SlideShare une entreprise Scribd logo
1  sur  18
Télécharger pour lire hors ligne
Free-Shape Optimization




Altair Proprietary and Confidential Information   Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

     • No user-defined shape perturbation vector is necessary
             • Reduce the effort to guess what would be the optimum shape
     • Free Shape optimization uses a proprietary optimization technique
       developed by Altair, wherein the outer boundary of a structure is
       altered to meet with pre-defined objectives and constraints
     • Can be combined with any type of optimization e.g. w/ morphing
       based shape optimization




                                                  Optimum
                                                      ?



Altair Proprietary and Confidential Information         Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

        • DSHAPE card
        Format
           (1)             (2)            (3)       (4)    (5)     (6)       (7)            (8)         (9)        (10)

        DSHAPE              ID
                          PERT DTYPE MVFACTOR NSMOOTH
                          GRID            GID1      GID2   GID3   GID4 GID5 GID6                        GID7
                                          GID8      GID9   .…      .…
         Optional continuation line for grid constraints
           (1)              (2)            (3)     (4)     (5)    (6)      (7)        (8)         (9)

                     GRIDCON GDID1                CTYPE1   CID1   X1      Y1          Z1
                                          GDID2   CTYPE2   CID2   X2       Y2          Z2
                                           ….      …..




Altair Proprietary and Confidential Information                     Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

       • DTYPE – Free shape 영역 움직임의 방향을 제어하는 parameter


                                                    초기영역 내부로의                      초기 영역 외부로의
                                                     이동이 없음                          이동이 없음




                    BOTH (default)                       GROW                            SHRINK
                       변형전
                                                  NOTE : Grow 또는 shrink와 같은 설계 범위
                       변형후                        제약조건이 요구되지 않으면, ‘Both’를 사용하는
                                                  것을 추천함

Altair Proprietary and Confidential Information                  Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

       • MVFACTOR – Free-Shape 설계 영역에서 정의한 grid들이 하나의 iteration에서
         이동할 수 있는 최대 이동 비율을 정의 (default = 0.5)
       • Grid movement = MVFACTOR X 평균요소크기
       • MVFACTOR를 작게 부여하면 free-shape optimization은 느리게 수행되지만 보다
         안정적이라는 이점이 있음


                                                  변형전 형상

                                                  MVFACTOR=0.5경우 iteration당 변화

                                                  MVFACTOR=1.0경우 iteration당 변화




Altair Proprietary and Confidential Information      Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

        NSMOOTH : Free-shape 최적화 요소 smooth를 위한 grid 층의 개수 (default=10)
        Larger NSMOOTH : 요소 파괴를 피하는데 좋지만 느리게 최적화 속도가 느림
        NSMOOTH can be larger than the number of available layers.




                         (a) NSMOOTH = 5                    (b) NSMOOTH = 1

Altair Proprietary and Confidential Information          Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

            Constraint on GRID (Gridcon) – Grid의 움직임을 제어하는 parameter
               1. FIXED – Free-shape 최적화 중 grid의 이동을 없게 만듬
               2. VECTOR – 적용된 vector 방향으로 grid가 이동하도록 강제부여
               3. PLANAR – Normal 방향으로 정의한 vector를 갖는 plane내에서만 grid가 움직임
       Example
               1. CTYPE=VECTOR




                               CTYPE 미정의


                                                   Vector 를 정의하여,
                                                  GRID의 이동을 고정함


Altair Proprietary and Confidential Information        Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

               2. CTYPE=PLANAR




                                                                              Model Setup
                                                  설계 Grid 정의




     CTYPE 미정의
 Y방향으로 Shape 변경이 발생함


                                                     CTYPE=PLANER 정의                      Y 방향의 Shape
                                                         (X-Z Plane)                      Change가 없음


Altair Proprietary and Confidential Information                        Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

            1-plane Symmetry Constraint : 선택한 plane에 기준한 대칭 형상을 생성하는 parameter




                                                                      Free-shape 설계 grid가
                                                                         정의된 2-d model




                      Symmetry constraint 가       Symmetry constraint를
                        적용되지 않은 경우                    적용한 경우




Altair Proprietary and Confidential Information       Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

            Extrusion Constraint : 정의된 path를 따라 단면을 일정하게 유지하고자 할 때 사용



                                                           Extrusion Constraint가
                                                               적용된 결과 예




                                                  Extrusion Path를                  Circular extrusion
                                                  적용하지 않은 결과                       path를 적용한 결과

Altair Proprietary and Confidential Information                     Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

        Side Constraint : 선택한 두 좌표 (x1,y1,z1), (x2,y2,z2) 사이에서 최대 변위량 영역을
       정의하는 parameter. Range는 직교좌표, 원형좌표, 구형 좌표계에 따라서 결정됨




     R1, R2 반경에 따른 Side                            Side Constraint가                     Side Constraint를
      Constraint 적용 모델                            적용되지 않은 결과 형상                         적용하여 얻은 결과




Altair Proprietary and Confidential Information                       Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape Optimization

        Mesh Barrier Constraint : Special shell element (BMFACE)를 이용하여 수치적으로
       변형의 최소를 정의하는 효과를 부여하는 parameter




                                                                                                Mesh Barrier가
                                                                                                 적용된 형상



                                                   Mesh Barrier가
                                                  적용되지 않은 결과



                                                                                              Mesh Barrier와
                                                                                         1-Plane symmetry가 함께
                                                                                                적용된 결과



                      Mesh Barrier가
                       적용된 결과


Altair Proprietary and Confidential Information                    Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape optimization




                                                                     P




          Objective :
                    Minimize compliance

          Subject to:
                   Volume < 4000.00

Altair Proprietary and Confidential Information   Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape optimization




                                                                 DSHAPE 2




                               DSHAPE 1




                                                  Select Free Shape design grids

Altair Proprietary and Confidential Information                      Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape optimization




                       Move only on X-Z plane – fix the height of the beam section




Altair Proprietary and Confidential Information             Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape optimization




                  ITER 0 :               Compliance = 4.103E+00 Volume = 6.480E+03

Altair Proprietary and Confidential Information                  Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Free Shape optimization




                     ITER 26 :               Compliance = 3.368E+00 Volume=3.994E+03
                    Objective -17.91%, Max. constraint violation 62.00% 0.00%

Altair Proprietary and Confidential Information                    Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Example 2: shape change history




                                        Shape history of the solid beam example


Altair Proprietary and Confidential Information                    Copyright © 2008 Altair Engineering, Inc. All rights reserved.

Contenu connexe

Similaire à Free shape panel_설명_v10

IRJET-Hardware Co-Simulation of Classical Edge Detection Algorithms using Xil...
IRJET-Hardware Co-Simulation of Classical Edge Detection Algorithms using Xil...IRJET-Hardware Co-Simulation of Classical Edge Detection Algorithms using Xil...
IRJET-Hardware Co-Simulation of Classical Edge Detection Algorithms using Xil...IRJET Journal
 
Seamless Rotary Guidance System: Bishop-Wisecarver 1-Trak Part I
Seamless Rotary Guidance System: Bishop-Wisecarver 1-Trak Part ISeamless Rotary Guidance System: Bishop-Wisecarver 1-Trak Part I
Seamless Rotary Guidance System: Bishop-Wisecarver 1-Trak Part IBishop-Wisecarver Group
 
Model Quantization Technologies with AIMET.pdf
Model Quantization Technologies with AIMET.pdfModel Quantization Technologies with AIMET.pdf
Model Quantization Technologies with AIMET.pdfZHUORANGUO2
 
Solid cam release_notes2008
Solid cam release_notes2008Solid cam release_notes2008
Solid cam release_notes2008Mrx Man
 
Forming Simulation of Woven Composite Fibers and Its Influence on Crash Perfo...
Forming Simulation of Woven Composite Fibers and Its Influence on Crash Perfo...Forming Simulation of Woven Composite Fibers and Its Influence on Crash Perfo...
Forming Simulation of Woven Composite Fibers and Its Influence on Crash Perfo...Altair
 
HTC 2012 Midsurfacing Training
HTC 2012 Midsurfacing TrainingHTC 2012 Midsurfacing Training
HTC 2012 Midsurfacing TrainingAltair
 
Lightweight Design (Composites) - Americas ATC 2015 Workshop
Lightweight Design (Composites) - Americas ATC 2015 WorkshopLightweight Design (Composites) - Americas ATC 2015 Workshop
Lightweight Design (Composites) - Americas ATC 2015 WorkshopAltair
 
Study on optimization of machining parameters in turning process using evolut...
Study on optimization of machining parameters in turning process using evolut...Study on optimization of machining parameters in turning process using evolut...
Study on optimization of machining parameters in turning process using evolut...IAEME Publication
 
Deblocking Filter for Reduction of Blocking Artifacts in Video
Deblocking Filter for Reduction of Blocking Artifacts in VideoDeblocking Filter for Reduction of Blocking Artifacts in Video
Deblocking Filter for Reduction of Blocking Artifacts in VideoIRJET Journal
 
Star Ccm604 Features Final
Star Ccm604 Features FinalStar Ccm604 Features Final
Star Ccm604 Features FinalEd Erb
 
1 Mechanical_Intro_16.0_L04__Meshing.pdf
1 Mechanical_Intro_16.0_L04__Meshing.pdf1 Mechanical_Intro_16.0_L04__Meshing.pdf
1 Mechanical_Intro_16.0_L04__Meshing.pdfhalo265104
 
IRJET- Fabric Defect Detection using Discrete Wavelet Transform
IRJET- Fabric Defect Detection using Discrete Wavelet TransformIRJET- Fabric Defect Detection using Discrete Wavelet Transform
IRJET- Fabric Defect Detection using Discrete Wavelet TransformIRJET Journal
 

Similaire à Free shape panel_설명_v10 (16)

IRJET-Hardware Co-Simulation of Classical Edge Detection Algorithms using Xil...
IRJET-Hardware Co-Simulation of Classical Edge Detection Algorithms using Xil...IRJET-Hardware Co-Simulation of Classical Edge Detection Algorithms using Xil...
IRJET-Hardware Co-Simulation of Classical Edge Detection Algorithms using Xil...
 
Twist Parameters "Roughness Measurement"
Twist Parameters "Roughness Measurement"Twist Parameters "Roughness Measurement"
Twist Parameters "Roughness Measurement"
 
Seamless Rotary Guidance System: Bishop-Wisecarver 1-Trak Part I
Seamless Rotary Guidance System: Bishop-Wisecarver 1-Trak Part ISeamless Rotary Guidance System: Bishop-Wisecarver 1-Trak Part I
Seamless Rotary Guidance System: Bishop-Wisecarver 1-Trak Part I
 
Model Quantization Technologies with AIMET.pdf
Model Quantization Technologies with AIMET.pdfModel Quantization Technologies with AIMET.pdf
Model Quantization Technologies with AIMET.pdf
 
Solid cam release_notes2008
Solid cam release_notes2008Solid cam release_notes2008
Solid cam release_notes2008
 
Forming Simulation of Woven Composite Fibers and Its Influence on Crash Perfo...
Forming Simulation of Woven Composite Fibers and Its Influence on Crash Perfo...Forming Simulation of Woven Composite Fibers and Its Influence on Crash Perfo...
Forming Simulation of Woven Composite Fibers and Its Influence on Crash Perfo...
 
Gambit 3 edgeface
Gambit 3 edgefaceGambit 3 edgeface
Gambit 3 edgeface
 
HTC 2012 Midsurfacing Training
HTC 2012 Midsurfacing TrainingHTC 2012 Midsurfacing Training
HTC 2012 Midsurfacing Training
 
Lightweight Design (Composites) - Americas ATC 2015 Workshop
Lightweight Design (Composites) - Americas ATC 2015 WorkshopLightweight Design (Composites) - Americas ATC 2015 Workshop
Lightweight Design (Composites) - Americas ATC 2015 Workshop
 
Study on optimization of machining parameters in turning process using evolut...
Study on optimization of machining parameters in turning process using evolut...Study on optimization of machining parameters in turning process using evolut...
Study on optimization of machining parameters in turning process using evolut...
 
Deblocking Filter for Reduction of Blocking Artifacts in Video
Deblocking Filter for Reduction of Blocking Artifacts in VideoDeblocking Filter for Reduction of Blocking Artifacts in Video
Deblocking Filter for Reduction of Blocking Artifacts in Video
 
GD and T Basic tutuorial
GD and T Basic tutuorialGD and T Basic tutuorial
GD and T Basic tutuorial
 
Gdt tutorial
Gdt tutorialGdt tutorial
Gdt tutorial
 
Star Ccm604 Features Final
Star Ccm604 Features FinalStar Ccm604 Features Final
Star Ccm604 Features Final
 
1 Mechanical_Intro_16.0_L04__Meshing.pdf
1 Mechanical_Intro_16.0_L04__Meshing.pdf1 Mechanical_Intro_16.0_L04__Meshing.pdf
1 Mechanical_Intro_16.0_L04__Meshing.pdf
 
IRJET- Fabric Defect Detection using Discrete Wavelet Transform
IRJET- Fabric Defect Detection using Discrete Wavelet TransformIRJET- Fabric Defect Detection using Discrete Wavelet Transform
IRJET- Fabric Defect Detection using Discrete Wavelet Transform
 

Plus de AltairKorea

Webinar 20110617
Webinar 20110617Webinar 20110617
Webinar 20110617AltairKorea
 
Mod vis technical_overview_v11_hv11_webinar_20110512_02
Mod vis technical_overview_v11_hv11_webinar_20110512_02Mod vis technical_overview_v11_hv11_webinar_20110512_02
Mod vis technical_overview_v11_hv11_webinar_20110512_02AltairKorea
 
Saving and retrieving_normal_modes_analysis_results
Saving and retrieving_normal_modes_analysis_resultsSaving and retrieving_normal_modes_analysis_results
Saving and retrieving_normal_modes_analysis_resultsAltairKorea
 
Hyper mesh tip_webinar_20110531
Hyper mesh tip_webinar_20110531Hyper mesh tip_webinar_20110531
Hyper mesh tip_webinar_20110531AltairKorea
 
Hm10 m vol_webinar_20110526
Hm10 m vol_webinar_20110526Hm10 m vol_webinar_20110526
Hm10 m vol_webinar_20110526AltairKorea
 
New force india_f1_principal roll structure design using non-linear implicit ...
New force india_f1_principal roll structure design using non-linear implicit ...New force india_f1_principal roll structure design using non-linear implicit ...
New force india_f1_principal roll structure design using non-linear implicit ...AltairKorea
 
Principal roll structure_design_using_non-linear_implicit_optimisation_in_ra...
Principal  roll structure_design_using_non-linear_implicit_optimisation_in_ra...Principal  roll structure_design_using_non-linear_implicit_optimisation_in_ra...
Principal roll structure_design_using_non-linear_implicit_optimisation_in_ra...AltairKorea
 
HyperMorph 교육자료
HyperMorph 교육자료HyperMorph 교육자료
HyperMorph 교육자료AltairKorea
 
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...AltairKorea
 
Advanced seam creation with quad transition at HW11.0SA
Advanced seam creation with quad transition at HW11.0SAAdvanced seam creation with quad transition at HW11.0SA
Advanced seam creation with quad transition at HW11.0SAAltairKorea
 
White paper multi objopt
White paper multi objoptWhite paper multi objopt
White paper multi objoptAltairKorea
 
OptiStruct / Pattern grouping – uniform
OptiStruct / Pattern grouping – uniformOptiStruct / Pattern grouping – uniform
OptiStruct / Pattern grouping – uniformAltairKorea
 
EHTC2010 Oil Bearing Calculations In Ship Diesel Engines Using MotionSolve
EHTC2010 Oil Bearing Calculations In Ship Diesel Engines Using MotionSolveEHTC2010 Oil Bearing Calculations In Ship Diesel Engines Using MotionSolve
EHTC2010 Oil Bearing Calculations In Ship Diesel Engines Using MotionSolveAltairKorea
 
Hyper study 10.0
Hyper study 10.0Hyper study 10.0
Hyper study 10.0AltairKorea
 
HyperStudy 10 Training Manual
HyperStudy 10 Training ManualHyperStudy 10 Training Manual
HyperStudy 10 Training ManualAltairKorea
 
Radioss analysis quality_ht
Radioss analysis quality_htRadioss analysis quality_ht
Radioss analysis quality_htAltairKorea
 
CASE - Cleveland golf 101410
CASE - Cleveland golf 101410CASE - Cleveland golf 101410
CASE - Cleveland golf 101410AltairKorea
 

Plus de AltairKorea (20)

Webinar 20110617
Webinar 20110617Webinar 20110617
Webinar 20110617
 
Mod vis technical_overview_v11_hv11_webinar_20110512_02
Mod vis technical_overview_v11_hv11_webinar_20110512_02Mod vis technical_overview_v11_hv11_webinar_20110512_02
Mod vis technical_overview_v11_hv11_webinar_20110512_02
 
Saving and retrieving_normal_modes_analysis_results
Saving and retrieving_normal_modes_analysis_resultsSaving and retrieving_normal_modes_analysis_results
Saving and retrieving_normal_modes_analysis_results
 
Hyper mesh tip_webinar_20110531
Hyper mesh tip_webinar_20110531Hyper mesh tip_webinar_20110531
Hyper mesh tip_webinar_20110531
 
Hm10 m vol_webinar_20110526
Hm10 m vol_webinar_20110526Hm10 m vol_webinar_20110526
Hm10 m vol_webinar_20110526
 
Defeature hm10
Defeature hm10Defeature hm10
Defeature hm10
 
New force india_f1_principal roll structure design using non-linear implicit ...
New force india_f1_principal roll structure design using non-linear implicit ...New force india_f1_principal roll structure design using non-linear implicit ...
New force india_f1_principal roll structure design using non-linear implicit ...
 
Principal roll structure_design_using_non-linear_implicit_optimisation_in_ra...
Principal  roll structure_design_using_non-linear_implicit_optimisation_in_ra...Principal  roll structure_design_using_non-linear_implicit_optimisation_in_ra...
Principal roll structure_design_using_non-linear_implicit_optimisation_in_ra...
 
HyperMorph 교육자료
HyperMorph 교육자료HyperMorph 교육자료
HyperMorph 교육자료
 
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
Validation of High Fidelity CFD Modeling Approach for Utility Scale Wind Turb...
 
Quick edit v10
Quick edit v10Quick edit v10
Quick edit v10
 
Advanced seam creation with quad transition at HW11.0SA
Advanced seam creation with quad transition at HW11.0SAAdvanced seam creation with quad transition at HW11.0SA
Advanced seam creation with quad transition at HW11.0SA
 
White paper multi objopt
White paper multi objoptWhite paper multi objopt
White paper multi objopt
 
OptiStruct / Pattern grouping – uniform
OptiStruct / Pattern grouping – uniformOptiStruct / Pattern grouping – uniform
OptiStruct / Pattern grouping – uniform
 
EHTC2010 Oil Bearing Calculations In Ship Diesel Engines Using MotionSolve
EHTC2010 Oil Bearing Calculations In Ship Diesel Engines Using MotionSolveEHTC2010 Oil Bearing Calculations In Ship Diesel Engines Using MotionSolve
EHTC2010 Oil Bearing Calculations In Ship Diesel Engines Using MotionSolve
 
Hyper study 10.0
Hyper study 10.0Hyper study 10.0
Hyper study 10.0
 
HyperStudy 10 Training Manual
HyperStudy 10 Training ManualHyperStudy 10 Training Manual
HyperStudy 10 Training Manual
 
Radioss analysis quality_ht
Radioss analysis quality_htRadioss analysis quality_ht
Radioss analysis quality_ht
 
CASE - Cleveland golf 101410
CASE - Cleveland golf 101410CASE - Cleveland golf 101410
CASE - Cleveland golf 101410
 
Crocodile PPT
Crocodile PPTCrocodile PPT
Crocodile PPT
 

Free shape panel_설명_v10

  • 1. Free-Shape Optimization Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 2. Free Shape Optimization • No user-defined shape perturbation vector is necessary • Reduce the effort to guess what would be the optimum shape • Free Shape optimization uses a proprietary optimization technique developed by Altair, wherein the outer boundary of a structure is altered to meet with pre-defined objectives and constraints • Can be combined with any type of optimization e.g. w/ morphing based shape optimization Optimum ? Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 3. Free Shape Optimization • DSHAPE card Format (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) DSHAPE ID PERT DTYPE MVFACTOR NSMOOTH GRID GID1 GID2 GID3 GID4 GID5 GID6 GID7 GID8 GID9 .… .… Optional continuation line for grid constraints (1) (2) (3) (4) (5) (6) (7) (8) (9) GRIDCON GDID1 CTYPE1 CID1 X1 Y1 Z1 GDID2 CTYPE2 CID2 X2 Y2 Z2 …. ….. Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 4. Free Shape Optimization • DTYPE – Free shape 영역 움직임의 방향을 제어하는 parameter 초기영역 내부로의 초기 영역 외부로의 이동이 없음 이동이 없음 BOTH (default) GROW SHRINK 변형전 NOTE : Grow 또는 shrink와 같은 설계 범위 변형후 제약조건이 요구되지 않으면, ‘Both’를 사용하는 것을 추천함 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 5. Free Shape Optimization • MVFACTOR – Free-Shape 설계 영역에서 정의한 grid들이 하나의 iteration에서 이동할 수 있는 최대 이동 비율을 정의 (default = 0.5) • Grid movement = MVFACTOR X 평균요소크기 • MVFACTOR를 작게 부여하면 free-shape optimization은 느리게 수행되지만 보다 안정적이라는 이점이 있음 변형전 형상 MVFACTOR=0.5경우 iteration당 변화 MVFACTOR=1.0경우 iteration당 변화 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 6. Free Shape Optimization  NSMOOTH : Free-shape 최적화 요소 smooth를 위한 grid 층의 개수 (default=10)  Larger NSMOOTH : 요소 파괴를 피하는데 좋지만 느리게 최적화 속도가 느림  NSMOOTH can be larger than the number of available layers. (a) NSMOOTH = 5 (b) NSMOOTH = 1 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 7. Free Shape Optimization  Constraint on GRID (Gridcon) – Grid의 움직임을 제어하는 parameter 1. FIXED – Free-shape 최적화 중 grid의 이동을 없게 만듬 2. VECTOR – 적용된 vector 방향으로 grid가 이동하도록 강제부여 3. PLANAR – Normal 방향으로 정의한 vector를 갖는 plane내에서만 grid가 움직임 Example 1. CTYPE=VECTOR CTYPE 미정의 Vector 를 정의하여, GRID의 이동을 고정함 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 8. Free Shape Optimization 2. CTYPE=PLANAR Model Setup 설계 Grid 정의 CTYPE 미정의 Y방향으로 Shape 변경이 발생함 CTYPE=PLANER 정의 Y 방향의 Shape (X-Z Plane) Change가 없음 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 9. Free Shape Optimization  1-plane Symmetry Constraint : 선택한 plane에 기준한 대칭 형상을 생성하는 parameter Free-shape 설계 grid가 정의된 2-d model Symmetry constraint 가 Symmetry constraint를 적용되지 않은 경우 적용한 경우 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 10. Free Shape Optimization  Extrusion Constraint : 정의된 path를 따라 단면을 일정하게 유지하고자 할 때 사용 Extrusion Constraint가 적용된 결과 예 Extrusion Path를 Circular extrusion 적용하지 않은 결과 path를 적용한 결과 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 11. Free Shape Optimization  Side Constraint : 선택한 두 좌표 (x1,y1,z1), (x2,y2,z2) 사이에서 최대 변위량 영역을 정의하는 parameter. Range는 직교좌표, 원형좌표, 구형 좌표계에 따라서 결정됨 R1, R2 반경에 따른 Side Side Constraint가 Side Constraint를 Constraint 적용 모델 적용되지 않은 결과 형상 적용하여 얻은 결과 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 12. Free Shape Optimization  Mesh Barrier Constraint : Special shell element (BMFACE)를 이용하여 수치적으로 변형의 최소를 정의하는 효과를 부여하는 parameter Mesh Barrier가 적용된 형상 Mesh Barrier가 적용되지 않은 결과 Mesh Barrier와 1-Plane symmetry가 함께 적용된 결과 Mesh Barrier가 적용된 결과 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 13. Free Shape optimization P Objective : Minimize compliance Subject to: Volume < 4000.00 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 14. Free Shape optimization DSHAPE 2 DSHAPE 1 Select Free Shape design grids Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 15. Free Shape optimization Move only on X-Z plane – fix the height of the beam section Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 16. Free Shape optimization ITER 0 : Compliance = 4.103E+00 Volume = 6.480E+03 Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 17. Free Shape optimization ITER 26 : Compliance = 3.368E+00 Volume=3.994E+03 Objective -17.91%, Max. constraint violation 62.00% 0.00% Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.
  • 18. Example 2: shape change history Shape history of the solid beam example Altair Proprietary and Confidential Information Copyright © 2008 Altair Engineering, Inc. All rights reserved.