemicals (fertilizers,
herbicides and pesticides), with salts leached from the soil and with effluent from animal
waste. However, pollution can be attenuated as the water moves through the ground by
processes that include sorption, ion exchange, filtration, precipitation and biodegradation.
Aquifers can also be sources of pollution. Pollutants can be released into groundwater from
pockets of contaminants or natural materials (e.g. sources of fluoride) within the aquifer.
When river levels are low and groundwater levels are high, groundwater can recharge the
levels of surface water, which creates a two-way linkage between resources of surface and
groundwater.
It is not easy to control or prevent water use. Many uses of water involve the withdrawal of
water from the hydrological system (known as 'extractive' or 'off-stream' use). Typically,
only a small proportion of the water withdrawn is consumed. Water consumption is
exclusive in its use. Consumed water is retained in plants, animals, or industrial products,
so it is not available for other uses. However, most of the water withdrawn is not consumed
and it returns to the water system for reuse at a later time and a different location. Water in
return flows can reenter the surface water system further downstream, can percolate into
aquifers, or evaporate, returning to the hydrological system in gaseous form. Therefore,
water withdrawals are not exclusive within a broad perspective on water use, but only
within a narrow location- and time-specific context. Water can also be used in-stream
without removal from the hydrological system (e.g. in hydroelectric power generation or
boating). Such uses generally entail little or no consumption of water but do affect the
location and time at which water is available for consumption by other uses (Young, 1996).
Water is a 'bulky' resource. This means that its economic value per unit weight or volume
tends to be relatively low. Therefore, its conveyance entails a high cost per unit of volume
and is often not economically viable over long distances unless a high marginal value can
be obtained. The costs of abstraction, storage and any conveyance tend to be high relative
to the low economic value that is placed on the use of an additional unit of water. This can
create values for water that are location specific (Young, 1996). A further characteristic of
water is that the quantity of supply cannot be readily specified; it is determined by various
processes: the flow of water; evaporation from the surface; and percolation into the
ground. In the case of surface water, supply is determined largely by the climate.
Consequently, the quantity supplied is variable and can be unreliable. This can preclude
certain uses of water (e.g. the development of water-dependent industries) and affect the
value of water in some uses (e.g. irrigation). The quality of water (i.e. the nature and
concentrations of pollutants) can exclude certain uses (e.g. drinking-water for household
use), but have no impact on others (e.g. hydroelectric power generation).
Characteristics of demand for water for irrigation relate to quantity, location, timing and
quality. Irrigation generally requires large volumes of water, which can be low in quality.
This is in contrast to household use of water, for example, which requires low quantities of
water of high quality. The large volumes of water required for irrigation usually have to be
transported over some distance to the field. For surface water, canals and pipes can enable
conveyance; in the case of groundwater, extraction is provided via tubewells. In terms of
timing, demand for irrigation water can extend through the growing season and, where
adequate supplies are available, extend into the dry season for multiple cropping. Peak
demand for irrigation water does not usually coincide with peak flows of surface water.
This creates the need for storage capacity, which naturally occurring waterbodies (lakes,
wetlands and aquifers) or specially constructed dams may provide. Although the quality of
water required for irrigation is low, high levels of salinity preclude its use for irrigation,
and contaminated supplies can reduce the quality of produce (e.g. contamination of
horticultural produce with pathogens in polluted water supplies). Agriculture is implicated
in issues that concern water quality. Leaching of effluent from animal wastes, especially
from intensive livestock production, can pose a serious water pollution risk. Both return
flows of irrigation water and precipitation runoff from arable land can pollute surface
water with nutrients, herbicides, pesticides, salts leached from the soil, and sediment.
Irrigation is a vital component of agricultural production in many developing countries. In
1997-99, irrigated land provided two-fifths of crop production in developing countries, and
accounted for about one-fifth of the cultivated area. The divergence in these statistics
reflects the high crop yields and multiple cropping that are achieved through irrigation
(FAO, 2002a). Developing countries are particularly dependent on irrigation: in 1997-99,
59 percent of cereal production in developing countries was irrigated (Bruinsma, 2003).
Food production in developing countries is increasing in response to the demands of an
expanding population and rising prosperity. Some of this demand will be met by increased
productivity of rainfed agriculture, some by increased imports, but irrigated agriculture
will be a major contributor.
Agriculture is the largest user of water in all regions of the world except Europe and
North America (FAO, 2002b). In 2000, agriculture accounted for 70 percent of water
withdrawals and 93 percent of water consumption worldwide, where consumption
refers to withdrawals net of returns flows and evaporation (Figure 1). This is in
contrast to industry, which accounted for 20 percent of withdrawals and 4 percent
of consumption worldwide in 2000, and household use, which accounted for 10
percent of withdrawals and 3 percent of consumption (FAO 2004 (AQUASTAT-
database) FAO, 2002b). The water requirements of agriculture are large relative to
water requirements for other human needs. The human body needs about 3 litres of
water per day;
For domestic uses people use approximately 30 - 300 litres of water per person per
day;
To grow their daily food needs people require 3000 litres of water per person per
day. (FAO 2003)
FIGURE 1
Water withdrawals and consumption
Demand for water in India:
The forecast of a below normal monsoon for the second consecutive year has brought the
focus on the perilous state of water resources in the country, but India’s water crisis has
been in the making for a long time.
The rapid growth of population and its growing needs has meant that per capita availability
of fresh water has declined sharply from 3,000 cubic metres to 1,123 cubic metres over the
past 50 years. The global average is 6,000 cubic metres. As water demand is expected to
rise further, the future does not appear rosy.
The pace of growth in demand halves between 2025 and 2050, but remains high enough to
outstrip supply. Unit is billion cubic metre
The forecast of a below normal monsoon for the second consecutive year has brought the
focus on the perilous state of water resources in the country, but India’s water crisis has
been in the making for a long time.
The rapid growth of population and its growing needs has meant that per capita availability
of fresh water has declined sharply from 3,000 cubic metres to 1,123 cubic metres over the
past 50 years. The global average is 6,000 cubic metres. As water demand is expected to
rise further, the future does not appear rosy.
Future projection
The demand supply mismatch is more severe in certain areas. In urban areas, where the
demand of 135 litres per capita daily (lpcd) is more than three times the rural demand of
40 lpcd, the scarcity assumes menacing proportions. Already, Delhi and Chennai are fed
with supply lines stretching hundreds of kilometres. According to projections by the UN,
India’s urban population is expected to rise to 50% of the total population by 2050. This
would mean 840 million people in the most water-starved parts of the country compared
with 320 million today. The issue of inequity in water availability has already proved to be
fertile ground for several inter-state and intra-state disputes, and unless mitigating steps
are taken now, these conflicts would only escalate.
By 2050, energy generation is set to assume a much larger proportion of water usage. This
should further nudge India towards renewable resources since thermal power plants are
highly water-intensive and currently account for maximum water usage among all
industrial applications.
In order to match rapidly increasing demand, India needs to make judicious use of its two
sources of fresh water — surface water and groundwater. Surface water — with rivers as
its main source — is being relentlessly utilised through dams. These dams have robbed
some rivers of their usual water flow, while diverting the course of others.
As much as 55% of India’s total water supply comes from groundwater resources, which is
also a cause of concern. Unbridled exploitation by farmers has led groundwater levels to
plummet dangerously across large swathes of the countryside. Groundwater is critical to
India’s water security. Irrigation, of which over 60% comes from groundwater, takes up
over 80% of total water usage in India. Besides, nearly 30% of urban water supply and
70% of rural water supply comes from groundwater.
Global Water Scarcity:
Water scarcity is the lack of sufficient available water resources to meet water needs
within a region. It affects every continent and around 2.8 billion people around the world at
least one month out of every year. More than 1.2 billion people lack access to clean
drinking water.[1]
Water scarcity involves water shortage, water stress or deficits, and water crisis. The
relatively new concept of water stress is difficulty in obtaining sources of fresh water for
use during a period of time; it may result in further depletion and deterioration of available
water resources.[2] Water shortages may be caused by climate change, such as altered
weather-patterns (including droughts or floods), increased pollution, and increased human
demand and overuse of water.[3] The term water crisis labels a situation where the available
potable, unpolluted water within a region is less than that region's demand.[4] Two
converging phenomena drive water scarcity: growing freshwater use and depletion of
usable freshwater resources.[5]
Water scarcity can result from two mechanisms:
physical (absolute) water scarcity
economic water scarcity
Physical water scarcity results from inadequate natural water resources to supply a
region's demand, and economic water scarcity results from poor management of the
sufficient available water resources. According to the United Nations Development
Programme, the latter is found more often to be the cause of countries or regions
experiencing water scarcity, as most countries or regions have enough water to meet
household, industrial, agricultural, and environmental needs, but lack the means to provide
it in an accessible manner.[6]
Many countries and governments aim to reduce water scarcity. The UN recognizes the
importance of reducing the number of people without sustainable access to clean water
and sanitation. The Millennium Development Goals within the United Nations Millennium
Declaration aimed by 2015 to "halve the proportion of people who are unable to reach or to
afford safe drinking water.
Water stress:
The United Nations (UN) estimates that, of 1.4 billion cubic kilometers (1 quadrillion acre-
feet) of water on Earth, just 200,000 cubic kilometers (162.1 billion acre-feet) represent
fresh water available for human consumption.[9]
More than one in every six people in the world is water stressed, meaning that they do not
have access to potable water.[6] Those that are water stressed make up 1.1 billion people in
the world and are living in developing countries. According to the Falkenmark Water Stress
Indicator,[10] a country or region is said to experience "water stress" when annual water
supplies drop below 1,700 cubic metres per person per year. At levels between 1,700 and
1,000 cubic meters per person per year, periodic or limited water shortages can be
expected. When a country is below 1,000 cubic meters per person per year, the country
then faces water scarcity . In 2006, about 700 million people in 43 countries were living
below the 1,700 cubic metres per person threshold.[6] Water stress is ever intensifying in
regions such as China, India, and Sub-Saharan Africa, which contains the largest number of
water stressed countries of any region with almost one fourth of the population living in a
water stressed country.[6] The world's most water stressed region is the Middle East with
averages of 1,200 cubic metres of water per person.[6] In China, more than 538 million
people are living in a water-stressed region. Much of the water stressed population
currently live in river basins where the usage of water resources greatly exceed the
renewal of the water source.
Water Scarcity in India:
Water resources in India are increasingly becoming scarce. Since rainfall occurs only for
three months in a few spells, storage by dams is imperative to utilize waters. On account of
topographic limitations, ultimate storage capacity is only 16% of average annual flows and
utilizable water is only 38% of the available total. The Indian economy is predominantly
agricultural. Irrigation and power have brought self‐reliance in food production and
economic prosperity but with an increasing population, demands for water are rising fast.
By 2025, all utilizable waters will be consumed. This article presents the existing and
future scenarios, answers criticisms and brings out the inevitable necessity of major dams.
Water scarcity involves water stress, water shortage or deficits, and water crisis. This may
be due to both natural and human factors. But, many reports suggest that the scarcity is
more due to the human factor than anything – such as industrialization, irrigation,
domestic use, etc. The acute water shortage prevailing in the forest areas of Tamil Nadu's
districts of Madurai and Dindigul has led to the deaths of Indian gaurs found in the forest of
the region, as they come in search of water are killed falling into the wells.With support
from government and UNICEF, villagers in Palve Budruk, located in the drought-prone
Parner Block in Ahmednagar district of Maharashtra, developed a catchment plan covering
1,400 hectors – over 80% of the land available. The system has three check dams, 20 canal
bunds, two small percolation tanks linked to the main tank and 19 village ponds. Water
stored in the percolation tank, is strictly meant for domestic use only. Piped water is
supplied for an hour a day in the morning, during which time families fill up water for
drinking and cooking.
The Central Ground Water Authority (CGWA) has notified 82 areas (Districts, Blocks,
Mandals, Talukas, Municipalities) for regulation of ground water development.[4] In these
areas, installation of new ground water abstraction structures is not permitted without
prior specific approval of the Authority / Authorized officer. Moreover, proposals for
setting up/expansion of ground water based industries including bottled water
manufacturing units are forwarded by State Pollution Control Boards and Bureau of Indian
Standards to CGWA for seeking No Objection Certificate (NOC) for ground water
withdrawal. NOC is not accorded to such industries including bottled water manufacturing
units proposed to be located in areas notified by the Authority. In non-notified areas, NOC
is issued with mandatory pre-conditions of adoption of rain water harvesting system,
monitoring of ground water abstraction as well as monitoring of ground water level and
quality etc. by the industry. For enforcement of the regulatory directions issued under
Section 5 of Environment (Protection) Act, 1986, concerned Deputy
Commissioners/District Collectors have been authorized to take necessary action in case of
violations of directives of CGWA in the notified areas.
Rainwater harvesting – Rain water is accumulated and used for ground water
recharge. This increases the ground water availability.[5]
Farm pond – Farm ponds are constructed near the farming field. The rain water
which runs off the ground are collected by these ponds. These ponds helps
agriculture in dry lands.[6][7]
Sources: Google.

Contenu connexe

Tendances

Water management and
Water management andWater management and
Water management and
Jaxy Peilun
 
Unit 8 Global Water Resources
Unit 8  Global Water ResourcesUnit 8  Global Water Resources
Unit 8 Global Water Resources
mojavehack
 
New microsoft office power point presentation
New microsoft office power point presentationNew microsoft office power point presentation
New microsoft office power point presentation
suchi000
 
Chapter 8 water demand management.ppt
Chapter 8  water demand management.pptChapter 8  water demand management.ppt
Chapter 8 water demand management.ppt
Mohammed Salahat
 
Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role...
Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role...Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role...
Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role...
Journal of Agriculture and Crops
 

Tendances (20)

Water conservation & water management
Water conservation & water managementWater conservation & water management
Water conservation & water management
 
Water management and
Water management andWater management and
Water management and
 
Lecture 3 0ppt Water resources
Lecture 3 0ppt Water resourcesLecture 3 0ppt Water resources
Lecture 3 0ppt Water resources
 
Unit 8 Global Water Resources
Unit 8  Global Water ResourcesUnit 8  Global Water Resources
Unit 8 Global Water Resources
 
New microsoft office power point presentation
New microsoft office power point presentationNew microsoft office power point presentation
New microsoft office power point presentation
 
DROUGHT AND LANDSLIDE
DROUGHT AND LANDSLIDEDROUGHT AND LANDSLIDE
DROUGHT AND LANDSLIDE
 
Water ressource assessment
Water ressource assessmentWater ressource assessment
Water ressource assessment
 
Water resources
Water resourcesWater resources
Water resources
 
Water Resorces
Water ResorcesWater Resorces
Water Resorces
 
Water resources
Water resourcesWater resources
Water resources
 
Water resources
Water  resourcesWater  resources
Water resources
 
Water supply, use, pollution and treatments
Water supply, use, pollution and treatmentsWater supply, use, pollution and treatments
Water supply, use, pollution and treatments
 
Water resources
Water resources Water resources
Water resources
 
Chapter 8 water demand management.ppt
Chapter 8  water demand management.pptChapter 8  water demand management.ppt
Chapter 8 water demand management.ppt
 
Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role...
Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role...Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role...
Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role...
 
Research Report
Research Report Research Report
Research Report
 
Water resources
Water resourcesWater resources
Water resources
 
Water Resources And it’s Conversation.ppt
Water Resources And it’s Conversation.pptWater Resources And it’s Conversation.ppt
Water Resources And it’s Conversation.ppt
 
Global water resources and use
Global water resources and useGlobal water resources and use
Global water resources and use
 
Water resources
Water resources Water resources
Water resources
 

En vedette

Landmasses and bodies of water (blank map long)
Landmasses and bodies of water (blank map long)Landmasses and bodies of water (blank map long)
Landmasses and bodies of water (blank map long)
rowena nadao
 

En vedette (18)

Krishnan
KrishnanKrishnan
Krishnan
 
Centro de terapia
Centro de terapiaCentro de terapia
Centro de terapia
 
Distribution and Marketing
Distribution and MarketingDistribution and Marketing
Distribution and Marketing
 
Eurostat 1 salarié sur 6 dans l'ue est travailleur à bas salaire
Eurostat 1 salarié sur 6 dans l'ue est travailleur à bas salaireEurostat 1 salarié sur 6 dans l'ue est travailleur à bas salaire
Eurostat 1 salarié sur 6 dans l'ue est travailleur à bas salaire
 
Overview of drinking water procurement and processing in plant No.1 (Hesar br...
Overview of drinking water procurement and processing in plant No.1 (Hesar br...Overview of drinking water procurement and processing in plant No.1 (Hesar br...
Overview of drinking water procurement and processing in plant No.1 (Hesar br...
 
SMCKC February Breakfast - Social Media as an Extension of Hospitality
SMCKC February Breakfast - Social Media as an Extension of HospitalitySMCKC February Breakfast - Social Media as an Extension of Hospitality
SMCKC February Breakfast - Social Media as an Extension of Hospitality
 
great quotes all of the time...
great quotes all of the time...great quotes all of the time...
great quotes all of the time...
 
Risk assessments
Risk assessmentsRisk assessments
Risk assessments
 
ของไหล ฟิสิกส์เพิ่มเติม3 ม.5
ของไหล ฟิสิกส์เพิ่มเติม3 ม.5ของไหล ฟิสิกส์เพิ่มเติม3 ม.5
ของไหล ฟิสิกส์เพิ่มเติม3 ม.5
 
Jak rozliczać promocje i bonusy w e-sklepie
Jak rozliczać promocje i bonusy w e-sklepie Jak rozliczać promocje i bonusy w e-sklepie
Jak rozliczać promocje i bonusy w e-sklepie
 
Landmasses and bodies of water (blank map long)
Landmasses and bodies of water (blank map long)Landmasses and bodies of water (blank map long)
Landmasses and bodies of water (blank map long)
 
Stagecoach Criterion DVD Review
Stagecoach Criterion DVD ReviewStagecoach Criterion DVD Review
Stagecoach Criterion DVD Review
 
Ropes,belts modification anatomy bandha workshop
Ropes,belts modification anatomy bandha workshopRopes,belts modification anatomy bandha workshop
Ropes,belts modification anatomy bandha workshop
 
Respiratory physiology & Respiratory Distress syndrome in a newborn.
Respiratory physiology & Respiratory Distress syndrome in a newborn.Respiratory physiology & Respiratory Distress syndrome in a newborn.
Respiratory physiology & Respiratory Distress syndrome in a newborn.
 
eBIZ courseware -Module 04 - Focus on... (CW513-018)
eBIZ courseware -Module  04 - Focus on... (CW513-018)eBIZ courseware -Module  04 - Focus on... (CW513-018)
eBIZ courseware -Module 04 - Focus on... (CW513-018)
 
Areas
AreasAreas
Areas
 
Tutorial 2
Tutorial 2Tutorial 2
Tutorial 2
 
Effective Automation 〜変化に強い開発基盤〜
Effective Automation 〜変化に強い開発基盤〜Effective Automation 〜変化に強い開発基盤〜
Effective Automation 〜変化に強い開発基盤〜
 

Similaire à Water economic importance and global water scarcity

BIO-REMEDIATION OF HEAVY METALS FROM DRINKING WATER BY THE HELP OF MICROORGAN...
BIO-REMEDIATION OF HEAVY METALS FROM DRINKING WATER BY THE HELP OF MICROORGAN...BIO-REMEDIATION OF HEAVY METALS FROM DRINKING WATER BY THE HELP OF MICROORGAN...
BIO-REMEDIATION OF HEAVY METALS FROM DRINKING WATER BY THE HELP OF MICROORGAN...
International Journal of Technical Research & Application
 
Water Notes
Water NotesWater Notes
Water Notes
GeoBlogs
 
World water day:water for cities
World water day:water for citiesWorld water day:water for cities
World water day:water for cities
Preksha Bhardwaj
 
Save water
Save waterSave water
Save water
hks310
 
2013 my lect -wwd hotel palash-“international year of water cooperation-bra...
2013 my lect   -wwd hotel palash-“international year of water cooperation-bra...2013 my lect   -wwd hotel palash-“international year of water cooperation-bra...
2013 my lect -wwd hotel palash-“international year of water cooperation-bra...
SG PHADKE
 
pollution of water and water source, water quality
pollution of water and water source, water qualitypollution of water and water source, water quality
pollution of water and water source, water quality
sarahrashid24
 
India has enough water but lacks water management.docx
India has enough water but lacks water management.docxIndia has enough water but lacks water management.docx
India has enough water but lacks water management.docx
S K SHUKLA
 
Rainwater harvesting ppt
Rainwater harvesting pptRainwater harvesting ppt
Rainwater harvesting ppt
Nishtha Kapse
 

Similaire à Water economic importance and global water scarcity (20)

3.. water resourses.pptx
3.. water resourses.pptx3.. water resourses.pptx
3.. water resourses.pptx
 
water resources
water resourceswater resources
water resources
 
IRJET- Ground Water Analysis in and Around Peenya Industrial Area
IRJET-  	  Ground Water Analysis in and Around Peenya Industrial AreaIRJET-  	  Ground Water Analysis in and Around Peenya Industrial Area
IRJET- Ground Water Analysis in and Around Peenya Industrial Area
 
Water Resources
Water ResourcesWater Resources
Water Resources
 
BIO-REMEDIATION OF HEAVY METALS FROM DRINKING WATER BY THE HELP OF MICROORGAN...
BIO-REMEDIATION OF HEAVY METALS FROM DRINKING WATER BY THE HELP OF MICROORGAN...BIO-REMEDIATION OF HEAVY METALS FROM DRINKING WATER BY THE HELP OF MICROORGAN...
BIO-REMEDIATION OF HEAVY METALS FROM DRINKING WATER BY THE HELP OF MICROORGAN...
 
Water Notes
Water NotesWater Notes
Water Notes
 
Water resources pptx
Water resources pptxWater resources pptx
Water resources pptx
 
Water Resources Scenario in India Its Requirement, Water Degradation and Poll...
Water Resources Scenario in India Its Requirement, Water Degradation and Poll...Water Resources Scenario in India Its Requirement, Water Degradation and Poll...
Water Resources Scenario in India Its Requirement, Water Degradation and Poll...
 
World water day:water for cities
World water day:water for citiesWorld water day:water for cities
World water day:water for cities
 
World water day:water for cities
World water day:water for citiesWorld water day:water for cities
World water day:water for cities
 
Save water
Save waterSave water
Save water
 
27 nov16 conjunctive_use_planning_in_a_canal_command_for_food_security
27 nov16 conjunctive_use_planning_in_a_canal_command_for_food_security27 nov16 conjunctive_use_planning_in_a_canal_command_for_food_security
27 nov16 conjunctive_use_planning_in_a_canal_command_for_food_security
 
2013 my lect -wwd hotel palash-“international year of water cooperation-bra...
2013 my lect   -wwd hotel palash-“international year of water cooperation-bra...2013 my lect   -wwd hotel palash-“international year of water cooperation-bra...
2013 my lect -wwd hotel palash-“international year of water cooperation-bra...
 
The Global Water Crisis.docx
The Global Water Crisis.docxThe Global Water Crisis.docx
The Global Water Crisis.docx
 
Water resourse
Water resourseWater resourse
Water resourse
 
Water Resources Essay
Water Resources EssayWater Resources Essay
Water Resources Essay
 
1585913834_UNIT_32.pdf
1585913834_UNIT_32.pdf1585913834_UNIT_32.pdf
1585913834_UNIT_32.pdf
 
pollution of water and water source, water quality
pollution of water and water source, water qualitypollution of water and water source, water quality
pollution of water and water source, water quality
 
India has enough water but lacks water management.docx
India has enough water but lacks water management.docxIndia has enough water but lacks water management.docx
India has enough water but lacks water management.docx
 
Rainwater harvesting ppt
Rainwater harvesting pptRainwater harvesting ppt
Rainwater harvesting ppt
 

Dernier

Environmental Science - Nuclear Hazards and Us.pptx
Environmental Science - Nuclear Hazards and Us.pptxEnvironmental Science - Nuclear Hazards and Us.pptx
Environmental Science - Nuclear Hazards and Us.pptx
hossanmdjobayer103
 
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
kauryashika82
 

Dernier (20)

Booking open Available Pune Call Girls Budhwar Peth 6297143586 Call Hot Indi...
Booking open Available Pune Call Girls Budhwar Peth  6297143586 Call Hot Indi...Booking open Available Pune Call Girls Budhwar Peth  6297143586 Call Hot Indi...
Booking open Available Pune Call Girls Budhwar Peth 6297143586 Call Hot Indi...
 
Call Girls in Sakinaka Agency, { 9892124323 } Mumbai Vashi Call Girls Serivce...
Call Girls in Sakinaka Agency, { 9892124323 } Mumbai Vashi Call Girls Serivce...Call Girls in Sakinaka Agency, { 9892124323 } Mumbai Vashi Call Girls Serivce...
Call Girls in Sakinaka Agency, { 9892124323 } Mumbai Vashi Call Girls Serivce...
 
Cheap Call Girls in Dubai %(+971524965298 )# Dubai Call Girl Service By Rus...
Cheap Call Girls  in Dubai %(+971524965298 )#  Dubai Call Girl Service By Rus...Cheap Call Girls  in Dubai %(+971524965298 )#  Dubai Call Girl Service By Rus...
Cheap Call Girls in Dubai %(+971524965298 )# Dubai Call Girl Service By Rus...
 
(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7
(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7
(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7
 
RA 7942:vThe Philippine Mining Act of 1995
RA 7942:vThe Philippine Mining Act of 1995RA 7942:vThe Philippine Mining Act of 1995
RA 7942:vThe Philippine Mining Act of 1995
 
Environmental Science - Nuclear Hazards and Us.pptx
Environmental Science - Nuclear Hazards and Us.pptxEnvironmental Science - Nuclear Hazards and Us.pptx
Environmental Science - Nuclear Hazards and Us.pptx
 
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
 
Proposed Amendments to Chapter 15, Article X: Wetland Conservation Areas
Proposed Amendments to Chapter 15, Article X: Wetland Conservation AreasProposed Amendments to Chapter 15, Article X: Wetland Conservation Areas
Proposed Amendments to Chapter 15, Article X: Wetland Conservation Areas
 
CSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayCSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting Day
 
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
 
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
 
VIP Model Call Girls Uruli Kanchan ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Uruli Kanchan ( Pune ) Call ON 8005736733 Starting From ...VIP Model Call Girls Uruli Kanchan ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Uruli Kanchan ( Pune ) Call ON 8005736733 Starting From ...
 
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
 
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
 
Cyclone Case Study Odisha 1999 Super Cyclone in India.
Cyclone Case Study Odisha 1999 Super Cyclone in India.Cyclone Case Study Odisha 1999 Super Cyclone in India.
Cyclone Case Study Odisha 1999 Super Cyclone in India.
 
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
 
Book Sex Workers Available Pune Call Girls Kondhwa 6297143586 Call Hot India...
Book Sex Workers Available Pune Call Girls Kondhwa  6297143586 Call Hot India...Book Sex Workers Available Pune Call Girls Kondhwa  6297143586 Call Hot India...
Book Sex Workers Available Pune Call Girls Kondhwa 6297143586 Call Hot India...
 
Alandi Road ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready ...
Alandi Road ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready ...Alandi Road ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready ...
Alandi Road ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready ...
 
Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...
 
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
 

Water economic importance and global water scarcity

  • 1. Economic value of Water: Water provides goods (e.g. drinking-water, irrigation water) and services (e.g. hydroelectricity generation, recreation and amenity) that are utilized by agriculture, industry and households. Provision of many of these goods and services is interrelated, determined by the quantity and quality of available water. Management and allocation of water entails consideration of its unique characteristics as a resource. These are discussed in brief below. Water used for irrigation can be pumped from reserves of groundwater, or abstracted from rivers or bodies of stored surface water. It is applied to crops by flooding, via channels, as a spray or drips from nozzles. Crops also obtain water from precipitation. Water infiltrates into the soil, evaporates, or runs off as surface water. Of the water that infiltrates the soil, some is taken up by plants (and later lost through transpiration) and some percolates more deeply, recharging groundwater. This water can be polluted with agrochemicals (fertilizers, herbicides and pesticides), with salts leached from the soil and with effluent from animal waste. However, pollution can be attenuated as the water moves through the ground by processes that include sorption, ion exchange, filtration, precipitation and biodegradation. Aquifers can also be sources of pollution. Pollutants can be released into groundwater from pockets of contaminants or natural materials (e.g. sources of fluoride) within the aquifer. When river levels are low and groundwater levels are high, groundwater can recharge the levels of surface water, which creates a two-way linkage between resources of surface and groundwater. It is not easy to control or prevent water use. Many uses of water involve the withdrawal of water from the hydrological system (known as 'extractive' or 'off-stream' use). Typically, only a small proportion of the water withdrawn is consumed. Water consumption is exclusive in its use. Consumed water is retained in plants, animals, or industrial products, so it is not available for other uses. However, most of the water withdrawn is not consumed and it returns to the water system for reuse at a later time and a different location. Water in return flows can reenter the surface water system further downstream, can percolate into aquifers, or evaporate, returning to the hydrological system in gaseous form. Therefore, water withdrawals are not exclusive within a broad perspective on water use, but only within a narrow location- and time-specific context. Water can also be used in-stream without removal from the hydrological system (e.g. in hydroelectric power generation or boating). Such uses generally entail little or no consumption of water but do affect the location and time at which water is available for consumption by other uses (Young, 1996). Water is a 'bulky' resource. This means that its economic value per unit weight or volume tends to be relatively low. Therefore, its conveyance entails a high cost per unit of volume and is often not economically viable over long distances unless a high marginal value can be obtained. The costs of abstraction, storage and any conveyance tend to be high relative to the low economic value that is placed on the use of an additional unit of water. This can create values for water that are location specific (Young, 1996). A further characteristic of water is that the quantity of supply cannot be readily specified; it is determined by various processes: the flow of water; evaporation from the surface; and percolation into the ground. In the case of surface water, supply is determined largely by the climate. Consequently, the quantity supplied is variable and can be unreliable. This can preclude certain uses of water (e.g. the development of water-dependent industries) and affect the value of water in some uses (e.g. irrigation). The quality of water (i.e. the nature and concentrations of pollutants) can exclude certain uses (e.g. drinking-water for household use), but have no impact on others (e.g. hydroelectric power generation). Characteristics of demand for water for irrigation relate to quantity, location, timing and quality. Irrigation generally requires large volumes of water, which can be low in quality. This is in contrast to household use of water, for example, which requires low quantities of water of high quality. The large volumes of water required for irrigation usually have to be transported over some distance to the field. For surface water, canals and pipes can enable conveyance; in the case of groundwater, extraction is provided via tubewells. In terms of timing, demand for irrigation water can extend through the growing season and, where adequate supplies are available, extend into the dry season for multiple cropping. Peak demand for irrigation water does not usually coincide with peak flows of surface water.
  • 2. This creates the need for storage capacity, which naturally occurring waterbodies (lakes, wetlands and aquifers) or specially constructed dams may provide. Although the quality of water required for irrigation is low, high levels of salinity preclude its use for irrigation, and contaminated supplies can reduce the quality of produce (e.g. contamination of horticultural produce with pathogens in polluted water supplies). Agriculture is implicated in issues that concern water quality. Leaching of effluent from animal wastes, especially from intensive livestock production, can pose a serious water pollution risk. Both return flows of irrigation water and precipitation runoff from arable land can pollute surface water with nutrients, herbicides, pesticides, salts leached from the soil, and sediment. Irrigation is a vital component of agricultural production in many developing countries. In 1997-99, irrigated land provided two-fifths of crop production in developing countries, and accounted for about one-fifth of the cultivated area. The divergence in these statistics reflects the high crop yields and multiple cropping that are achieved through irrigation (FAO, 2002a). Developing countries are particularly dependent on irrigation: in 1997-99, 59 percent of cereal production in developing countries was irrigated (Bruinsma, 2003). Food production in developing countries is increasing in response to the demands of an expanding population and rising prosperity. Some of this demand will be met by increased productivity of rainfed agriculture, some by increased imports, but irrigated agriculture will be a major contributor. Agriculture is the largest user of water in all regions of the world except Europe and North America (FAO, 2002b). In 2000, agriculture accounted for 70 percent of water withdrawals and 93 percent of water consumption worldwide, where consumption refers to withdrawals net of returns flows and evaporation (Figure 1). This is in contrast to industry, which accounted for 20 percent of withdrawals and 4 percent of consumption worldwide in 2000, and household use, which accounted for 10 percent of withdrawals and 3 percent of consumption (FAO 2004 (AQUASTAT- database) FAO, 2002b). The water requirements of agriculture are large relative to water requirements for other human needs. The human body needs about 3 litres of water per day; For domestic uses people use approximately 30 - 300 litres of water per person per day; To grow their daily food needs people require 3000 litres of water per person per day. (FAO 2003) FIGURE 1 Water withdrawals and consumption Demand for water in India: The forecast of a below normal monsoon for the second consecutive year has brought the focus on the perilous state of water resources in the country, but India’s water crisis has been in the making for a long time. The rapid growth of population and its growing needs has meant that per capita availability of fresh water has declined sharply from 3,000 cubic metres to 1,123 cubic metres over the past 50 years. The global average is 6,000 cubic metres. As water demand is expected to rise further, the future does not appear rosy. The pace of growth in demand halves between 2025 and 2050, but remains high enough to outstrip supply. Unit is billion cubic metre
  • 3. The forecast of a below normal monsoon for the second consecutive year has brought the focus on the perilous state of water resources in the country, but India’s water crisis has been in the making for a long time. The rapid growth of population and its growing needs has meant that per capita availability of fresh water has declined sharply from 3,000 cubic metres to 1,123 cubic metres over the past 50 years. The global average is 6,000 cubic metres. As water demand is expected to rise further, the future does not appear rosy. Future projection The demand supply mismatch is more severe in certain areas. In urban areas, where the demand of 135 litres per capita daily (lpcd) is more than three times the rural demand of 40 lpcd, the scarcity assumes menacing proportions. Already, Delhi and Chennai are fed with supply lines stretching hundreds of kilometres. According to projections by the UN, India’s urban population is expected to rise to 50% of the total population by 2050. This would mean 840 million people in the most water-starved parts of the country compared with 320 million today. The issue of inequity in water availability has already proved to be fertile ground for several inter-state and intra-state disputes, and unless mitigating steps are taken now, these conflicts would only escalate. By 2050, energy generation is set to assume a much larger proportion of water usage. This should further nudge India towards renewable resources since thermal power plants are highly water-intensive and currently account for maximum water usage among all industrial applications. In order to match rapidly increasing demand, India needs to make judicious use of its two sources of fresh water — surface water and groundwater. Surface water — with rivers as its main source — is being relentlessly utilised through dams. These dams have robbed some rivers of their usual water flow, while diverting the course of others. As much as 55% of India’s total water supply comes from groundwater resources, which is also a cause of concern. Unbridled exploitation by farmers has led groundwater levels to plummet dangerously across large swathes of the countryside. Groundwater is critical to India’s water security. Irrigation, of which over 60% comes from groundwater, takes up over 80% of total water usage in India. Besides, nearly 30% of urban water supply and 70% of rural water supply comes from groundwater. Global Water Scarcity: Water scarcity is the lack of sufficient available water resources to meet water needs within a region. It affects every continent and around 2.8 billion people around the world at least one month out of every year. More than 1.2 billion people lack access to clean drinking water.[1] Water scarcity involves water shortage, water stress or deficits, and water crisis. The relatively new concept of water stress is difficulty in obtaining sources of fresh water for use during a period of time; it may result in further depletion and deterioration of available water resources.[2] Water shortages may be caused by climate change, such as altered weather-patterns (including droughts or floods), increased pollution, and increased human demand and overuse of water.[3] The term water crisis labels a situation where the available potable, unpolluted water within a region is less than that region's demand.[4] Two converging phenomena drive water scarcity: growing freshwater use and depletion of usable freshwater resources.[5] Water scarcity can result from two mechanisms: physical (absolute) water scarcity economic water scarcity Physical water scarcity results from inadequate natural water resources to supply a region's demand, and economic water scarcity results from poor management of the sufficient available water resources. According to the United Nations Development Programme, the latter is found more often to be the cause of countries or regions experiencing water scarcity, as most countries or regions have enough water to meet household, industrial, agricultural, and environmental needs, but lack the means to provide it in an accessible manner.[6] Many countries and governments aim to reduce water scarcity. The UN recognizes the importance of reducing the number of people without sustainable access to clean water and sanitation. The Millennium Development Goals within the United Nations Millennium
  • 4. Declaration aimed by 2015 to "halve the proportion of people who are unable to reach or to afford safe drinking water. Water stress: The United Nations (UN) estimates that, of 1.4 billion cubic kilometers (1 quadrillion acre- feet) of water on Earth, just 200,000 cubic kilometers (162.1 billion acre-feet) represent fresh water available for human consumption.[9] More than one in every six people in the world is water stressed, meaning that they do not have access to potable water.[6] Those that are water stressed make up 1.1 billion people in the world and are living in developing countries. According to the Falkenmark Water Stress Indicator,[10] a country or region is said to experience "water stress" when annual water supplies drop below 1,700 cubic metres per person per year. At levels between 1,700 and 1,000 cubic meters per person per year, periodic or limited water shortages can be expected. When a country is below 1,000 cubic meters per person per year, the country then faces water scarcity . In 2006, about 700 million people in 43 countries were living below the 1,700 cubic metres per person threshold.[6] Water stress is ever intensifying in regions such as China, India, and Sub-Saharan Africa, which contains the largest number of water stressed countries of any region with almost one fourth of the population living in a water stressed country.[6] The world's most water stressed region is the Middle East with averages of 1,200 cubic metres of water per person.[6] In China, more than 538 million people are living in a water-stressed region. Much of the water stressed population currently live in river basins where the usage of water resources greatly exceed the renewal of the water source. Water Scarcity in India: Water resources in India are increasingly becoming scarce. Since rainfall occurs only for three months in a few spells, storage by dams is imperative to utilize waters. On account of topographic limitations, ultimate storage capacity is only 16% of average annual flows and utilizable water is only 38% of the available total. The Indian economy is predominantly agricultural. Irrigation and power have brought self‐reliance in food production and economic prosperity but with an increasing population, demands for water are rising fast. By 2025, all utilizable waters will be consumed. This article presents the existing and future scenarios, answers criticisms and brings out the inevitable necessity of major dams. Water scarcity involves water stress, water shortage or deficits, and water crisis. This may be due to both natural and human factors. But, many reports suggest that the scarcity is more due to the human factor than anything – such as industrialization, irrigation, domestic use, etc. The acute water shortage prevailing in the forest areas of Tamil Nadu's districts of Madurai and Dindigul has led to the deaths of Indian gaurs found in the forest of the region, as they come in search of water are killed falling into the wells.With support from government and UNICEF, villagers in Palve Budruk, located in the drought-prone Parner Block in Ahmednagar district of Maharashtra, developed a catchment plan covering
  • 5. 1,400 hectors – over 80% of the land available. The system has three check dams, 20 canal bunds, two small percolation tanks linked to the main tank and 19 village ponds. Water stored in the percolation tank, is strictly meant for domestic use only. Piped water is supplied for an hour a day in the morning, during which time families fill up water for drinking and cooking. The Central Ground Water Authority (CGWA) has notified 82 areas (Districts, Blocks, Mandals, Talukas, Municipalities) for regulation of ground water development.[4] In these areas, installation of new ground water abstraction structures is not permitted without prior specific approval of the Authority / Authorized officer. Moreover, proposals for setting up/expansion of ground water based industries including bottled water manufacturing units are forwarded by State Pollution Control Boards and Bureau of Indian Standards to CGWA for seeking No Objection Certificate (NOC) for ground water withdrawal. NOC is not accorded to such industries including bottled water manufacturing units proposed to be located in areas notified by the Authority. In non-notified areas, NOC is issued with mandatory pre-conditions of adoption of rain water harvesting system, monitoring of ground water abstraction as well as monitoring of ground water level and quality etc. by the industry. For enforcement of the regulatory directions issued under Section 5 of Environment (Protection) Act, 1986, concerned Deputy Commissioners/District Collectors have been authorized to take necessary action in case of violations of directives of CGWA in the notified areas. Rainwater harvesting – Rain water is accumulated and used for ground water recharge. This increases the ground water availability.[5] Farm pond – Farm ponds are constructed near the farming field. The rain water which runs off the ground are collected by these ponds. These ponds helps agriculture in dry lands.[6][7] Sources: Google.