SlideShare une entreprise Scribd logo
1  sur  29
Télécharger pour lire hors ligne
An assignment on
Design Analog & Mixedmode VLSI Circuits
(EEC 7209)
Analog to Digital Converter
SUBMITTED BY SUBMITTED TO
Anil Kumar Yadav Dr. T. Shanmuganantham
M.Tech(Electronics) Assistance Professor
Department Of Electronics Engineering
School Of Engineering and Technology
Pondicherry University
Table of content
Content Page No
1. Introduction 1
2. Adc Types of adc
1.1 Ramp or stair case or Counter type A/D converter
1.2 Tracking A/D converter
1.3 Successive Approximation A/D Converter
1.4 Flash A/D Converter
1.5 Delta-Sigma A/D Converter
1.6 Dual Slope or integrating type A/D Converter
3
5
6
7
11
15
3. ADC Parameter Specification
3.1 Span (or Range)
3.2 Step Size (or Resolution)
3.3 Resolution
3.4 Quantization Error and Quantization Noise
3.5 Dynamic range
3.6 Signal-to-noise-and-distortion ratio ( SNDR)
3.7 Spurious-free dynamic range (SFDR)
3.8 Total Harmonic Distortion
3.9 Aperture delay
3.10 Transient Response
3.11 Overvoltage Recovery
3.12 Aperture jitter
3.13 Accuracy
3.14Offset Error
3.15Gain Error
18
19
19
20
21
21
21
21
22
22
22
22
22
22
23
24
3.16Differential Nonlinearity
3.17 Integral Nonlinearity
3 .18 Missing Codes:
25
25
25
4. References
26
ANALOG - DIGITAL CONVERSION
1. INTRODUCTION
An electronic integrated circuit which transforms a signal from analog (continuous) to digital (discrete)
form.The basic principle of operation is to use the comparator principle to determine whether or not to
turn on a particular bit of the binary number output.
The conversion involves quantization of the input, so it necessarily introduces a small amount of error.
Instead of doing a single conversion, an ADC often performs the conversions ("samples" the input)
periodically. The result is a sequence of digital values that have converted a continuous-time and
continuous-amplitude analog signal to a discrete-time and discrete-amplitude digital signal.
ADC are used virtually everywhere where an analog signal has to be processed, stored, or transported in
digital form.
• Some examples of ADC usage are digital volt meters, cell phone, thermocouples, and digital
oscilloscope.
• Microcontrollers commonly use 8, 10, 12, or 16 bit ADCs, our micro controller uses an 8 or 10 bit
ADC.
It is two steps process:
1.Sampling and Holding (S/H)
2.Quantizing and Encoding (Q/E
Sampling and Holding
• The behavior of S/H is analogous to that of camera. its main function is “to capture picture” of
the analog signal and hold its value until the adc can process the information.
• Holding signal benefits the accuracy of the A/D Conversion
• Minimum sampling rate should be at least twice the highest data frequency of the analog signal.
Quantizing:
Partitioning the reference signal range into a number of discrete quanta, then matching the input signal to
the correct quantum.
Encoding:
Assigning a unique digital code to each quantum, then allocating the digital code to the input signal.
Speed: Rate of conversion of a single digital input to its analog equivalent.
Conversion Rate
 Depends on clock speed of input signal
 Depends on settling time of converter
Types of A/D Converters
1. Ramp or stair case or counter type A/D converter
2. Tracking A/D converter
3. Successive Approximation A/D Converter
4. Flash A/D Converter
5. Delta-Sigma A/D Converter
6. Dual Slope or integrating type A/D Converter
2.1 Counter type
One of the simplest types of analog to digital converter is counter type ADC. The basic idea is to connect
the output of a free-running binary counter to the input of a DAC, then compare the analog output of the
DAC with the analog input signal to be digitized and use the comparator’s output to tell the counter when
to stop counting and reset. Thefollowing schematic shows the basic idea:
 Counter type contains the following elements:
 Digital to analog converter
 Some type of counting mechanism
 Comparator
 clock
 The input signal of ADC is connected to the signal input of its internal comparator.
 The ADC then systematically increases the voltage of the reference input of the comparator until
the reference becomes larger than the signal.
 And the comparator output goes to 0
Block diagram:
Operation :
 consider an input signal is 4.78 volts. The initial comparator’s input would be 2.5 volts
 The comparator compares the two value then the result this is less than 4.78 then the next higher
voltage (5.00 volts) is applied
 The comparator compares the two value and says this is greater than 4.78 and switches 0
 The digital output of the ADC is the number of times the ADC increase the voltage after starting
at the initial 2.5 volts
 This scheme is relatively simple , but as the number of ADC increases the time it takes to scan
through all possible values lower than input will grow quickly
 The conversion time on the counter type is NOT fixed but depends on the actual value of the
analogue input expressed as a fraction of the full scale.
This can be expressed as :-
Where N is the number of bits and T is the time period of the clock pulse .
Example: 1 A counter type ADC has the following parameters, N=8, Vref=5.1V and
clock=1MHz. Find the digital word for an Vin of 4.36V and the conversion time taken to reach
this value?
Solution:
Step size = 5.1v / 2^N = 5.1V / 256 = 0.0199=0.02
The number of steps = 4.36 / 0.02 = 218.1=219
 (219)10 = 110110112
Conversion time = 219 x 1/1MHz = 219 x 1uS = 219 uS
Features of counter type:
 Use a clock to index the counter
 Use DAC to generate analog signal to compare against input
 Comparator is used to compare VIN and VDAC where VIN is the signal to be digitized
 The input to the DAC is from the counter
2.2 Tracking ADC
Tracking ADC - similar to the counter type except it uses an up/down counter and can track a varying
signal more quickly.
Track A/D Converter
2.3 Flash A/D Converter
Flash adc is fastest in all adc because flash type adc is uses combinational logic (not sequential logic ).
Therefore, clock is not required, in case of flash type adc.
 If propagation delay time of combinational circuit is zero, then ideal conversion time of adc is
zero. But practical conversion time is sum of all propagation delay of combinational circuit
involve in flash type ADC.
 Uses the 2^n resistors to form a ladder voltage divider, which divides the reference voltage into
2^n equal intervals.
 Uses the 2^n-1 comparators to determine in which of these 2^n voltage intervals the input voltage
Vin lies.
 The Combinational logic then translates the information provided by the output of the
comparators
 This ADC does not require a clock so the conversion time is essentially set by the settling time of
the comparators and the propagation time of the combinational logic.
Fundamental Components (For n bit Flash A/D)
a) 2^n-1 Comparators
b) 2^n Resistors
c) Control Logic
Block diagram:
Operation:
1. A resistive voltage divider (see figure) can provide all the digital reference states required. There
are eight reference values for the 3-bit converter.
2. The analog signal is compared concurrently with each reference state; therefore a separate
comparator is required for each comparison.
3. Digital logic then combines the several comparator outputs to determine the appropriate binary
code to present.
4. The reference voltages are set to 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, and 7.5 volts respectively. The
comparator outputs are labeled correspondingly as 1, 2, 3, 4, 5, 6, and 7 respectively.
Advantage
i. Very Fast (Fastest)
ii. Very simple operational theory
iii. Speed is only limited by gate and comparator propagation delay
Disadvantage
i. Expensive
ii. Prone to produce glitches in the output
iii. Each additional bit of resolution requires twice the comparators
2.4 Delta-Sigma (∆Σ) ADC
One of the more advanced ADC technologies is the so-called delta-sigma, or ∆Σ (using the
proper Greek letter notation). In mathematics and physics, the capital Greek letter delta (∆)
represents difference or change, while the capital letter sigma (Σ) represents summation: the
adding of multiple terms together. Sometimes this converter is referred to by the same Greek
letters in reverse order: sigma-delta, or Σ∆.
In a ∆Σ converter, the analog input voltage signal is connected to the input of an integrator,
producing a voltage rate-of-change, or slope, at the output corresponding to input magnitude.
This ramping voltage is then compared against ground potential (0 volts) by a comparator. The
comparator acts as a sort of 1-bit ADC, producing 1 bit of output (”high” or ”low”) depending on
whether the integrator output is positive or negative. The comparator’s output is then latched
through a D-type flip-flop clocked at a high frequency, and fed back to another input channel
on the integrator, to drive the integrator in the direction of a 0 volt output. The basic circuit
is shown in B/D:
Block Diagram:
The leftmost op-amp is the (summing) integrator. The next op-amp the integrator feeds into
is the comparator, or 1-bit ADC. Next comes the D-type flip-flop, which latches the comparator’s
output at every clock pulse, sending either a ”high” or ”low” signal to the next comparator at the top
of the circuit. This final comparator is necessary to convert the single-polarity 0V / 5V logic level
output voltage of the flip-flop into a +V / -V voltage signal to be fed back to the integrator.
If the integrator output is positive, the first comparator will output a ”high” signal to the
D input of the flip-flop. At the next clock pulse, this ”high” signal will be output from the Q
line into the noninverting input of the last comparator. This last comparator, seeing an input
voltage greater than the threshold voltage of 1/2 +V, saturates in a positive direction, sending a full
+V signal to the other input of the integrator. This +V feedback signal tends to drive
the integrator output in a negative direction. If that output voltage ever becomes negative, the
feedback loop will send a corrective signal (-V) back around to the top input of the integrator to drive
it in a positive direction. This is the delta-sigma concept in action: the first comparator senses a
difference (∆) between the integrator output and zero volts. The integrator sums (Σ) the comparator’s
output with the analog input signal.
Functionally, this results in a serial stream of bits output by the flip-flop. If the analog input
is zero volts, the integrator will have no tendency to ramp either positive or negative, except in
response to the feedback voltage. In this scenario, the flip-flop output will continually oscillate
between ”high” and ”low,” as the feedback system ”hunts” back and forth, trying to maintain the
integrator output at zero volts:
If, however, we apply a negative analog input voltage, the integrator will have a tendency
to ramp its output in a positive direction. Feedback can only add to the integrator’s ramping
by a fixed voltage over a fixed time, and so the bit stream output by the flip-flop will not be
quite the same:
By applying a larger (negative) analog input signal to the integrator, we force its output to
ramp more steeply in the positive direction. Thus, the feedback system has to output more 1’s
than before to bring the integrator output back to zero volts:
As the analog input signal increases in magnitude, so does the occurrence of 1’s in the
digital output of the flip-flop:
A parallel binary number output is obtained from this circuit by averaging the serial stream of bits
together. For example, a counter circuit could be designed to collect the total number of 1’s output
by the flip-flop in a given number of clock pulses. This count would then be indicative of the
analog input voltage.
Variations on this theme exist, employing multiple integrator stages and/or comparator
circuits outputting more than 1 bit, but one concept common to all ∆Σ converters is that of
oversampling. Oversampling is when multiple samples of an analog signal are taken by an ADC
(in this case, a 1-bit ADC), and those digitized samples are averaged. The end result is an
effective increase in the number of bits resolved from the signal. In other words, an oversampled
1-bit ADC can do the same job as an 8-bit ADC with one-time sampling, albeit at a slower rate.
Advantage
 High Resolution
 No need for precision Components
Disadvantage
 Slow due to oversampling
 Only good for low bandwidth
2.5 Successive Approximation ADC Circuit
One method of addressing the digital ramp ADC's shortcomings is the so-called successive-
approximation ADC. The only change in this design is a very special counter circuit known as
a successive-approximation register. Instead of counting up in binary sequence, this register counts by
trying all values of bits starting with the most-significant bit and finishing at the least-significant bit.
Throughout the count process, the register monitors the comparator's output to see if the binary count is
less than or greater than the analog signal input, adjusting the bit values accordingly. The way the register
counts is identical to the "trial-and-fit" method of decimal-to-binary conversion, whereby different values
of bits are tried from MSB to LSB to get a binary number that equals the original decimal number. The
advantage to this counting strategy is much faster results: the DAC output converges on the analog signal
input in much larger steps than with the 0-to-full count sequence of a regular counter.
 Uses a n-bit DAC to compare DAC and original analog results.
 Uses Successive Approximation Register (SAR) supplies an approximate digital code to DAC of
Vin.
 Comparison changes digital output to bring it closer to the input value.
 Uses Closed-Loop Feedback Conversion
Block diagram:
Process
 1. MSB initialized as 1
 2. Convert digital value to analog using DAC
 3. Compares guess to analog input
 4. Is Vin>VDAC
• Set bit 1
• If no, bit is 0 and test next bit
Advantage
 Capable of high speed and reliable
 Medium accuracy compared to other ADC
 Good tradeoff between speed and cost
 Capable of outputting the binary number in serial (one bit at a time) format.
Disadvantage
 Higher resolution
 slower
 Speed limited to ~5Msps
Example: 1 In 10 bit ADC,Vin= 0.6 volts (from analog device),Vref=1 volts .Find the digital value of
Vin?
Solution
• N=2^n =1024
• Vmax-Vmin/N = 1 Volt/1024 =0.0009765625V of Vref (resolution)
MSB (bit 9)
 Divided Vref by 2
 Compare Vref /2 with Vin
 If Vin >Vref /2 , turn MSB on (1)
 If Vin < Vref /2 , turn MSB off (0)
 Vin =0.6V and V=0.5
 Since Vin>V, MSB = 1 (on)
Next Calculate MSB-1 (bit 8)
 Compare Vin=0.6 V to V=Vref/2 + Vref/4= 0.5+0.25 =0.75V
Since 0.6<0.75, MSB is turned off.
 Calculate MSB-2 (bit 7)
 Go back to the last voltage that caused it to be turned on (Bit 9) and add it to Vref/8, and
compare with Vin.
 Compare Vin with (0.5+Vref/8)=0.625
Since 0.6<0.625, MSB is turned off
Calculate the state of MSB-3 (bit 6)
Go to the last bit that caused it to be turned on (in this case MSB-1) and add it to Vref/16, and compare
it to Vin.
 Compare Vin to V= 0.5 + Vref/16= 0.5625
Since 0.6>0.5625, MSB-3=1 (turned on)
This process continues for all the remaining bits.
2.6 Dual Slope A/D Converter
A popular method for converting an analog voltage into a digital value is the dualslope
method. Figure shows a block diagram of the basic dual-slope converter.
The analog voltage to be converted is applied through an electronic switch to an integrator
or ramp-generator circuit (essentially a constant current charging a capacitor
to produce a linear ramp voltage). The digital output is obtained from a counter operated
during both positive and negative slope intervals of the integrator.
Fundamental components
1. integrator
2. Electronically Controlled Switches
3. Counter
4. Clock
5. Control Logic
6. Comparator
Block Diagram:
The method of conversion proceeds as follows. For a fixed time interval (usually the full count range of
the counter), the analog voltage connected to the integrator raises the voltage at the comparator input to
some positive level. Figure shows that at the end of the fixed time interval the voltage from the integrator
is greater for the larger input voltage. At the end of the fixed count interval, the count is set to zero and
the electronic switch connects the integrator to a reference or fixed input voltage.
The integrator output (or capacitor input) then decreases at a fixed rate. The counter advances during this
time, while the integrator’s output decreases at a fixed rate until it drops below the comparator reference
voltage, at which time the control logic receives a signal (the comparator output) to stop the count. The
digital value stored in the counter is then the digital output of the converter.
Using the same clock and integrator to perform the conversion during positive and negative slope
intervals tends to compensate for clock frequency drift and integrator accuracy limitations. Setting the
reference input value and clock rate can scale the counter output as desired. The counter can be a binary,
BCD, or other form of digital counter, if desired.
Advantage
• Conversion result is insensitive to errors in the component values.
• Fewer adverse affects from “noise”
• High Accuracy
Disadvantages
• Slow
• Accuracy is dependent on the use of precision external components
• Cost
Example 1
• A 10-bit digital slope integrating A/D converter has a full-scale input of 10V. If the clock period
is 15 μS, how long will it take to convert an input of 4V? How long for an input of 10V?
Solution:
10 bits means 210
=1024 levels.
Full scale input of 10V means each level is 10V/1024=9.77mV
4V corresponds to 4/9.7710-3
=409.6 - round up to 410
A clock period of 15μs mean 4V will take 15μs410 =6.15ms
10V will take 15μs1024=15.36ms
Example 2
• A 10-bit digital slope integrating A/D converter has a full-scale input of 10V. If the clock period
is 15 μS, how long will it take to convert an input of 4V? How long for an input of 10V?
Solution:
10V will take 15μs1024=15.36ms
Example 3:
What increase in speed can be gained by using a 12-bit successive approximation converter instead of the
digital slope converter, assuming a full-scale input voltage.?
Solution:
• A 12-bit SA converter will take 12 clock cycles = 180 μs, regardless of the input voltage
• so for 10V full scale input, the speed increase is 15.36ms/180 μs =85.3 times.
• So the SA converter is both faster and more accurate (12 bits gives 4096 levels, compared to
1024 levels for 10 bit)
3. ADC Parameter Specification
3.1 Span (or Range): difference between maximum and minimum analog values.
Span= maximum value – minimum value
Some common spans:
range of 0 V to 5 V: span = 5 V
range of –12 V to 12 V: span = 24 V
range of 4 mA to 20 mA: span = 16 mA
Offset: minimum analog value
Bit Weight: analog value corresponding to a bit in the digital number
3.2 Step Size (or Resolution): smallest analog change resulting from changing one bit in the digital
number, or the analog difference between two consecutive digital numbers.
Let AV be Analog Value; DN be Digital Number:
AV = DN × Step Size + Offset = (DN / 2n
)× Span + Offset
DN = (AV - Offset) / Step Size = (AV - Offset) × 2n
/ Span
3.3 Resolution:
The smallest change in analog signal that will result in change in digital output .
Where V=reference voltage range
N= Number of bits in digital output.
2^N= Number of states.
ΔV=resolution.
Example 1
o Full scale measurement range = 0 to 10 volts
o ADC resolution is 12 bits = 4096 quantization levels (codes)
o ADC voltage resolution is =(10V - 0V) / 4096 codes = 10V /4096 codes
=0.00244 volts/code = 2.44 mV/code
• Example 2
o Full scale measurement range = -10 to +10 volts
o ADC resolution is 14 bits: =16384 quantization levels (codes)
o ADC voltage resolution is: =(10V - (-10V)) / 16384 codes
=20V / 16384 codes=0.00122 volts/code
= 1.22 mV/code
3.4 Quantization Error and Quantization Noise :
Quantization error occur due to the finite resolution N of the A/D converter limits the signal-to-noise
ratio.
All inputs within ±1/2 LSB of a code center resolve to that digital code. Thus, there will be a small
difference between the code center and the actual input voltage due to this quantization.
Mathematically,
Qe=Vin-Vstaircase, where Vstaircase=D*VQ ,VQ => Quantam volatge level
If assume that this error voltage is uncorrelated and distributed uniformly, we can calculate the expected
rms value of this quantization noise.“
Quantum voltage level=
Expectation value of the error voltage =
The rms value of a full-scale peak-to-peak amplitude VF is:
thus the signal-to-noise ratio is =
SNR= 6.02N + 1.76 dB
3.5 Dynamic range :
is the ratio of the smallest possible output (the least significant bit or quantum voltage) to
the largest possible output (full-scale voltage).
`Mathematically : DR =20 log10 2^N = 6N.
3.6 Signal-to-noise-and-distortion ratio ( SNDR) : is the ratio of the input signal amplitude to the
rms sum of all other spectral components.
SNDR =S/N+D
3.7 Spurious-free dynamic range (SFDR): is the ratio of the input signal to the peak spurious or
peak harmonic component.
Spurs can be created at harmonics of the input frequency due to nonlinear- ties in the A/D converter, or at
sub harmonics of the sampling frequency due to mismatch or clock coupling in the circuit.
 The SFDR of an A/D converter can be larger than the SNDR.

3.8 Total Harmonic Distortion:
Total harmonic distortion (THD) is the ratio of the rms sum of the first 5 harmonic components to
the input signal.
where V1 is the amplitude of the fundamental, and Vn is the amplitude of the n-th harmonic.
3.9 Aperture delay :
Aperture delay is the delay from when the A/D converter is triggered (perhaps the rising edge of
the sampling clock) to when it actually converts the input voltage into the appropriate digital code.
Aperture delay is also sometimes called aperture time.
3.10 Transient Response:
Transient response is the settling time for the A/D converter to full accuracy (to within ±1/2 LSB)
after a step in input voltage from zero to full scale.
3.11 Overvoltage Recovery:
Overvoltage recovery is the settling time for the A/D converter to full accuracy after a step in
input voltage from outside the full scale voltage (for example, from 1:5VF to 0:5VF )
3.12 Aperture jitter:
Aperture jitter is the sample-to-sample variation in the aperture delay. The rms voltage error
caused by rms aperture jitter decreases the overall signal-to-noise ratio, and is a significant
limiting factor in the performance of high-speed A/D converters.
If we assume that the input waveform is a sinusoid ,then , VIN = VFS sin ᾡt
then the maximum slope of the input waveform is:
which occurs at the zero crossings.
 If there is an rms error in the time at which we sample (aperture jitter, ta) during this maximum
slope.
 then ,there will be an rms voltage error of
Since the aperture time variations are random these voltage errors will behave like a random
Noise source.
Thus the signal-to-jitter-noise ratio :
3.12 Accuracy
Accuracy is the total error with which the A/D converter can convert a known voltage, including
the effects of quantization error, gain error, offset error, and nonlinearities.
There are two ways to best improve the accuracy of A/D conversion:
• increasing the resolution which improves the accuracy in measuring the amplitude of the analog
signal.
• increasing the sampling rate which increases the maximum frequency that can be measured.
3.13 Offset Error
Offset error is the deviation in the A/D converter's behavior at zero. The first transition voltage
should be 1/2 LSB above analog ground. Offset error is the deviation of the actual transition
voltage from the ideal 1/2 LSB.
Offset error is easily trimmed by calibration. Compare the location of the first transitions in
Figures 1 and 2.
3.14 Gain Error
Gain error is the deviation in the slope of the line through the A/D converter's end points at zero
and full scale from the ideal slope of 2^N/VFS codes-per-volt. Like offset error, gain error is
easily corrected by calibration. Compare the slope of the dashed lines in Figures 1 and 2.
3.15 Differential Nonlinearity
Differential nonlinearity (DNL) is the deviation of the code transition widths from the ideal width
of 1 LSB i.e. difference b/w the actual code width of nonideal converter and the ideal case.
Mathematically, DNL=actual step width - ideal step width
ideal step width=Vref/8=.625V=1 LSB
All code widths in the ideal A/D converter are 1 LSB wide, so the DNL would be zero
everywhere.
3.16 Integral Nonlinearity
Integral nonlinearity (INL) is the distance of the code centers in the A/D converter characteristic
from the ideal line.
If all code centers land on the ideal line, the INL is zero everywhere.
See the deviations of the code centers from the ideal line in Figure .
3.18 Missing Codes: Missing codes are output digital codes that are not produced for any
input voltage, usually due to large DNL.
In some converters, missing codes can be caused by non-monotonicity of the internal D/A.
The large DNL in Figure 3 causes code 100 to be “crowded out.”
3. References
• C-mos Circuit Design, layout and simulation- By R.Jacob baker, chapter no. 28,29.
• Fundamentals of Digital Circuits By - A. Anand Kumar
• LINEAR INTEGRATED CIRCUIT By: D. ROY CHOUDHARY
• http://elearning.vtu.ac.in
• http://web.mit.edu/klund/www/papers/
• http://www.freescale.com/files/microcontrollers/doc/app_note/AN2438.pdf
ANALOG TO DIGITAL CONVERTOR

Contenu connexe

Tendances

555 Timer (detailed presentation)
555 Timer (detailed presentation)555 Timer (detailed presentation)
555 Timer (detailed presentation)Tanish Gupta
 
Analog to Digital Converters
Analog to Digital ConvertersAnalog to Digital Converters
Analog to Digital ConvertersAnas Smarty
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)Kausik das
 
Dual Slope ADC.pptx
Dual Slope ADC.pptxDual Slope ADC.pptx
Dual Slope ADC.pptxhepzijustin
 
Digital modulation techniques...
Digital modulation techniques...Digital modulation techniques...
Digital modulation techniques...Nidhi Baranwal
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1Mukesh Tekwani
 
Successive approximation adc
Successive approximation adcSuccessive approximation adc
Successive approximation adcMaria Roshan
 
Schmitt trigger circuit
Schmitt trigger circuitSchmitt trigger circuit
Schmitt trigger circuittaranjeet10
 
Successive Approximation ADC
Successive Approximation ADC Successive Approximation ADC
Successive Approximation ADC AbhayDhupar
 
Pulse width modulation (PWM)
Pulse width modulation (PWM)Pulse width modulation (PWM)
Pulse width modulation (PWM)amar pandey
 
Am transmitter
Am transmitterAm transmitter
Am transmitterAJAL A J
 
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERSripati Mahapatra
 
OP AMP Applications
OP AMP ApplicationsOP AMP Applications
OP AMP Applicationsaroosa khan
 

Tendances (20)

Shift Registers
Shift RegistersShift Registers
Shift Registers
 
555 Timer (detailed presentation)
555 Timer (detailed presentation)555 Timer (detailed presentation)
555 Timer (detailed presentation)
 
ADC & DAC
ADC & DACADC & DAC
ADC & DAC
 
Analog to Digital Converters
Analog to Digital ConvertersAnalog to Digital Converters
Analog to Digital Converters
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
 
Dual Slope ADC.pptx
Dual Slope ADC.pptxDual Slope ADC.pptx
Dual Slope ADC.pptx
 
Digital modulation techniques...
Digital modulation techniques...Digital modulation techniques...
Digital modulation techniques...
 
Interfacing Stepper motor with 8051
Interfacing Stepper motor with 8051Interfacing Stepper motor with 8051
Interfacing Stepper motor with 8051
 
ASk,FSK,PSK
ASk,FSK,PSKASk,FSK,PSK
ASk,FSK,PSK
 
Serial Communication in 8051
Serial Communication in 8051Serial Communication in 8051
Serial Communication in 8051
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1
 
Successive approximation adc
Successive approximation adcSuccessive approximation adc
Successive approximation adc
 
Schmitt trigger circuit
Schmitt trigger circuitSchmitt trigger circuit
Schmitt trigger circuit
 
Successive Approximation ADC
Successive Approximation ADC Successive Approximation ADC
Successive Approximation ADC
 
Pulse width modulation (PWM)
Pulse width modulation (PWM)Pulse width modulation (PWM)
Pulse width modulation (PWM)
 
FET AMPLIFIER
FET AMPLIFIERFET AMPLIFIER
FET AMPLIFIER
 
Multipliers in VLSI
Multipliers in VLSIMultipliers in VLSI
Multipliers in VLSI
 
Am transmitter
Am transmitterAm transmitter
Am transmitter
 
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER
 
OP AMP Applications
OP AMP ApplicationsOP AMP Applications
OP AMP Applications
 

En vedette

Analog to digital conversion
Analog to digital conversionAnalog to digital conversion
Analog to digital conversionEngr Ahmad Khan
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converterAshutosh Jaiswal
 
adc converter basics
adc converter basicsadc converter basics
adc converter basicshacker1500
 
DAC , Digital to analog Converter
DAC , Digital to analog ConverterDAC , Digital to analog Converter
DAC , Digital to analog ConverterHossam Zein
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converterCorrado Santoro
 
Adc by anil kr yadav
Adc by anil kr yadavAdc by anil kr yadav
Adc by anil kr yadavAnil Yadav
 
Analog to Digital Converter
Analog to Digital ConverterAnalog to Digital Converter
Analog to Digital ConverterRonak Machhi
 
Analog to Digital , Digital to Analog Conversion
Analog to Digital , Digital to Analog ConversionAnalog to Digital , Digital to Analog Conversion
Analog to Digital , Digital to Analog ConversionKunj Patel
 
Analog to Digital Conversion
Analog to Digital ConversionAnalog to Digital Conversion
Analog to Digital ConversionSyed Umair
 
Digital to analog convertor
Digital to analog convertorDigital to analog convertor
Digital to analog convertorsartaj ahmed
 
Power Optimized ALU Design with Control-Signal Gating Technique for Efficient...
Power Optimized ALU Design with Control-Signal Gating Technique for Efficient...Power Optimized ALU Design with Control-Signal Gating Technique for Efficient...
Power Optimized ALU Design with Control-Signal Gating Technique for Efficient...Anil Yadav
 
Digital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE studentsDigital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE studentsMitul Lakhani
 
Temperature Sensor Thermocouple and RTD
Temperature Sensor Thermocouple and RTDTemperature Sensor Thermocouple and RTD
Temperature Sensor Thermocouple and RTDrashid09
 

En vedette (20)

Analog to digital conversion
Analog to digital conversionAnalog to digital conversion
Analog to digital conversion
 
ADC and DAC Best Ever Pers
ADC and DAC Best Ever PersADC and DAC Best Ever Pers
ADC and DAC Best Ever Pers
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
adc converter basics
adc converter basicsadc converter basics
adc converter basics
 
DAC , Digital to analog Converter
DAC , Digital to analog ConverterDAC , Digital to analog Converter
DAC , Digital to analog Converter
 
Adc &amp;dac ppt
Adc &amp;dac pptAdc &amp;dac ppt
Adc &amp;dac ppt
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
Adc by anil kr yadav
Adc by anil kr yadavAdc by anil kr yadav
Adc by anil kr yadav
 
Analog to Digital Converter
Analog to Digital ConverterAnalog to Digital Converter
Analog to Digital Converter
 
Adc f05
Adc f05Adc f05
Adc f05
 
Adc dac converter
Adc dac converterAdc dac converter
Adc dac converter
 
Analog to-digital conversion
Analog to-digital conversionAnalog to-digital conversion
Analog to-digital conversion
 
Analog to Digital , Digital to Analog Conversion
Analog to Digital , Digital to Analog ConversionAnalog to Digital , Digital to Analog Conversion
Analog to Digital , Digital to Analog Conversion
 
Analog to Digital Conversion
Analog to Digital ConversionAnalog to Digital Conversion
Analog to Digital Conversion
 
Digital to analog convertor
Digital to analog convertorDigital to analog convertor
Digital to analog convertor
 
Power Optimized ALU Design with Control-Signal Gating Technique for Efficient...
Power Optimized ALU Design with Control-Signal Gating Technique for Efficient...Power Optimized ALU Design with Control-Signal Gating Technique for Efficient...
Power Optimized ALU Design with Control-Signal Gating Technique for Efficient...
 
Digital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE studentsDigital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE students
 
Temperature Sensor Thermocouple and RTD
Temperature Sensor Thermocouple and RTDTemperature Sensor Thermocouple and RTD
Temperature Sensor Thermocouple and RTD
 
REPORT 2
REPORT 2REPORT 2
REPORT 2
 

Similaire à ANALOG TO DIGITAL CONVERTOR

adc dac converter
adc dac converteradc dac converter
adc dac converterGaurav Rai
 
analog to digital converter.ppt
analog to digital converter.pptanalog to digital converter.ppt
analog to digital converter.pptDreamers6
 
Fundamental of MSD Module-III Part-a.ppt
Fundamental of MSD Module-III Part-a.pptFundamental of MSD Module-III Part-a.ppt
Fundamental of MSD Module-III Part-a.pptBEVARAVASUDEVAAP1813
 
MODULE-2_SIGNAL_CONDITIONING.pptx
MODULE-2_SIGNAL_CONDITIONING.pptxMODULE-2_SIGNAL_CONDITIONING.pptx
MODULE-2_SIGNAL_CONDITIONING.pptxManjunathtv2
 
Adc and dac
Adc and dacAdc and dac
Adc and dacboarddk1
 
digital anlage c converter for digital .ppt
digital anlage c converter for digital .pptdigital anlage c converter for digital .ppt
digital anlage c converter for digital .pptAbdullahOmar64
 
analog to digital adn digital to analog .ppt
analog to digital adn digital to analog .pptanalog to digital adn digital to analog .ppt
analog to digital adn digital to analog .pptdaredevil15082004
 
Top schools in noida
Top schools in noidaTop schools in noida
Top schools in noidaEdhole.com
 
Meeting w9 chapter 3 part 2
Meeting w9   chapter 3 part 2Meeting w9   chapter 3 part 2
Meeting w9 chapter 3 part 2Hattori Sidek
 
Top schools in noida
Top schools in noidaTop schools in noida
Top schools in noidaEdhole.com
 
05 analog control_sp15
05 analog control_sp1505 analog control_sp15
05 analog control_sp15John Todora
 
Pic ppt 13104022(4th_year)
Pic ppt 13104022(4th_year)Pic ppt 13104022(4th_year)
Pic ppt 13104022(4th_year)Daman Singh
 
03 analog control_sp17
03 analog control_sp1703 analog control_sp17
03 analog control_sp17John Todora
 
Interfacing to the analog world
Interfacing to the analog worldInterfacing to the analog world
Interfacing to the analog worldIslam Samir
 
Design and Simulation of First Order Sigma-Delta Modulator Using LT spice Tool
Design and Simulation of First Order Sigma-Delta Modulator Using LT spice ToolDesign and Simulation of First Order Sigma-Delta Modulator Using LT spice Tool
Design and Simulation of First Order Sigma-Delta Modulator Using LT spice ToolIJERA Editor
 
Unit IV DA & AD Convertors and Phase Locked Loop
Unit IV  DA & AD Convertors and Phase Locked LoopUnit IV  DA & AD Convertors and Phase Locked Loop
Unit IV DA & AD Convertors and Phase Locked LoopDr.Raja R
 

Similaire à ANALOG TO DIGITAL CONVERTOR (20)

adc dac converter
adc dac converteradc dac converter
adc dac converter
 
analog to digital converter.ppt
analog to digital converter.pptanalog to digital converter.ppt
analog to digital converter.ppt
 
Fundamental of MSD Module-III Part-a.ppt
Fundamental of MSD Module-III Part-a.pptFundamental of MSD Module-III Part-a.ppt
Fundamental of MSD Module-III Part-a.ppt
 
3BITFLASHADC
3BITFLASHADC3BITFLASHADC
3BITFLASHADC
 
MODULE-2_SIGNAL_CONDITIONING.pptx
MODULE-2_SIGNAL_CONDITIONING.pptxMODULE-2_SIGNAL_CONDITIONING.pptx
MODULE-2_SIGNAL_CONDITIONING.pptx
 
Adc and dac
Adc and dacAdc and dac
Adc and dac
 
digital anlage c converter for digital .ppt
digital anlage c converter for digital .pptdigital anlage c converter for digital .ppt
digital anlage c converter for digital .ppt
 
analog to digital adn digital to analog .ppt
analog to digital adn digital to analog .pptanalog to digital adn digital to analog .ppt
analog to digital adn digital to analog .ppt
 
Top schools in noida
Top schools in noidaTop schools in noida
Top schools in noida
 
Meeting w9 chapter 3 part 2
Meeting w9   chapter 3 part 2Meeting w9   chapter 3 part 2
Meeting w9 chapter 3 part 2
 
Top schools in noida
Top schools in noidaTop schools in noida
Top schools in noida
 
05 analog control_sp15
05 analog control_sp1505 analog control_sp15
05 analog control_sp15
 
Pic ppt 13104022(4th_year)
Pic ppt 13104022(4th_year)Pic ppt 13104022(4th_year)
Pic ppt 13104022(4th_year)
 
03 analog control_sp17
03 analog control_sp1703 analog control_sp17
03 analog control_sp17
 
Interfacing to the analog world
Interfacing to the analog worldInterfacing to the analog world
Interfacing to the analog world
 
Design and Simulation of First Order Sigma-Delta Modulator Using LT spice Tool
Design and Simulation of First Order Sigma-Delta Modulator Using LT spice ToolDesign and Simulation of First Order Sigma-Delta Modulator Using LT spice Tool
Design and Simulation of First Order Sigma-Delta Modulator Using LT spice Tool
 
Data convertors
Data convertorsData convertors
Data convertors
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
Digital voltmeter (DVM) and its Classification
Digital voltmeter (DVM) and its ClassificationDigital voltmeter (DVM) and its Classification
Digital voltmeter (DVM) and its Classification
 
Unit IV DA & AD Convertors and Phase Locked Loop
Unit IV  DA & AD Convertors and Phase Locked LoopUnit IV  DA & AD Convertors and Phase Locked Loop
Unit IV DA & AD Convertors and Phase Locked Loop
 

Plus de Anil Yadav

POWER EFFICIENT ALU DESIGN WITH CLOCK AND CONTROL-SIGNAL GATING TECHNIQUE
POWER EFFICIENT ALU DESIGN WITH CLOCK AND CONTROL-SIGNAL GATING TECHNIQUEPOWER EFFICIENT ALU DESIGN WITH CLOCK AND CONTROL-SIGNAL GATING TECHNIQUE
POWER EFFICIENT ALU DESIGN WITH CLOCK AND CONTROL-SIGNAL GATING TECHNIQUEAnil Yadav
 
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design pptAnil Yadav
 
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUITPOWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUITAnil Yadav
 
Oled by anil k yadav
Oled by anil k yadavOled by anil k yadav
Oled by anil k yadavAnil Yadav
 
OLED Dispaly Technology
OLED Dispaly TechnologyOLED Dispaly Technology
OLED Dispaly TechnologyAnil Yadav
 
Nano satellite by anil
Nano satellite by anilNano satellite by anil
Nano satellite by anilAnil Yadav
 

Plus de Anil Yadav (6)

POWER EFFICIENT ALU DESIGN WITH CLOCK AND CONTROL-SIGNAL GATING TECHNIQUE
POWER EFFICIENT ALU DESIGN WITH CLOCK AND CONTROL-SIGNAL GATING TECHNIQUEPOWER EFFICIENT ALU DESIGN WITH CLOCK AND CONTROL-SIGNAL GATING TECHNIQUE
POWER EFFICIENT ALU DESIGN WITH CLOCK AND CONTROL-SIGNAL GATING TECHNIQUE
 
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
 
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUITPOWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
 
Oled by anil k yadav
Oled by anil k yadavOled by anil k yadav
Oled by anil k yadav
 
OLED Dispaly Technology
OLED Dispaly TechnologyOLED Dispaly Technology
OLED Dispaly Technology
 
Nano satellite by anil
Nano satellite by anilNano satellite by anil
Nano satellite by anil
 

Dernier

Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 

Dernier (20)

Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 

ANALOG TO DIGITAL CONVERTOR

  • 1. An assignment on Design Analog & Mixedmode VLSI Circuits (EEC 7209) Analog to Digital Converter SUBMITTED BY SUBMITTED TO Anil Kumar Yadav Dr. T. Shanmuganantham M.Tech(Electronics) Assistance Professor Department Of Electronics Engineering School Of Engineering and Technology Pondicherry University
  • 2. Table of content Content Page No 1. Introduction 1 2. Adc Types of adc 1.1 Ramp or stair case or Counter type A/D converter 1.2 Tracking A/D converter 1.3 Successive Approximation A/D Converter 1.4 Flash A/D Converter 1.5 Delta-Sigma A/D Converter 1.6 Dual Slope or integrating type A/D Converter 3 5 6 7 11 15 3. ADC Parameter Specification 3.1 Span (or Range) 3.2 Step Size (or Resolution) 3.3 Resolution 3.4 Quantization Error and Quantization Noise 3.5 Dynamic range 3.6 Signal-to-noise-and-distortion ratio ( SNDR) 3.7 Spurious-free dynamic range (SFDR) 3.8 Total Harmonic Distortion 3.9 Aperture delay 3.10 Transient Response 3.11 Overvoltage Recovery 3.12 Aperture jitter 3.13 Accuracy 3.14Offset Error 3.15Gain Error 18 19 19 20 21 21 21 21 22 22 22 22 22 22 23 24
  • 3. 3.16Differential Nonlinearity 3.17 Integral Nonlinearity 3 .18 Missing Codes: 25 25 25 4. References 26
  • 4. ANALOG - DIGITAL CONVERSION 1. INTRODUCTION An electronic integrated circuit which transforms a signal from analog (continuous) to digital (discrete) form.The basic principle of operation is to use the comparator principle to determine whether or not to turn on a particular bit of the binary number output. The conversion involves quantization of the input, so it necessarily introduces a small amount of error. Instead of doing a single conversion, an ADC often performs the conversions ("samples" the input) periodically. The result is a sequence of digital values that have converted a continuous-time and continuous-amplitude analog signal to a discrete-time and discrete-amplitude digital signal. ADC are used virtually everywhere where an analog signal has to be processed, stored, or transported in digital form. • Some examples of ADC usage are digital volt meters, cell phone, thermocouples, and digital oscilloscope. • Microcontrollers commonly use 8, 10, 12, or 16 bit ADCs, our micro controller uses an 8 or 10 bit ADC. It is two steps process: 1.Sampling and Holding (S/H) 2.Quantizing and Encoding (Q/E
  • 5. Sampling and Holding • The behavior of S/H is analogous to that of camera. its main function is “to capture picture” of the analog signal and hold its value until the adc can process the information. • Holding signal benefits the accuracy of the A/D Conversion • Minimum sampling rate should be at least twice the highest data frequency of the analog signal. Quantizing: Partitioning the reference signal range into a number of discrete quanta, then matching the input signal to the correct quantum. Encoding: Assigning a unique digital code to each quantum, then allocating the digital code to the input signal. Speed: Rate of conversion of a single digital input to its analog equivalent. Conversion Rate  Depends on clock speed of input signal  Depends on settling time of converter
  • 6. Types of A/D Converters 1. Ramp or stair case or counter type A/D converter 2. Tracking A/D converter 3. Successive Approximation A/D Converter 4. Flash A/D Converter 5. Delta-Sigma A/D Converter 6. Dual Slope or integrating type A/D Converter 2.1 Counter type One of the simplest types of analog to digital converter is counter type ADC. The basic idea is to connect the output of a free-running binary counter to the input of a DAC, then compare the analog output of the DAC with the analog input signal to be digitized and use the comparator’s output to tell the counter when to stop counting and reset. Thefollowing schematic shows the basic idea:  Counter type contains the following elements:  Digital to analog converter  Some type of counting mechanism  Comparator  clock  The input signal of ADC is connected to the signal input of its internal comparator.  The ADC then systematically increases the voltage of the reference input of the comparator until the reference becomes larger than the signal.  And the comparator output goes to 0
  • 7. Block diagram: Operation :  consider an input signal is 4.78 volts. The initial comparator’s input would be 2.5 volts  The comparator compares the two value then the result this is less than 4.78 then the next higher voltage (5.00 volts) is applied  The comparator compares the two value and says this is greater than 4.78 and switches 0  The digital output of the ADC is the number of times the ADC increase the voltage after starting at the initial 2.5 volts  This scheme is relatively simple , but as the number of ADC increases the time it takes to scan through all possible values lower than input will grow quickly  The conversion time on the counter type is NOT fixed but depends on the actual value of the analogue input expressed as a fraction of the full scale. This can be expressed as :- Where N is the number of bits and T is the time period of the clock pulse .
  • 8. Example: 1 A counter type ADC has the following parameters, N=8, Vref=5.1V and clock=1MHz. Find the digital word for an Vin of 4.36V and the conversion time taken to reach this value? Solution: Step size = 5.1v / 2^N = 5.1V / 256 = 0.0199=0.02 The number of steps = 4.36 / 0.02 = 218.1=219  (219)10 = 110110112 Conversion time = 219 x 1/1MHz = 219 x 1uS = 219 uS Features of counter type:  Use a clock to index the counter  Use DAC to generate analog signal to compare against input  Comparator is used to compare VIN and VDAC where VIN is the signal to be digitized  The input to the DAC is from the counter 2.2 Tracking ADC Tracking ADC - similar to the counter type except it uses an up/down counter and can track a varying signal more quickly. Track A/D Converter
  • 9. 2.3 Flash A/D Converter Flash adc is fastest in all adc because flash type adc is uses combinational logic (not sequential logic ). Therefore, clock is not required, in case of flash type adc.  If propagation delay time of combinational circuit is zero, then ideal conversion time of adc is zero. But practical conversion time is sum of all propagation delay of combinational circuit involve in flash type ADC.  Uses the 2^n resistors to form a ladder voltage divider, which divides the reference voltage into 2^n equal intervals.  Uses the 2^n-1 comparators to determine in which of these 2^n voltage intervals the input voltage Vin lies.  The Combinational logic then translates the information provided by the output of the comparators  This ADC does not require a clock so the conversion time is essentially set by the settling time of the comparators and the propagation time of the combinational logic. Fundamental Components (For n bit Flash A/D) a) 2^n-1 Comparators b) 2^n Resistors c) Control Logic Block diagram:
  • 10. Operation: 1. A resistive voltage divider (see figure) can provide all the digital reference states required. There are eight reference values for the 3-bit converter. 2. The analog signal is compared concurrently with each reference state; therefore a separate comparator is required for each comparison. 3. Digital logic then combines the several comparator outputs to determine the appropriate binary code to present. 4. The reference voltages are set to 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, and 7.5 volts respectively. The comparator outputs are labeled correspondingly as 1, 2, 3, 4, 5, 6, and 7 respectively. Advantage i. Very Fast (Fastest) ii. Very simple operational theory iii. Speed is only limited by gate and comparator propagation delay Disadvantage i. Expensive ii. Prone to produce glitches in the output iii. Each additional bit of resolution requires twice the comparators 2.4 Delta-Sigma (∆Σ) ADC One of the more advanced ADC technologies is the so-called delta-sigma, or ∆Σ (using the proper Greek letter notation). In mathematics and physics, the capital Greek letter delta (∆) represents difference or change, while the capital letter sigma (Σ) represents summation: the adding of multiple terms together. Sometimes this converter is referred to by the same Greek letters in reverse order: sigma-delta, or Σ∆. In a ∆Σ converter, the analog input voltage signal is connected to the input of an integrator, producing a voltage rate-of-change, or slope, at the output corresponding to input magnitude. This ramping voltage is then compared against ground potential (0 volts) by a comparator. The comparator acts as a sort of 1-bit ADC, producing 1 bit of output (”high” or ”low”) depending on whether the integrator output is positive or negative. The comparator’s output is then latched
  • 11. through a D-type flip-flop clocked at a high frequency, and fed back to another input channel on the integrator, to drive the integrator in the direction of a 0 volt output. The basic circuit is shown in B/D: Block Diagram: The leftmost op-amp is the (summing) integrator. The next op-amp the integrator feeds into is the comparator, or 1-bit ADC. Next comes the D-type flip-flop, which latches the comparator’s output at every clock pulse, sending either a ”high” or ”low” signal to the next comparator at the top of the circuit. This final comparator is necessary to convert the single-polarity 0V / 5V logic level output voltage of the flip-flop into a +V / -V voltage signal to be fed back to the integrator. If the integrator output is positive, the first comparator will output a ”high” signal to the D input of the flip-flop. At the next clock pulse, this ”high” signal will be output from the Q line into the noninverting input of the last comparator. This last comparator, seeing an input voltage greater than the threshold voltage of 1/2 +V, saturates in a positive direction, sending a full +V signal to the other input of the integrator. This +V feedback signal tends to drive the integrator output in a negative direction. If that output voltage ever becomes negative, the feedback loop will send a corrective signal (-V) back around to the top input of the integrator to drive it in a positive direction. This is the delta-sigma concept in action: the first comparator senses a difference (∆) between the integrator output and zero volts. The integrator sums (Σ) the comparator’s output with the analog input signal.
  • 12. Functionally, this results in a serial stream of bits output by the flip-flop. If the analog input is zero volts, the integrator will have no tendency to ramp either positive or negative, except in response to the feedback voltage. In this scenario, the flip-flop output will continually oscillate between ”high” and ”low,” as the feedback system ”hunts” back and forth, trying to maintain the integrator output at zero volts: If, however, we apply a negative analog input voltage, the integrator will have a tendency to ramp its output in a positive direction. Feedback can only add to the integrator’s ramping by a fixed voltage over a fixed time, and so the bit stream output by the flip-flop will not be quite the same: By applying a larger (negative) analog input signal to the integrator, we force its output to ramp more steeply in the positive direction. Thus, the feedback system has to output more 1’s than before to bring the integrator output back to zero volts:
  • 13. As the analog input signal increases in magnitude, so does the occurrence of 1’s in the digital output of the flip-flop: A parallel binary number output is obtained from this circuit by averaging the serial stream of bits together. For example, a counter circuit could be designed to collect the total number of 1’s output by the flip-flop in a given number of clock pulses. This count would then be indicative of the analog input voltage. Variations on this theme exist, employing multiple integrator stages and/or comparator circuits outputting more than 1 bit, but one concept common to all ∆Σ converters is that of oversampling. Oversampling is when multiple samples of an analog signal are taken by an ADC (in this case, a 1-bit ADC), and those digitized samples are averaged. The end result is an effective increase in the number of bits resolved from the signal. In other words, an oversampled 1-bit ADC can do the same job as an 8-bit ADC with one-time sampling, albeit at a slower rate.
  • 14. Advantage  High Resolution  No need for precision Components Disadvantage  Slow due to oversampling  Only good for low bandwidth 2.5 Successive Approximation ADC Circuit One method of addressing the digital ramp ADC's shortcomings is the so-called successive- approximation ADC. The only change in this design is a very special counter circuit known as a successive-approximation register. Instead of counting up in binary sequence, this register counts by trying all values of bits starting with the most-significant bit and finishing at the least-significant bit. Throughout the count process, the register monitors the comparator's output to see if the binary count is less than or greater than the analog signal input, adjusting the bit values accordingly. The way the register counts is identical to the "trial-and-fit" method of decimal-to-binary conversion, whereby different values of bits are tried from MSB to LSB to get a binary number that equals the original decimal number. The advantage to this counting strategy is much faster results: the DAC output converges on the analog signal input in much larger steps than with the 0-to-full count sequence of a regular counter.  Uses a n-bit DAC to compare DAC and original analog results.  Uses Successive Approximation Register (SAR) supplies an approximate digital code to DAC of Vin.  Comparison changes digital output to bring it closer to the input value.  Uses Closed-Loop Feedback Conversion
  • 15. Block diagram: Process  1. MSB initialized as 1  2. Convert digital value to analog using DAC  3. Compares guess to analog input  4. Is Vin>VDAC • Set bit 1 • If no, bit is 0 and test next bit Advantage  Capable of high speed and reliable  Medium accuracy compared to other ADC  Good tradeoff between speed and cost  Capable of outputting the binary number in serial (one bit at a time) format.
  • 16. Disadvantage  Higher resolution  slower  Speed limited to ~5Msps Example: 1 In 10 bit ADC,Vin= 0.6 volts (from analog device),Vref=1 volts .Find the digital value of Vin? Solution • N=2^n =1024 • Vmax-Vmin/N = 1 Volt/1024 =0.0009765625V of Vref (resolution) MSB (bit 9)  Divided Vref by 2  Compare Vref /2 with Vin  If Vin >Vref /2 , turn MSB on (1)  If Vin < Vref /2 , turn MSB off (0)  Vin =0.6V and V=0.5
  • 17.  Since Vin>V, MSB = 1 (on) Next Calculate MSB-1 (bit 8)  Compare Vin=0.6 V to V=Vref/2 + Vref/4= 0.5+0.25 =0.75V Since 0.6<0.75, MSB is turned off.  Calculate MSB-2 (bit 7)  Go back to the last voltage that caused it to be turned on (Bit 9) and add it to Vref/8, and compare with Vin.  Compare Vin with (0.5+Vref/8)=0.625 Since 0.6<0.625, MSB is turned off Calculate the state of MSB-3 (bit 6) Go to the last bit that caused it to be turned on (in this case MSB-1) and add it to Vref/16, and compare it to Vin.  Compare Vin to V= 0.5 + Vref/16= 0.5625 Since 0.6>0.5625, MSB-3=1 (turned on) This process continues for all the remaining bits.
  • 18. 2.6 Dual Slope A/D Converter A popular method for converting an analog voltage into a digital value is the dualslope method. Figure shows a block diagram of the basic dual-slope converter. The analog voltage to be converted is applied through an electronic switch to an integrator or ramp-generator circuit (essentially a constant current charging a capacitor to produce a linear ramp voltage). The digital output is obtained from a counter operated during both positive and negative slope intervals of the integrator. Fundamental components 1. integrator 2. Electronically Controlled Switches 3. Counter 4. Clock 5. Control Logic 6. Comparator
  • 19. Block Diagram: The method of conversion proceeds as follows. For a fixed time interval (usually the full count range of the counter), the analog voltage connected to the integrator raises the voltage at the comparator input to some positive level. Figure shows that at the end of the fixed time interval the voltage from the integrator is greater for the larger input voltage. At the end of the fixed count interval, the count is set to zero and the electronic switch connects the integrator to a reference or fixed input voltage. The integrator output (or capacitor input) then decreases at a fixed rate. The counter advances during this time, while the integrator’s output decreases at a fixed rate until it drops below the comparator reference voltage, at which time the control logic receives a signal (the comparator output) to stop the count. The digital value stored in the counter is then the digital output of the converter. Using the same clock and integrator to perform the conversion during positive and negative slope intervals tends to compensate for clock frequency drift and integrator accuracy limitations. Setting the reference input value and clock rate can scale the counter output as desired. The counter can be a binary, BCD, or other form of digital counter, if desired.
  • 20. Advantage • Conversion result is insensitive to errors in the component values. • Fewer adverse affects from “noise” • High Accuracy Disadvantages • Slow • Accuracy is dependent on the use of precision external components • Cost Example 1 • A 10-bit digital slope integrating A/D converter has a full-scale input of 10V. If the clock period is 15 μS, how long will it take to convert an input of 4V? How long for an input of 10V? Solution: 10 bits means 210 =1024 levels. Full scale input of 10V means each level is 10V/1024=9.77mV 4V corresponds to 4/9.7710-3 =409.6 - round up to 410 A clock period of 15μs mean 4V will take 15μs410 =6.15ms 10V will take 15μs1024=15.36ms Example 2 • A 10-bit digital slope integrating A/D converter has a full-scale input of 10V. If the clock period is 15 μS, how long will it take to convert an input of 4V? How long for an input of 10V? Solution: 10V will take 15μs1024=15.36ms Example 3: What increase in speed can be gained by using a 12-bit successive approximation converter instead of the digital slope converter, assuming a full-scale input voltage.?
  • 21. Solution: • A 12-bit SA converter will take 12 clock cycles = 180 μs, regardless of the input voltage • so for 10V full scale input, the speed increase is 15.36ms/180 μs =85.3 times. • So the SA converter is both faster and more accurate (12 bits gives 4096 levels, compared to 1024 levels for 10 bit) 3. ADC Parameter Specification 3.1 Span (or Range): difference between maximum and minimum analog values. Span= maximum value – minimum value Some common spans: range of 0 V to 5 V: span = 5 V range of –12 V to 12 V: span = 24 V range of 4 mA to 20 mA: span = 16 mA Offset: minimum analog value Bit Weight: analog value corresponding to a bit in the digital number 3.2 Step Size (or Resolution): smallest analog change resulting from changing one bit in the digital number, or the analog difference between two consecutive digital numbers. Let AV be Analog Value; DN be Digital Number: AV = DN × Step Size + Offset = (DN / 2n )× Span + Offset DN = (AV - Offset) / Step Size = (AV - Offset) × 2n / Span
  • 22. 3.3 Resolution: The smallest change in analog signal that will result in change in digital output . Where V=reference voltage range N= Number of bits in digital output. 2^N= Number of states. ΔV=resolution. Example 1 o Full scale measurement range = 0 to 10 volts o ADC resolution is 12 bits = 4096 quantization levels (codes) o ADC voltage resolution is =(10V - 0V) / 4096 codes = 10V /4096 codes =0.00244 volts/code = 2.44 mV/code • Example 2 o Full scale measurement range = -10 to +10 volts o ADC resolution is 14 bits: =16384 quantization levels (codes) o ADC voltage resolution is: =(10V - (-10V)) / 16384 codes =20V / 16384 codes=0.00122 volts/code = 1.22 mV/code 3.4 Quantization Error and Quantization Noise : Quantization error occur due to the finite resolution N of the A/D converter limits the signal-to-noise ratio. All inputs within ±1/2 LSB of a code center resolve to that digital code. Thus, there will be a small difference between the code center and the actual input voltage due to this quantization. Mathematically, Qe=Vin-Vstaircase, where Vstaircase=D*VQ ,VQ => Quantam volatge level If assume that this error voltage is uncorrelated and distributed uniformly, we can calculate the expected rms value of this quantization noise.“
  • 23. Quantum voltage level= Expectation value of the error voltage = The rms value of a full-scale peak-to-peak amplitude VF is: thus the signal-to-noise ratio is = SNR= 6.02N + 1.76 dB
  • 24. 3.5 Dynamic range : is the ratio of the smallest possible output (the least significant bit or quantum voltage) to the largest possible output (full-scale voltage). `Mathematically : DR =20 log10 2^N = 6N. 3.6 Signal-to-noise-and-distortion ratio ( SNDR) : is the ratio of the input signal amplitude to the rms sum of all other spectral components. SNDR =S/N+D 3.7 Spurious-free dynamic range (SFDR): is the ratio of the input signal to the peak spurious or peak harmonic component. Spurs can be created at harmonics of the input frequency due to nonlinear- ties in the A/D converter, or at sub harmonics of the sampling frequency due to mismatch or clock coupling in the circuit.  The SFDR of an A/D converter can be larger than the SNDR.  3.8 Total Harmonic Distortion: Total harmonic distortion (THD) is the ratio of the rms sum of the first 5 harmonic components to the input signal. where V1 is the amplitude of the fundamental, and Vn is the amplitude of the n-th harmonic. 3.9 Aperture delay : Aperture delay is the delay from when the A/D converter is triggered (perhaps the rising edge of the sampling clock) to when it actually converts the input voltage into the appropriate digital code. Aperture delay is also sometimes called aperture time.
  • 25. 3.10 Transient Response: Transient response is the settling time for the A/D converter to full accuracy (to within ±1/2 LSB) after a step in input voltage from zero to full scale. 3.11 Overvoltage Recovery: Overvoltage recovery is the settling time for the A/D converter to full accuracy after a step in input voltage from outside the full scale voltage (for example, from 1:5VF to 0:5VF ) 3.12 Aperture jitter: Aperture jitter is the sample-to-sample variation in the aperture delay. The rms voltage error caused by rms aperture jitter decreases the overall signal-to-noise ratio, and is a significant limiting factor in the performance of high-speed A/D converters. If we assume that the input waveform is a sinusoid ,then , VIN = VFS sin ᾡt then the maximum slope of the input waveform is: which occurs at the zero crossings.  If there is an rms error in the time at which we sample (aperture jitter, ta) during this maximum slope.  then ,there will be an rms voltage error of Since the aperture time variations are random these voltage errors will behave like a random Noise source. Thus the signal-to-jitter-noise ratio :
  • 26. 3.12 Accuracy Accuracy is the total error with which the A/D converter can convert a known voltage, including the effects of quantization error, gain error, offset error, and nonlinearities. There are two ways to best improve the accuracy of A/D conversion: • increasing the resolution which improves the accuracy in measuring the amplitude of the analog signal. • increasing the sampling rate which increases the maximum frequency that can be measured.
  • 27. 3.13 Offset Error Offset error is the deviation in the A/D converter's behavior at zero. The first transition voltage should be 1/2 LSB above analog ground. Offset error is the deviation of the actual transition voltage from the ideal 1/2 LSB. Offset error is easily trimmed by calibration. Compare the location of the first transitions in Figures 1 and 2. 3.14 Gain Error Gain error is the deviation in the slope of the line through the A/D converter's end points at zero and full scale from the ideal slope of 2^N/VFS codes-per-volt. Like offset error, gain error is easily corrected by calibration. Compare the slope of the dashed lines in Figures 1 and 2. 3.15 Differential Nonlinearity Differential nonlinearity (DNL) is the deviation of the code transition widths from the ideal width of 1 LSB i.e. difference b/w the actual code width of nonideal converter and the ideal case. Mathematically, DNL=actual step width - ideal step width ideal step width=Vref/8=.625V=1 LSB All code widths in the ideal A/D converter are 1 LSB wide, so the DNL would be zero everywhere.
  • 28. 3.16 Integral Nonlinearity Integral nonlinearity (INL) is the distance of the code centers in the A/D converter characteristic from the ideal line. If all code centers land on the ideal line, the INL is zero everywhere. See the deviations of the code centers from the ideal line in Figure . 3.18 Missing Codes: Missing codes are output digital codes that are not produced for any input voltage, usually due to large DNL. In some converters, missing codes can be caused by non-monotonicity of the internal D/A. The large DNL in Figure 3 causes code 100 to be “crowded out.” 3. References • C-mos Circuit Design, layout and simulation- By R.Jacob baker, chapter no. 28,29. • Fundamentals of Digital Circuits By - A. Anand Kumar • LINEAR INTEGRATED CIRCUIT By: D. ROY CHOUDHARY • http://elearning.vtu.ac.in • http://web.mit.edu/klund/www/papers/ • http://www.freescale.com/files/microcontrollers/doc/app_note/AN2438.pdf