SlideShare une entreprise Scribd logo
1  sur  10
Télécharger pour lire hors ligne
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
36 | P a g e
www.iiste.org
Seven Level Modified Cascaded Inverter for Induction Motor
Drive Applications
M.Murugesan
Faculty of Electrical and Electronics Engineering,
V.S.B Engineering College, Karur
Tamil Nadu, India
E-mail: murugesan.kec@gmail.com
S.Sivaranjani
Faculty of Electrical and Electronics Engineering,
V.S.B Engineering College, Karur
Tamil Nadu, India
E-mail: shivaranjani_s@rediffmail.com
G.Asokkumar
Faculty of Electrical and Electronics Engineering,
Annai Mathammal Sheela Engineering College, Namakkal
Tamil Nadu, India
E-mail: ganeshashokkumar@gmail.com
R.Sivakumar
Faculty of Electrical and Electronics Engineering,
V.S.B Engineering College, Karur
Tamil Nadu, India
E-mail: odaisiva@gmail.com
Abstract
In this paper, an H-bridge inverter topology with reduced switch count technique is introduced. This technique
reduces the number of controlled switches used in conventional multilevel inverter. To establish a single phase
system, the proposed multilevel inverter requires one H-bridge and a multi conversion cell. A multi conversion
cell consists of three equal voltage sources with three controlled switches and three diodes. In conventional
method, twelve controlled switches are used to obtain seven levels. Due to involvement of twelve switches the
harmonics, switching losses, cost and total harmonic distortion are increased. This proposed topology also
increases the level to seven with only seven controlled switches. It dramatically reduces the complexity of
control circuit, cost, lower order harmonics and thus effectively reduces total harmonic distortion.
Keywords: Cascaded Multilevel Inverter, H-bridge Inverter, Total Harmonic Distortion, Sinusoidal Pulse Width
Modulation, Insulated Gate Bipolar Transistor
1. Introduction
Numerous industrial applications have begun to require higher power apparatus in recent years. Some medium
voltage motor drives and utility applications require medium voltage and MW power level. Therefore high
power and medium voltage inverter has recently become a research focus. As far as conventional two level
inverter is concerned, it exhibits many problems when used in high power applications (Franquelo 2008).
Multilevel inverters have been gained more attention for high power application in recent years which can
operate at high switching frequencies while producing lower order harmonic components. A multilevel inverter
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
37 | P a g e
www.iiste.org
not only achieves high power ratings, but also enables the use of renewable energy sources. Renewable energy
sources such as photovoltaic, wind and fuel cells, which can be easily interfaced to a multilevel inverter system
for high power applications (Rodriguez et al. 2002). There are several topologies such as diode clamped
multilevel inverter or neutral point clamped inverter, flying capacitor based multilevel inverter, and cascaded
multilevel inverter (Du et al. 2006). The main disadvantage still exists in diode clamped multilevel inverter
topology, which restricts the use of it to the high power range of operation. Moreover flying capacitor based
multilevel inverter also exhibits a disadvantage including more number of capacitors (Fang Zheng Peng 2001).
The first topology introduced is the series H-bridge design, in which several configurations have been obtained.
This topology consists of series power conversion cells which form cascaded H- bridge multilevel inverter and
power levels will be scaled easily. An apparent disadvantage of this topology is large number of controlled
switches. The proposed topology for multilevel inverter has seven levels associated with a seven number of
power switches. In this proposed topology sinusoidal pulse width modulation technique is used.
2. Cascaded Multilevel Inverter (CMLI)
The general structure of cascaded multilevel inverter for a single phase system is shown in Figure 1. Each
separate voltage source Vdc1, Vdc2, Vdc3 is connected in cascade with other sources via a special H-bridge circuit
associated with it. Each H-bridge circuit consists of four active switching elements that can make the output
voltage either positive or negative polarity; or it can also be simply zero volts which depends on the switching
condition of switches in the circuit. This multilevel inverter topology employs three voltage sources of equal
magnitudes. It is fairly easy to generalize the number of distinct levels (Corzine et al. 2003 and 2004).
The S number of sources or stages and the associated number of output level can be written as follows
2 1
(1)
For example if S=3, the output wave form has seven levels (±3Vdc, ±2Vdc, ±1Vdc and 0). The voltage on each
stage can be calculated by using the equation,
1 1, 2, 3 …
(2)
The number of controlled switches used in this topology is expressed as,
4
(3)
The output voltage of the multilevel inverter is given as,
(4)
Where A1, A2 and A3 are DC voltage sources
The advantages of cascaded multilevel inverter are modularized layout and packaging. This enables the
manufacturing process to be done more quickly and cheaply. The drawback of this topology needs a separate
DC source for each of H-bridge and involves high number of semiconductor switches. Figure 2 shows the
typical output voltage waveform of a seven level cascaded inverter with three separate DC sources.
3. Modified Cascaded Multilevel Inverter (MCMLI)
The general structure of a proposed cascaded multilevel inverter is shown in Figure 3. This inverter consists of a
multi conversion cell and an H bridge. A multi conversion cell consists of three separate voltage sources (Vdc1,
Vdc2, Vdc3), each source connected in cascade with other sources via a circuit consists of one active switching
element and one diode that can make the output voltage source only in positive polarity with several levels.
Only one H-bridge is connected with multi conversion cell to acquire both positive and negative polarity. By
turning on controlled switches S1 (S2 and S3 turn off) the output voltage +1Vdc (first level) is obtained.
Similarly turning on of switches S1, S2 (S3 turn off) +2Vdc (second level) output is produced across the load.
Similarly +3Vdc levels can be achieved by turning on S1, S2, S3 switches as shown in Table 1. The main
advantage of proposed modified cascaded multilevel inverter is seven levels with only use of seven switches.
The S number of DC sources or stages and the associated number output level can be calculated by using the
equation as follows,
2 1
(5)
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
38 | P a g e
www.iiste.org
For an example, if S=3, the output wave form will have seven levels (±3Vdc, ±2Vdc, ±1Vdc and 0). Similarly
voltage on each stage can be calculated by using the equation as given,
1 1, 2, 3 …
(6)
The number switches used in this topology is given by the equation as follows,
2 4
(7)
The switching table for modified cascaded multilevel inverter is shown in Table 1. It depicts that for each
voltage level, only one of the switches is in ON condition among the paralleled switches. Multi conversion cell
converts DC voltage into a stepped DC voltage, which is outputted as a stepped or approximately sinusoidal AC
waveform by the H-bridge inverter. In this H-bridge, for positive half cycle, switches Q1 and Q2 will be turned
on, similarly for negative half cycle switches Q3 and Q4 must be in ON condition. Figure 2 shows the typical
output voltage waveform of a proposed cascaded multilevel inverter with three separate DC sources.
4. PWM for Harmonics Reduction
PWM technique is extensively used for eliminating harmful low-order harmonics in inverters. In PWM control,
the inverter switches are turned ON and OFF several times during a half cycle and output voltage is controlled
by varying the pulse width. SPWM techniques are characterized by constant amplitude pulses with different
duty cycle for each period. The width of this pulses are modulated to obtain inverter output voltage control and
to reduce its harmonic content. Sinusoidal pulse width modulation is the mostly used method in motor control
and inverter application (Ismail 2006).In order to verify the ability of the proposed multilevel inverter topology
to synthesize an output voltage with desired amplitude and better harmonic spectrum, programmed SPWM
technique is applied to determine the required switching angles. It has been proved that in order to control the
fundamental output voltage and eliminate ‘n’ harmonics, ‘n+1’ equations are needed. The method of elimination
will be presented for 7-level inverter such that the solution for three angles is achieved. The Fourier series
expansion of output voltage waveform using fundamental frequency switching scheme as follows
(8)
Where K is the number of
switching angle required for 7 level inverter. Ideally, for a given fundamental voltage V1, it is required to
determine the switching angles , ,…, so that output voltage Vo( t)=V1sin( t ) and a specific higher
harmonics of Vn(n t) are equal to zero. According to the three phase theory in balanced three phase system
third order harmonic is cancelled. The switching angles can be found by solving the following equations
cos cos cos $
cos 5 cos 5 cos 5 0
cos 7 cos 7 cos 7 0
(9)
Where modulation index, $
()
*+,-		
/
									
One approach to solve the set of nonlinear transcendental equations (9), is to use an iterative method such as the
Newton-Raphson method (Patel & Hoft 1973). In contrast to iterative methods, the approach here is based on
solving polynomial equations using the theory of resultants which produces all possible solutions (Chiasson et
al. 2003). The transcendental equations characterizing the harmonic content can be converted into polynomial
equations. Then the resultant method is employed to find the solutions when they exist. These sets of solutions
have to be examined for its corresponding total harmonic distortion (THD) in order to select the set which
generate the lowest harmonic distortion (mostly due to the 11th
and 13th
harmonics). The computed THD in
percent is defined by
012% 	
4(5
67(8
67(9
67⋯7();
6
()
6 	< 100
(10)
Transforming the transcendental equations (9) into polynomial equations using the change of variables and the
trigonometric identities
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
39 | P a g e
www.iiste.org
x cos θ 	, x cos θ 	, 		x cos θ 	, x> cos θ>	,
	
x? cos θ?	, 		x@ cos θ@	, 	xA cos θA
(11)
cos 5θ 	5cosθ B 20cos θ 16	cos?
θ
cos 7θ 	B7cosθ 56cos θ B 112	cos?
θ 	64cosA
θ
(12)
To transfer (9) into the equivalent conditions
p x x x x Bm 0
p? x F 5
A
GH
xG B 20xG 16xG
?
0
pA x ∑ BA
GH 7xG 56xG B 112xG
?
64xG
A
0
(13)
System (12) is a set of three polynomial equations in three unknowns X1, X2, and X3, where X=( X1, X2, X3,)
and the angles condition must satisfy 0 X1 X2 X3 1. Polynomial systems are also considered to
compute the solutions of the harmonic elimination equations by iterative numerical methods which give only
one solution. In contrast, this system of polynomial equations will be solved using resultant such that all
possible solution of (9) can be found. A systematic procedure to do this is known as elimination theory and uses
the notion of resultants. The details of this procedure can be found in (Chiasson et al. 2004).
5. Simulation Result Analysis
The performance of the proposed modified cascaded multilevel inverter for induction motor drive is verified
through the simulation results. It can be seen from Figure 3 input voltages for each succeeding voltage source is
same. Figure 5 shows the simulation diagram of three phase modified cascaded multilevel inverter for induction
motor drive. From that multilevel inverter seven level can be easily achieved by making the switching pulse
sequences as shown in Figure 6a and Figure 6b. Figure 7a and 7b shows the output voltage waveform of single
phase line to ground and line to line voltages of the proposed inverter. Figure 8a and 8b shows the output
voltage waveform of three phase line to ground and line to line voltages of the proposed inverter. In this phase
voltage is 220V and line voltage is 400V for seven level. Figure 9a and 9b shows the MATLAB simulation
output waveform of speed and torque curve of induction motor. From the speed and torque curves, it is
concreted that rated speed quickly achieved within 0.4 msec and the torque is quickly settled at 0.45 msec.
Figure 10a shows the stator current waveform of induction motor. Therefore the proposed multilevel inverter
can be used for variable speed drive application, which can be obtained by varying the frequency of multilevel
inverter. From the FFT analysis it can be inferred that when the number of levels are increased, the harmonics
and total harmonic distortion is reduced. Figure 10b shows THD value of proposed seven level inverter and it is
11.98%.
6. Comparison Results
Table 2 shows that the modified cascaded multilevel inverter involves only seven switches whereas
conventional inverter comprises twelve switches, but in both cases input voltage at each stage and output level
are same. Therefore the proposed modified cascaded multilevel inverter has less switching losses, simple control
circuit and less complexity than conventional cascaded multilevel inverter.
7. Experimental Verification
Simulation of modified cascaded multilevel inverter output voltage is verified by single phase hardware
prototype. Hardware prototype includes seven switches. Among those, three MOSFETs and three diodes are
made available for a multi conversion cell. This cell consists of three power stages. In each power stage, one
MOSFET (IRF250) and one diode are used as main switches, which are connected in modified configuration.
Each stage is supplied by a symmetrical DC source. A PIC 16F877 microcontroller is used as the main
processor, which provides gate logic signals. According to microcontroller control signal MOSFET gate
terminal is turned on and off. Output of the inverter terminal is connected to R load. The hardware block
diagram and prototype of modified cascaded multilevel inverter for a single leg are shown in Figure 11 and 12.
Hardware result of proposed multilevel inverter is exposed in Figure 13. The resultant voltage of seven level
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
40 | P a g e
www.iiste.org
cascaded multilevel inverter is 9 volts, with frequency of 50 Hz.
8. Conclusion
This paper revealed that proposed modified multilevel inverter topology with reduced number of switches can
be implemented for industrial drive applications. This multilevel inverter structure and its basic operations have
been discussed elaborately. A detailed procedure for calculating required voltage level on each stage has been
conversed. As conventional seven level inverter involves twelve switches, it increases switching losses, cost and
circuit complexity The proposed inverter engages only seven switches with three diodes, which reduces
switching losses, cost and circuit complexity. Moreover it effectively diminishes lower order harmonics.
Therefore effective reduction of total harmonics distortion is achieved.
Appendix
Motor Details
Rotor Type: Wound
Power, Voltage and Frequency: 3730 W, 400 V and 50 Hz
Stator Resistance and Inductance: 1.115Ω and 0.005974Ω
Rotor Resistance and Inductance: 1.083Ω and 0.005947Ω
References
Franquelo, L.G., (2008), “The age of multilevel converters arrives”, IEEE Industrial Electronics Magazine,
Vol.2, No.2, 28-39.
Rodriguez, J., Lai, J.S. & Peng, F.Z., (2002) “Multilevel inverters: Survey of topologies, controls, and
applications”, IEEE Trans. Ind .Appl. Vol.49, No.4, 724-738.
Du, Z., Tolbert, L.M., Chiasson, J.N.& Opineci, B., (2006), “A cascaded multilevel inverter using a single dc
power source”, Proc. IEEE APEC, 426-430.
Fang Zheng Peng (2001), “A Generalized Multilevel Inverter Topology with Self Voltage Balancing”, IEEE
Trans. Ind .Appl. Vol.37, No.2.
Corzine, K.A., Wielebski, M.W., Peng, F.Z & Wang, J., (2004), “Control of cascaded multilevel inverters”,
IEEE Trans. Power Electron. Vol.19, No.3, 732-738.
Corzine, K.A., Hardick F.A, & Familiant, Y.L. (2003), “A cascaded multilevel inverter H-Bridge inverter
utilizing capacitor voltage source”, Proceeding of the IASTED International Conference on Power and Energy
Systems, pp.290-295.
Ismail, B., (2006), “Development of a Single Phase SPWM Microcontroller-Based Inverter”, First International
Power and Energy Conference PEC-IEEE, 28-29.
Patel, H.S. & Hoft, R.G., (1973), “Generalized Techniques of Harmonic Elimination and Voltage Control in
Thyristor Inverters: Part I – Harmonic Elimination”, IEEE Trans. Ind.Appl., 3, pp. 310-317.
Chiasson, J.N., Tolbert, L.M., Mckenzie, K.J. & Du Z., (2003), “Control of a Multilevel Converter Using
Resultant Theory”, IEEE Transactions Control System Theory, Vol. 11, No.3, pp. 345-354.
Chiasson, J.N. Tobert, L.M., McKenzie, K.J. & Du, Z., (2004), “A Unified Approach to Solving the Harmonic
Elimination Equations in Multilevel Converters”, IEEE Trans. Power Electron., Vol.19, No.2, pp. 478-490.
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
41 | P a g e
www.iiste.org
Figure 1. Topology for Cascaded Multilevel Inverter
Figure 2. Typical Output Waveform for Cascaded Multilevel Inverter
Figure 3. Topology for Modified Cascaded Multilevel Inverter
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
42 | P a g e
www.iiste.org
Figure 4. Typical Output Voltage Waveform of a Modified Cascaded Multilevel Inverter
Figure 5. Simulation Diagram for Modified Cascaded Multilevel Inverter for Induction Motor Drive
(a) (b)
Figure 6. Switching Pulses for (a) Switches S1, S2, S3, S4, S5 and S6 (b) Switches Q1-Q2 and Q3-Q4
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
43 | P a g e
www.iiste.org
(a) (b)
Figure 7. Output Voltage Waveform for Single Phase (a) Line to Ground (b) Line to Line
(a) (b)
Figure 8. Output Voltage Waveform for Three Phase (a) Line to Ground (b) Line to Line
(a)
(b)
Figure 9. Modified Cascaded Multilevel Inverter fed Induction Motor (a) Speed Curve (b) Torque Curve
(a)
(b)
Figure 10. Modified Cascaded Multilevel Inverter fed Induction Motor (a) Stator Current (b) FFT Analysis
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
44 | P a g e
www.iiste.org
Figure 11. Block Diagram for Modified Cascaded Multilevel Inverter
Figure 12. Experimental Setup of Modified Cascaded Multilevel Inverter
Figure 13. Hardware Output Waveform for Modified Cascaded Multilevel Inverter
Table 1. Basic Operation of Proposed Multilevel Inverter
S. No
Multi-conversion Cell H-Bridge
Voltage
levelsOn switches Off switches On switches Off switches
1 S1, S2, S3 D1,D2,D3 Q1,Q2 Q3,Q4 +3Vdc
2 S1, S2, D3 S3, D1,D2 Q1,Q2 Q3,Q4 +2Vdc
3 S1, D2, D3 S2, S3, D1 Q1,Q2 Q3,Q4 +1Vdc
4 D1, D2, D3 S1, S2, S3 Q1,Q2 Q3,Q4 0
5 S1, D2, D3 S2, S3, D1 Q3,Q4 Q1,Q2 -1Vdc
6 S1, S2, D3 S3, D1,D2 Q3,Q4 Q1,Q2 -2Vdc
7 S1, S2, S3 D1,D2,D3 Q3,Q4 Q1,Q2 -3Vdc
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5758 (print) ISSN 2224-896X (online)
Vol 1, No.1, 2011
45 | P a g e
www.iiste.org
Table 2. Comparison of Cascaded and Modified Cascaded Multilevel Inverter
Biography
M.Murugesan was born in Anthiyur on December 27, 1986. He is graduated in 2009 from
Anna University, Chennai. He is post graduated M.E Power Electronics and Drives during 2011
from Anna University. He is currently working as Assistant professor at V.S.B Engineering
College. His area of interest involves in Power Electronics, inverter, modeling of induction
Motor. He is an ISTE life member. He has published more than 10 papers.
S. Sivaranjani was born in Tamilnadu, India, on March 30, 1980. She received B.E degree from
Bharathiyar University, in 2001. She also received M.E degree in Power Electronics and drives
during 2006 from Anna University, Chennai. She is having 9 years of teaching experience.
Currently she is doing Ph.D. Her current research interests include simulation and digital control
techniques of AC drives, Inverters topologies and harmonic suppression
G.Asokkumar was born in Erode on June 11, 1980. He is graduated in 2001 from
Bharathidhasan University Trichy. He also received M.E degree in Power Electronics and drives
during 2011 from Anna University, Chennai. His area of interest involves in Power Electronics,
BLDC Drives, inverter, modeling of induction Motor. He has published more than 8 papers
.
R.Sivakumar was born in Madurai on June 4, 1979. He is graduated in 2000 from
M.K.University, Madurai and post graduated in 2011 at Anna University of technology,
Trichy. . He is currently working as Assistant professor in the department of EEE at VSB
engineering College. Karur from April 2006. His research interest involves in power
electronics, inverter and modeling of wind turbine. He is an ISTE life member.
Name of Topology
Voltage level
on each stage (S)
Number of
output level
Number of
switches used
Number of switches
for 7 level
Cascaded Multilevel
Inverter
1Vdc 2S+1 4S 12
Modified Cascaded
Multilevel Inverter
1Vdc 2S+1 S+4 7

Contenu connexe

Tendances

Single Phase Matrix Converter for Input Power Factor Improvement
Single Phase Matrix Converter for Input Power Factor ImprovementSingle Phase Matrix Converter for Input Power Factor Improvement
Single Phase Matrix Converter for Input Power Factor Improvementiosrjce
 
Application of single phase matrix converter topology to an uninterruptible p...
Application of single phase matrix converter topology to an uninterruptible p...Application of single phase matrix converter topology to an uninterruptible p...
Application of single phase matrix converter topology to an uninterruptible p...eSAT Publishing House
 
A hybrid cascaded multilevel converter for battery 2
A hybrid cascaded multilevel converter for battery 2A hybrid cascaded multilevel converter for battery 2
A hybrid cascaded multilevel converter for battery 2Ki Tu
 
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROLDESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROLIAEME Publication
 
An Improved Single Phase Transformer less Inverter Topology for Cost Effecti...
An Improved Single Phase Transformer less Inverter Topology  for Cost Effecti...An Improved Single Phase Transformer less Inverter Topology  for Cost Effecti...
An Improved Single Phase Transformer less Inverter Topology for Cost Effecti...IJMER
 
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...Sajin Ismail
 
Analysis and Simulation of Solar PV Connected with Grid Accomplished with Boo...
Analysis and Simulation of Solar PV Connected with Grid Accomplished with Boo...Analysis and Simulation of Solar PV Connected with Grid Accomplished with Boo...
Analysis and Simulation of Solar PV Connected with Grid Accomplished with Boo...YogeshIJTSRD
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Simulation of a 13-Level Inverter with Facts Capability for Distributed Energ...
Simulation of a 13-Level Inverter with Facts Capability for Distributed Energ...Simulation of a 13-Level Inverter with Facts Capability for Distributed Energ...
Simulation of a 13-Level Inverter with Facts Capability for Distributed Energ...IJMTST Journal
 
Design and fabrication of rotor lateral shifting in the axial-flux permanent-...
Design and fabrication of rotor lateral shifting in the axial-flux permanent-...Design and fabrication of rotor lateral shifting in the axial-flux permanent-...
Design and fabrication of rotor lateral shifting in the axial-flux permanent-...IJECEIAES
 
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS IAEME Publication
 
A Single Phase Eleven Level Cascaded H-Bridge Multilevel Inverter for Photovo...
A Single Phase Eleven Level Cascaded H-Bridge Multilevel Inverter for Photovo...A Single Phase Eleven Level Cascaded H-Bridge Multilevel Inverter for Photovo...
A Single Phase Eleven Level Cascaded H-Bridge Multilevel Inverter for Photovo...IJMER
 
Mutilevel ieee final
Mutilevel ieee finalMutilevel ieee final
Mutilevel ieee finalFaiza FARAH
 
A new control methods for offshore grid connected wind energy conversion syst...
A new control methods for offshore grid connected wind energy conversion syst...A new control methods for offshore grid connected wind energy conversion syst...
A new control methods for offshore grid connected wind energy conversion syst...IAEME Publication
 

Tendances (18)

Single Phase Matrix Converter for Input Power Factor Improvement
Single Phase Matrix Converter for Input Power Factor ImprovementSingle Phase Matrix Converter for Input Power Factor Improvement
Single Phase Matrix Converter for Input Power Factor Improvement
 
Application of single phase matrix converter topology to an uninterruptible p...
Application of single phase matrix converter topology to an uninterruptible p...Application of single phase matrix converter topology to an uninterruptible p...
Application of single phase matrix converter topology to an uninterruptible p...
 
A hybrid cascaded multilevel converter for battery 2
A hybrid cascaded multilevel converter for battery 2A hybrid cascaded multilevel converter for battery 2
A hybrid cascaded multilevel converter for battery 2
 
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROLDESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
 
An Improved Single Phase Transformer less Inverter Topology for Cost Effecti...
An Improved Single Phase Transformer less Inverter Topology  for Cost Effecti...An Improved Single Phase Transformer less Inverter Topology  for Cost Effecti...
An Improved Single Phase Transformer less Inverter Topology for Cost Effecti...
 
O1102019296
O1102019296O1102019296
O1102019296
 
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
Design and Simulation of Efficient DC-DC Converter Topology for a Solar PV Mo...
 
Analysis and Simulation of Solar PV Connected with Grid Accomplished with Boo...
Analysis and Simulation of Solar PV Connected with Grid Accomplished with Boo...Analysis and Simulation of Solar PV Connected with Grid Accomplished with Boo...
Analysis and Simulation of Solar PV Connected with Grid Accomplished with Boo...
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Simulation of a 13-Level Inverter with Facts Capability for Distributed Energ...
Simulation of a 13-Level Inverter with Facts Capability for Distributed Energ...Simulation of a 13-Level Inverter with Facts Capability for Distributed Energ...
Simulation of a 13-Level Inverter with Facts Capability for Distributed Energ...
 
A1103030111
A1103030111A1103030111
A1103030111
 
Design and fabrication of rotor lateral shifting in the axial-flux permanent-...
Design and fabrication of rotor lateral shifting in the axial-flux permanent-...Design and fabrication of rotor lateral shifting in the axial-flux permanent-...
Design and fabrication of rotor lateral shifting in the axial-flux permanent-...
 
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
 
A Single Phase Eleven Level Cascaded H-Bridge Multilevel Inverter for Photovo...
A Single Phase Eleven Level Cascaded H-Bridge Multilevel Inverter for Photovo...A Single Phase Eleven Level Cascaded H-Bridge Multilevel Inverter for Photovo...
A Single Phase Eleven Level Cascaded H-Bridge Multilevel Inverter for Photovo...
 
Tie.2007.894713
Tie.2007.894713Tie.2007.894713
Tie.2007.894713
 
Mutilevel ieee final
Mutilevel ieee finalMutilevel ieee final
Mutilevel ieee final
 
A new control methods for offshore grid connected wind energy conversion syst...
A new control methods for offshore grid connected wind energy conversion syst...A new control methods for offshore grid connected wind energy conversion syst...
A new control methods for offshore grid connected wind energy conversion syst...
 
Improved 25-level inverter topology with reduced part count for PV grid-tie a...
Improved 25-level inverter topology with reduced part count for PV grid-tie a...Improved 25-level inverter topology with reduced part count for PV grid-tie a...
Improved 25-level inverter topology with reduced part count for PV grid-tie a...
 

En vedette

Onderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitiefOnderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitiefrloggen
 
Schrijven voor het web
Schrijven voor het webSchrijven voor het web
Schrijven voor het webSimone Levie
 
Vr voor kerkbezoek onderzoeksrapport versie-2
Vr voor kerkbezoek   onderzoeksrapport versie-2Vr voor kerkbezoek   onderzoeksrapport versie-2
Vr voor kerkbezoek onderzoeksrapport versie-2rloggen
 
Interacciones farmaco-alimento
Interacciones farmaco-alimentoInteracciones farmaco-alimento
Interacciones farmaco-alimentoGénesis Cedeño
 
32 ways to make your blog suck less
32 ways to make your blog suck less32 ways to make your blog suck less
32 ways to make your blog suck lessScott Hanselman
 
Actualiteiten ICT Contracten en Partnerships (2012)
Actualiteiten ICT Contracten en Partnerships (2012)Actualiteiten ICT Contracten en Partnerships (2012)
Actualiteiten ICT Contracten en Partnerships (2012)Advocatenkantoor LEGALZ
 
Marco del buen desempeño docente
Marco del buen desempeño docenteMarco del buen desempeño docente
Marco del buen desempeño docente0013
 
Training Schrijven voor het Web
Training Schrijven voor het WebTraining Schrijven voor het Web
Training Schrijven voor het WebSimone Levie
 
De Reis van de Heldin december 2015
De Reis van de Heldin december 2015De Reis van de Heldin december 2015
De Reis van de Heldin december 2015Peter de Kuster
 
Error messages
Error messagesError messages
Error messagesrtinkelman
 
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)Geohistoria23
 
Análisis situacional integral de salud final
 Análisis situacional integral de salud final Análisis situacional integral de salud final
Análisis situacional integral de salud finalEstefanía Echeverría
 
Portafolio de Evidencias de mi Práctica Docente
Portafolio de Evidencias de mi Práctica DocentePortafolio de Evidencias de mi Práctica Docente
Portafolio de Evidencias de mi Práctica DocenteNorma Vega
 

En vedette (20)

De impact van adhd
De impact van adhdDe impact van adhd
De impact van adhd
 
Geheugen verbeteren
Geheugen verbeterenGeheugen verbeteren
Geheugen verbeteren
 
Onderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitiefOnderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitief
 
Schrijven voor het web
Schrijven voor het webSchrijven voor het web
Schrijven voor het web
 
Fichero de actividades
Fichero de actividadesFichero de actividades
Fichero de actividades
 
Modulo7gestion
Modulo7gestionModulo7gestion
Modulo7gestion
 
Vr voor kerkbezoek onderzoeksrapport versie-2
Vr voor kerkbezoek   onderzoeksrapport versie-2Vr voor kerkbezoek   onderzoeksrapport versie-2
Vr voor kerkbezoek onderzoeksrapport versie-2
 
Interacciones farmaco-alimento
Interacciones farmaco-alimentoInteracciones farmaco-alimento
Interacciones farmaco-alimento
 
32 ways to make your blog suck less
32 ways to make your blog suck less32 ways to make your blog suck less
32 ways to make your blog suck less
 
Actualiteiten ICT Contracten en Partnerships (2012)
Actualiteiten ICT Contracten en Partnerships (2012)Actualiteiten ICT Contracten en Partnerships (2012)
Actualiteiten ICT Contracten en Partnerships (2012)
 
Marco del buen desempeño docente
Marco del buen desempeño docenteMarco del buen desempeño docente
Marco del buen desempeño docente
 
Training Schrijven voor het Web
Training Schrijven voor het WebTraining Schrijven voor het Web
Training Schrijven voor het Web
 
"Protección de la salud mental luego del terremoto y tsunami del 27 de febrer...
"Protección de la salud mental luego del terremoto y tsunami del 27 de febrer..."Protección de la salud mental luego del terremoto y tsunami del 27 de febrer...
"Protección de la salud mental luego del terremoto y tsunami del 27 de febrer...
 
Relatietips
RelatietipsRelatietips
Relatietips
 
De Reis van de Heldin december 2015
De Reis van de Heldin december 2015De Reis van de Heldin december 2015
De Reis van de Heldin december 2015
 
Error messages
Error messagesError messages
Error messages
 
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
 
Análisis situacional integral de salud final
 Análisis situacional integral de salud final Análisis situacional integral de salud final
Análisis situacional integral de salud final
 
Portafolio de Evidencias de mi Práctica Docente
Portafolio de Evidencias de mi Práctica DocentePortafolio de Evidencias de mi Práctica Docente
Portafolio de Evidencias de mi Práctica Docente
 
PMP Sonora Saludable 2010 2015
PMP Sonora Saludable 2010   2015  PMP Sonora Saludable 2010   2015
PMP Sonora Saludable 2010 2015
 

Similaire à Seven Level Cascaded Inverter Drives Motors

Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...IJMER
 
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...IJPEDS-IAES
 
Analysis and hardware implementation of five level cascaded H Bridge inverter
Analysis and hardware implementation of five level cascaded H Bridge inverterAnalysis and hardware implementation of five level cascaded H Bridge inverter
Analysis and hardware implementation of five level cascaded H Bridge inverterIJERA Editor
 
A Simple Strategy of Controlling a Balanced Voltage Capacitor in Single Phase...
A Simple Strategy of Controlling a Balanced Voltage Capacitor in Single Phase...A Simple Strategy of Controlling a Balanced Voltage Capacitor in Single Phase...
A Simple Strategy of Controlling a Balanced Voltage Capacitor in Single Phase...IAES-IJPEDS
 
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...IOSR Journals
 
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...IAES-IJPEDS
 
Modified T-type topology of three-phase multi-level inverter for photovoltaic...
Modified T-type topology of three-phase multi-level inverter for photovoltaic...Modified T-type topology of three-phase multi-level inverter for photovoltaic...
Modified T-type topology of three-phase multi-level inverter for photovoltaic...IJECEIAES
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Analysis of Multilevel Inverter using Bipolar and Unipolar Switching Schemes ...
Analysis of Multilevel Inverter using Bipolar and Unipolar Switching Schemes ...Analysis of Multilevel Inverter using Bipolar and Unipolar Switching Schemes ...
Analysis of Multilevel Inverter using Bipolar and Unipolar Switching Schemes ...ijsrd.com
 
Multi Carrier based Multilevel Inverter with Minimal Harmonic Distortion
Multi Carrier based Multilevel Inverter with Minimal Harmonic DistortionMulti Carrier based Multilevel Inverter with Minimal Harmonic Distortion
Multi Carrier based Multilevel Inverter with Minimal Harmonic DistortionIJPEDS-IAES
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Total Harmonic Distortion Alleviation by using Shunt Active Filter
Total Harmonic Distortion Alleviation by using Shunt Active FilterTotal Harmonic Distortion Alleviation by using Shunt Active Filter
Total Harmonic Distortion Alleviation by using Shunt Active FilterIJMER
 
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter TopologyApplication of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter TopologyIOSR Journals
 
An Overview of Different Multi-level Inverters
An Overview of Different Multi-level InvertersAn Overview of Different Multi-level Inverters
An Overview of Different Multi-level Inverterspaperpublications3
 

Similaire à Seven Level Cascaded Inverter Drives Motors (20)

X33128132
X33128132X33128132
X33128132
 
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
Performance Evaluation of Nine Level Modified CHB Multilevel Inverter for Var...
 
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
 
Analysis and hardware implementation of five level cascaded H Bridge inverter
Analysis and hardware implementation of five level cascaded H Bridge inverterAnalysis and hardware implementation of five level cascaded H Bridge inverter
Analysis and hardware implementation of five level cascaded H Bridge inverter
 
A Simple Strategy of Controlling a Balanced Voltage Capacitor in Single Phase...
A Simple Strategy of Controlling a Balanced Voltage Capacitor in Single Phase...A Simple Strategy of Controlling a Balanced Voltage Capacitor in Single Phase...
A Simple Strategy of Controlling a Balanced Voltage Capacitor in Single Phase...
 
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
Design and Optimum Arrangement Of 3-phase Cascade Multilevel Inverter for Con...
 
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
Asymmetrical Cascaded Multi Level Inverter using Control Freedom Pulse width ...
 
Modified T-type topology of three-phase multi-level inverter for photovoltaic...
Modified T-type topology of three-phase multi-level inverter for photovoltaic...Modified T-type topology of three-phase multi-level inverter for photovoltaic...
Modified T-type topology of three-phase multi-level inverter for photovoltaic...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
A high-performance multilevel inverter with reduced power electronic devices
A high-performance multilevel inverter with reduced power electronic devicesA high-performance multilevel inverter with reduced power electronic devices
A high-performance multilevel inverter with reduced power electronic devices
 
Analysis of Multilevel Inverter using Bipolar and Unipolar Switching Schemes ...
Analysis of Multilevel Inverter using Bipolar and Unipolar Switching Schemes ...Analysis of Multilevel Inverter using Bipolar and Unipolar Switching Schemes ...
Analysis of Multilevel Inverter using Bipolar and Unipolar Switching Schemes ...
 
Dual_inverter_uni
Dual_inverter_uniDual_inverter_uni
Dual_inverter_uni
 
Lz3620532059
Lz3620532059Lz3620532059
Lz3620532059
 
Multi Carrier based Multilevel Inverter with Minimal Harmonic Distortion
Multi Carrier based Multilevel Inverter with Minimal Harmonic DistortionMulti Carrier based Multilevel Inverter with Minimal Harmonic Distortion
Multi Carrier based Multilevel Inverter with Minimal Harmonic Distortion
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
I41045662
I41045662I41045662
I41045662
 
Total Harmonic Distortion Alleviation by using Shunt Active Filter
Total Harmonic Distortion Alleviation by using Shunt Active FilterTotal Harmonic Distortion Alleviation by using Shunt Active Filter
Total Harmonic Distortion Alleviation by using Shunt Active Filter
 
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter TopologyApplication of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
Application of SVM Technique for Three Phase Three Leg Ac/Ac Converter Topology
 
An Overview of Different Multi-level Inverters
An Overview of Different Multi-level InvertersAn Overview of Different Multi-level Inverters
An Overview of Different Multi-level Inverters
 
N1102018691
N1102018691N1102018691
N1102018691
 

Plus de Alexander Decker

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Alexander Decker
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inAlexander Decker
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesAlexander Decker
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksAlexander Decker
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dAlexander Decker
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceAlexander Decker
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifhamAlexander Decker
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaAlexander Decker
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenAlexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksAlexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget forAlexander Decker
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabAlexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...Alexander Decker
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalAlexander Decker
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesAlexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbAlexander Decker
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloudAlexander Decker
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveragedAlexander Decker
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenyaAlexander Decker
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health ofAlexander Decker
 

Plus de Alexander Decker (20)

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale in
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websites
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banks
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized d
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistance
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifham
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibia
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school children
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banks
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjab
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incremental
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniques
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo db
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloud
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveraged
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenya
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health of
 

Dernier

GD Birla and his contribution in management
GD Birla and his contribution in managementGD Birla and his contribution in management
GD Birla and his contribution in managementchhavia330
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxAndy Lambert
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...anilsa9823
 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsApsara Of India
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Neil Kimberley
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Tina Ji
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLSeo
 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth MarketingShawn Pang
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni
 
RE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechRE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechNewman George Leech
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayNZSG
 
DEPED Work From Home WORKWEEK-PLAN.docx
DEPED Work From Home  WORKWEEK-PLAN.docxDEPED Work From Home  WORKWEEK-PLAN.docx
DEPED Work From Home WORKWEEK-PLAN.docxRodelinaLaud
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
Catalogue ONG NUOC PPR DE NHAT .pdf
Catalogue ONG NUOC PPR DE NHAT      .pdfCatalogue ONG NUOC PPR DE NHAT      .pdf
Catalogue ONG NUOC PPR DE NHAT .pdfOrient Homes
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst SummitHolger Mueller
 

Dernier (20)

GD Birla and his contribution in management
GD Birla and his contribution in managementGD Birla and his contribution in management
GD Birla and his contribution in management
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptx
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through Cartoons
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
Best Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting PartnershipBest Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting Partnership
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.
 
KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)KestrelPro Flyer Japan IT Week 2024 (English)
KestrelPro Flyer Japan IT Week 2024 (English)
 
RE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechRE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman Leech
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 May
 
DEPED Work From Home WORKWEEK-PLAN.docx
DEPED Work From Home  WORKWEEK-PLAN.docxDEPED Work From Home  WORKWEEK-PLAN.docx
DEPED Work From Home WORKWEEK-PLAN.docx
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
Catalogue ONG NUOC PPR DE NHAT .pdf
Catalogue ONG NUOC PPR DE NHAT      .pdfCatalogue ONG NUOC PPR DE NHAT      .pdf
Catalogue ONG NUOC PPR DE NHAT .pdf
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst Summit
 

Seven Level Cascaded Inverter Drives Motors

  • 1. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 36 | P a g e www.iiste.org Seven Level Modified Cascaded Inverter for Induction Motor Drive Applications M.Murugesan Faculty of Electrical and Electronics Engineering, V.S.B Engineering College, Karur Tamil Nadu, India E-mail: murugesan.kec@gmail.com S.Sivaranjani Faculty of Electrical and Electronics Engineering, V.S.B Engineering College, Karur Tamil Nadu, India E-mail: shivaranjani_s@rediffmail.com G.Asokkumar Faculty of Electrical and Electronics Engineering, Annai Mathammal Sheela Engineering College, Namakkal Tamil Nadu, India E-mail: ganeshashokkumar@gmail.com R.Sivakumar Faculty of Electrical and Electronics Engineering, V.S.B Engineering College, Karur Tamil Nadu, India E-mail: odaisiva@gmail.com Abstract In this paper, an H-bridge inverter topology with reduced switch count technique is introduced. This technique reduces the number of controlled switches used in conventional multilevel inverter. To establish a single phase system, the proposed multilevel inverter requires one H-bridge and a multi conversion cell. A multi conversion cell consists of three equal voltage sources with three controlled switches and three diodes. In conventional method, twelve controlled switches are used to obtain seven levels. Due to involvement of twelve switches the harmonics, switching losses, cost and total harmonic distortion are increased. This proposed topology also increases the level to seven with only seven controlled switches. It dramatically reduces the complexity of control circuit, cost, lower order harmonics and thus effectively reduces total harmonic distortion. Keywords: Cascaded Multilevel Inverter, H-bridge Inverter, Total Harmonic Distortion, Sinusoidal Pulse Width Modulation, Insulated Gate Bipolar Transistor 1. Introduction Numerous industrial applications have begun to require higher power apparatus in recent years. Some medium voltage motor drives and utility applications require medium voltage and MW power level. Therefore high power and medium voltage inverter has recently become a research focus. As far as conventional two level inverter is concerned, it exhibits many problems when used in high power applications (Franquelo 2008). Multilevel inverters have been gained more attention for high power application in recent years which can operate at high switching frequencies while producing lower order harmonic components. A multilevel inverter
  • 2. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 37 | P a g e www.iiste.org not only achieves high power ratings, but also enables the use of renewable energy sources. Renewable energy sources such as photovoltaic, wind and fuel cells, which can be easily interfaced to a multilevel inverter system for high power applications (Rodriguez et al. 2002). There are several topologies such as diode clamped multilevel inverter or neutral point clamped inverter, flying capacitor based multilevel inverter, and cascaded multilevel inverter (Du et al. 2006). The main disadvantage still exists in diode clamped multilevel inverter topology, which restricts the use of it to the high power range of operation. Moreover flying capacitor based multilevel inverter also exhibits a disadvantage including more number of capacitors (Fang Zheng Peng 2001). The first topology introduced is the series H-bridge design, in which several configurations have been obtained. This topology consists of series power conversion cells which form cascaded H- bridge multilevel inverter and power levels will be scaled easily. An apparent disadvantage of this topology is large number of controlled switches. The proposed topology for multilevel inverter has seven levels associated with a seven number of power switches. In this proposed topology sinusoidal pulse width modulation technique is used. 2. Cascaded Multilevel Inverter (CMLI) The general structure of cascaded multilevel inverter for a single phase system is shown in Figure 1. Each separate voltage source Vdc1, Vdc2, Vdc3 is connected in cascade with other sources via a special H-bridge circuit associated with it. Each H-bridge circuit consists of four active switching elements that can make the output voltage either positive or negative polarity; or it can also be simply zero volts which depends on the switching condition of switches in the circuit. This multilevel inverter topology employs three voltage sources of equal magnitudes. It is fairly easy to generalize the number of distinct levels (Corzine et al. 2003 and 2004). The S number of sources or stages and the associated number of output level can be written as follows 2 1 (1) For example if S=3, the output wave form has seven levels (±3Vdc, ±2Vdc, ±1Vdc and 0). The voltage on each stage can be calculated by using the equation, 1 1, 2, 3 … (2) The number of controlled switches used in this topology is expressed as, 4 (3) The output voltage of the multilevel inverter is given as, (4) Where A1, A2 and A3 are DC voltage sources The advantages of cascaded multilevel inverter are modularized layout and packaging. This enables the manufacturing process to be done more quickly and cheaply. The drawback of this topology needs a separate DC source for each of H-bridge and involves high number of semiconductor switches. Figure 2 shows the typical output voltage waveform of a seven level cascaded inverter with three separate DC sources. 3. Modified Cascaded Multilevel Inverter (MCMLI) The general structure of a proposed cascaded multilevel inverter is shown in Figure 3. This inverter consists of a multi conversion cell and an H bridge. A multi conversion cell consists of three separate voltage sources (Vdc1, Vdc2, Vdc3), each source connected in cascade with other sources via a circuit consists of one active switching element and one diode that can make the output voltage source only in positive polarity with several levels. Only one H-bridge is connected with multi conversion cell to acquire both positive and negative polarity. By turning on controlled switches S1 (S2 and S3 turn off) the output voltage +1Vdc (first level) is obtained. Similarly turning on of switches S1, S2 (S3 turn off) +2Vdc (second level) output is produced across the load. Similarly +3Vdc levels can be achieved by turning on S1, S2, S3 switches as shown in Table 1. The main advantage of proposed modified cascaded multilevel inverter is seven levels with only use of seven switches. The S number of DC sources or stages and the associated number output level can be calculated by using the equation as follows, 2 1 (5)
  • 3. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 38 | P a g e www.iiste.org For an example, if S=3, the output wave form will have seven levels (±3Vdc, ±2Vdc, ±1Vdc and 0). Similarly voltage on each stage can be calculated by using the equation as given, 1 1, 2, 3 … (6) The number switches used in this topology is given by the equation as follows, 2 4 (7) The switching table for modified cascaded multilevel inverter is shown in Table 1. It depicts that for each voltage level, only one of the switches is in ON condition among the paralleled switches. Multi conversion cell converts DC voltage into a stepped DC voltage, which is outputted as a stepped or approximately sinusoidal AC waveform by the H-bridge inverter. In this H-bridge, for positive half cycle, switches Q1 and Q2 will be turned on, similarly for negative half cycle switches Q3 and Q4 must be in ON condition. Figure 2 shows the typical output voltage waveform of a proposed cascaded multilevel inverter with three separate DC sources. 4. PWM for Harmonics Reduction PWM technique is extensively used for eliminating harmful low-order harmonics in inverters. In PWM control, the inverter switches are turned ON and OFF several times during a half cycle and output voltage is controlled by varying the pulse width. SPWM techniques are characterized by constant amplitude pulses with different duty cycle for each period. The width of this pulses are modulated to obtain inverter output voltage control and to reduce its harmonic content. Sinusoidal pulse width modulation is the mostly used method in motor control and inverter application (Ismail 2006).In order to verify the ability of the proposed multilevel inverter topology to synthesize an output voltage with desired amplitude and better harmonic spectrum, programmed SPWM technique is applied to determine the required switching angles. It has been proved that in order to control the fundamental output voltage and eliminate ‘n’ harmonics, ‘n+1’ equations are needed. The method of elimination will be presented for 7-level inverter such that the solution for three angles is achieved. The Fourier series expansion of output voltage waveform using fundamental frequency switching scheme as follows (8) Where K is the number of switching angle required for 7 level inverter. Ideally, for a given fundamental voltage V1, it is required to determine the switching angles , ,…, so that output voltage Vo( t)=V1sin( t ) and a specific higher harmonics of Vn(n t) are equal to zero. According to the three phase theory in balanced three phase system third order harmonic is cancelled. The switching angles can be found by solving the following equations cos cos cos $ cos 5 cos 5 cos 5 0 cos 7 cos 7 cos 7 0 (9) Where modulation index, $ () *+,- / One approach to solve the set of nonlinear transcendental equations (9), is to use an iterative method such as the Newton-Raphson method (Patel & Hoft 1973). In contrast to iterative methods, the approach here is based on solving polynomial equations using the theory of resultants which produces all possible solutions (Chiasson et al. 2003). The transcendental equations characterizing the harmonic content can be converted into polynomial equations. Then the resultant method is employed to find the solutions when they exist. These sets of solutions have to be examined for its corresponding total harmonic distortion (THD) in order to select the set which generate the lowest harmonic distortion (mostly due to the 11th and 13th harmonics). The computed THD in percent is defined by 012% 4(5 67(8 67(9 67⋯7(); 6 () 6 < 100 (10) Transforming the transcendental equations (9) into polynomial equations using the change of variables and the trigonometric identities
  • 4. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 39 | P a g e www.iiste.org x cos θ , x cos θ , x cos θ , x> cos θ> , x? cos θ? , x@ cos θ@ , xA cos θA (11) cos 5θ 5cosθ B 20cos θ 16 cos? θ cos 7θ B7cosθ 56cos θ B 112 cos? θ 64cosA θ (12) To transfer (9) into the equivalent conditions p x x x x Bm 0 p? x F 5 A GH xG B 20xG 16xG ? 0 pA x ∑ BA GH 7xG 56xG B 112xG ? 64xG A 0 (13) System (12) is a set of three polynomial equations in three unknowns X1, X2, and X3, where X=( X1, X2, X3,) and the angles condition must satisfy 0 X1 X2 X3 1. Polynomial systems are also considered to compute the solutions of the harmonic elimination equations by iterative numerical methods which give only one solution. In contrast, this system of polynomial equations will be solved using resultant such that all possible solution of (9) can be found. A systematic procedure to do this is known as elimination theory and uses the notion of resultants. The details of this procedure can be found in (Chiasson et al. 2004). 5. Simulation Result Analysis The performance of the proposed modified cascaded multilevel inverter for induction motor drive is verified through the simulation results. It can be seen from Figure 3 input voltages for each succeeding voltage source is same. Figure 5 shows the simulation diagram of three phase modified cascaded multilevel inverter for induction motor drive. From that multilevel inverter seven level can be easily achieved by making the switching pulse sequences as shown in Figure 6a and Figure 6b. Figure 7a and 7b shows the output voltage waveform of single phase line to ground and line to line voltages of the proposed inverter. Figure 8a and 8b shows the output voltage waveform of three phase line to ground and line to line voltages of the proposed inverter. In this phase voltage is 220V and line voltage is 400V for seven level. Figure 9a and 9b shows the MATLAB simulation output waveform of speed and torque curve of induction motor. From the speed and torque curves, it is concreted that rated speed quickly achieved within 0.4 msec and the torque is quickly settled at 0.45 msec. Figure 10a shows the stator current waveform of induction motor. Therefore the proposed multilevel inverter can be used for variable speed drive application, which can be obtained by varying the frequency of multilevel inverter. From the FFT analysis it can be inferred that when the number of levels are increased, the harmonics and total harmonic distortion is reduced. Figure 10b shows THD value of proposed seven level inverter and it is 11.98%. 6. Comparison Results Table 2 shows that the modified cascaded multilevel inverter involves only seven switches whereas conventional inverter comprises twelve switches, but in both cases input voltage at each stage and output level are same. Therefore the proposed modified cascaded multilevel inverter has less switching losses, simple control circuit and less complexity than conventional cascaded multilevel inverter. 7. Experimental Verification Simulation of modified cascaded multilevel inverter output voltage is verified by single phase hardware prototype. Hardware prototype includes seven switches. Among those, three MOSFETs and three diodes are made available for a multi conversion cell. This cell consists of three power stages. In each power stage, one MOSFET (IRF250) and one diode are used as main switches, which are connected in modified configuration. Each stage is supplied by a symmetrical DC source. A PIC 16F877 microcontroller is used as the main processor, which provides gate logic signals. According to microcontroller control signal MOSFET gate terminal is turned on and off. Output of the inverter terminal is connected to R load. The hardware block diagram and prototype of modified cascaded multilevel inverter for a single leg are shown in Figure 11 and 12. Hardware result of proposed multilevel inverter is exposed in Figure 13. The resultant voltage of seven level
  • 5. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 40 | P a g e www.iiste.org cascaded multilevel inverter is 9 volts, with frequency of 50 Hz. 8. Conclusion This paper revealed that proposed modified multilevel inverter topology with reduced number of switches can be implemented for industrial drive applications. This multilevel inverter structure and its basic operations have been discussed elaborately. A detailed procedure for calculating required voltage level on each stage has been conversed. As conventional seven level inverter involves twelve switches, it increases switching losses, cost and circuit complexity The proposed inverter engages only seven switches with three diodes, which reduces switching losses, cost and circuit complexity. Moreover it effectively diminishes lower order harmonics. Therefore effective reduction of total harmonics distortion is achieved. Appendix Motor Details Rotor Type: Wound Power, Voltage and Frequency: 3730 W, 400 V and 50 Hz Stator Resistance and Inductance: 1.115Ω and 0.005974Ω Rotor Resistance and Inductance: 1.083Ω and 0.005947Ω References Franquelo, L.G., (2008), “The age of multilevel converters arrives”, IEEE Industrial Electronics Magazine, Vol.2, No.2, 28-39. Rodriguez, J., Lai, J.S. & Peng, F.Z., (2002) “Multilevel inverters: Survey of topologies, controls, and applications”, IEEE Trans. Ind .Appl. Vol.49, No.4, 724-738. Du, Z., Tolbert, L.M., Chiasson, J.N.& Opineci, B., (2006), “A cascaded multilevel inverter using a single dc power source”, Proc. IEEE APEC, 426-430. Fang Zheng Peng (2001), “A Generalized Multilevel Inverter Topology with Self Voltage Balancing”, IEEE Trans. Ind .Appl. Vol.37, No.2. Corzine, K.A., Wielebski, M.W., Peng, F.Z & Wang, J., (2004), “Control of cascaded multilevel inverters”, IEEE Trans. Power Electron. Vol.19, No.3, 732-738. Corzine, K.A., Hardick F.A, & Familiant, Y.L. (2003), “A cascaded multilevel inverter H-Bridge inverter utilizing capacitor voltage source”, Proceeding of the IASTED International Conference on Power and Energy Systems, pp.290-295. Ismail, B., (2006), “Development of a Single Phase SPWM Microcontroller-Based Inverter”, First International Power and Energy Conference PEC-IEEE, 28-29. Patel, H.S. & Hoft, R.G., (1973), “Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part I – Harmonic Elimination”, IEEE Trans. Ind.Appl., 3, pp. 310-317. Chiasson, J.N., Tolbert, L.M., Mckenzie, K.J. & Du Z., (2003), “Control of a Multilevel Converter Using Resultant Theory”, IEEE Transactions Control System Theory, Vol. 11, No.3, pp. 345-354. Chiasson, J.N. Tobert, L.M., McKenzie, K.J. & Du, Z., (2004), “A Unified Approach to Solving the Harmonic Elimination Equations in Multilevel Converters”, IEEE Trans. Power Electron., Vol.19, No.2, pp. 478-490.
  • 6. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 41 | P a g e www.iiste.org Figure 1. Topology for Cascaded Multilevel Inverter Figure 2. Typical Output Waveform for Cascaded Multilevel Inverter Figure 3. Topology for Modified Cascaded Multilevel Inverter
  • 7. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 42 | P a g e www.iiste.org Figure 4. Typical Output Voltage Waveform of a Modified Cascaded Multilevel Inverter Figure 5. Simulation Diagram for Modified Cascaded Multilevel Inverter for Induction Motor Drive (a) (b) Figure 6. Switching Pulses for (a) Switches S1, S2, S3, S4, S5 and S6 (b) Switches Q1-Q2 and Q3-Q4
  • 8. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 43 | P a g e www.iiste.org (a) (b) Figure 7. Output Voltage Waveform for Single Phase (a) Line to Ground (b) Line to Line (a) (b) Figure 8. Output Voltage Waveform for Three Phase (a) Line to Ground (b) Line to Line (a) (b) Figure 9. Modified Cascaded Multilevel Inverter fed Induction Motor (a) Speed Curve (b) Torque Curve (a) (b) Figure 10. Modified Cascaded Multilevel Inverter fed Induction Motor (a) Stator Current (b) FFT Analysis
  • 9. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 44 | P a g e www.iiste.org Figure 11. Block Diagram for Modified Cascaded Multilevel Inverter Figure 12. Experimental Setup of Modified Cascaded Multilevel Inverter Figure 13. Hardware Output Waveform for Modified Cascaded Multilevel Inverter Table 1. Basic Operation of Proposed Multilevel Inverter S. No Multi-conversion Cell H-Bridge Voltage levelsOn switches Off switches On switches Off switches 1 S1, S2, S3 D1,D2,D3 Q1,Q2 Q3,Q4 +3Vdc 2 S1, S2, D3 S3, D1,D2 Q1,Q2 Q3,Q4 +2Vdc 3 S1, D2, D3 S2, S3, D1 Q1,Q2 Q3,Q4 +1Vdc 4 D1, D2, D3 S1, S2, S3 Q1,Q2 Q3,Q4 0 5 S1, D2, D3 S2, S3, D1 Q3,Q4 Q1,Q2 -1Vdc 6 S1, S2, D3 S3, D1,D2 Q3,Q4 Q1,Q2 -2Vdc 7 S1, S2, S3 D1,D2,D3 Q3,Q4 Q1,Q2 -3Vdc
  • 10. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5758 (print) ISSN 2224-896X (online) Vol 1, No.1, 2011 45 | P a g e www.iiste.org Table 2. Comparison of Cascaded and Modified Cascaded Multilevel Inverter Biography M.Murugesan was born in Anthiyur on December 27, 1986. He is graduated in 2009 from Anna University, Chennai. He is post graduated M.E Power Electronics and Drives during 2011 from Anna University. He is currently working as Assistant professor at V.S.B Engineering College. His area of interest involves in Power Electronics, inverter, modeling of induction Motor. He is an ISTE life member. He has published more than 10 papers. S. Sivaranjani was born in Tamilnadu, India, on March 30, 1980. She received B.E degree from Bharathiyar University, in 2001. She also received M.E degree in Power Electronics and drives during 2006 from Anna University, Chennai. She is having 9 years of teaching experience. Currently she is doing Ph.D. Her current research interests include simulation and digital control techniques of AC drives, Inverters topologies and harmonic suppression G.Asokkumar was born in Erode on June 11, 1980. He is graduated in 2001 from Bharathidhasan University Trichy. He also received M.E degree in Power Electronics and drives during 2011 from Anna University, Chennai. His area of interest involves in Power Electronics, BLDC Drives, inverter, modeling of induction Motor. He has published more than 8 papers . R.Sivakumar was born in Madurai on June 4, 1979. He is graduated in 2000 from M.K.University, Madurai and post graduated in 2011 at Anna University of technology, Trichy. . He is currently working as Assistant professor in the department of EEE at VSB engineering College. Karur from April 2006. His research interest involves in power electronics, inverter and modeling of wind turbine. He is an ISTE life member. Name of Topology Voltage level on each stage (S) Number of output level Number of switches used Number of switches for 7 level Cascaded Multilevel Inverter 1Vdc 2S+1 4S 12 Modified Cascaded Multilevel Inverter 1Vdc 2S+1 S+4 7