Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Complex PFAS Sampling at Two Industrial Sites

60 vues

Publié le

Presented by Jack Sheldon at the National Ground Water Association (NGWA) PFAS Conference.

Publié dans : Environnement
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Complex PFAS Sampling at Two Industrial Sites

  1. 1. Complex PFAS Sampling at Two Industrial Sites NGWA – The PFAS Management, Mitigation and Remediation Conference, 19 and 20 June, 2019 The logo and ANTEA are registration trademarks of Antea USA, Inc. © 2018 Google
  2. 2. Complex PFAS Sampling at Two Industrial Sites Site Comparisons Case 1 - Description, Sampling Techniques, and Quality Assurance Case 2 - Description, Sampling Techniques, and Quality Assurance Summary Agenda
  3. 3. Similarities • Concern for PFAS in effluent water • Material and infrastructure surface sampling • PFAS use permitted under TSCA • No state requirements at the time of use Differences • AFFF emergency use versus routine manufacturing process • Pre-2002 TSCA PFAS product versus Post-2015 product- (i.e. long-chain versus short-chain) • Concentration scale Site Comparisons
  4. 4. SITE ONE
  5. 5. Emergency AFFF Use State regulators required firefighting water to be contained and removed Initial concentrations of PFOS were five orders of magnitude (OM) (160,000 ppt) above state discharge limit of 70 ppt State ordered owner to reduce stormwater to 70 ppt before owner could resume discharge to outfall
  6. 6. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 1 10 100 1000 10000 100000 1000000 PRECIPITATIONININCHES (ng/L) EPA Drinking Water Advisory Level PFOA in Stormwater Runoff PFOS in Stormwater Runoff Daily Precipitation October ‘16: Stormwater asphalt cleaning PFOS/ PFOA in Stormwater A decrease after initial high pressure wash Rainfall, stormwater, temperature and concentration relationship – decrease with less precipitation and freezing temperatures – increase with more rain and thaw Ongoing source identification and delineation needed Elevated PFOS - AFFF was likely manufactured prior to 2002
  7. 7. Regulatory History 2002 2008 2011 2013 2015 2016 2017 2019 US firms discontinue PFOS manufacturing UCMR 3 for PFAS in drinking water supply study EPA publishes PFAS draft procedure for sewage, biosolids UCMR 3 - Results Several drinking water supplies affected TSCA bans PFOA PFOA/PFOS drinking water advisory level 70 ppt TSCA ruling to limit manufacturing, possible health effects TSCA targets PFOS EPA publishes drinking water Method 537 14 PFAS TSCA ruling: Notification before resuming new uses of PFAS containing products EPA Action Plan -MCLs -Hazardous designation
  8. 8. Infrastructure Sampling Pavement and infrastructure high pressure wash reduced by one order of magnitude (OM) Small decline, with rebound suggested ongoing source Cost to contain, transport and dispose of stormwater $400K per year! Hot spot source and extent assessment needed Not sustainable - duration unpredictable, interferes with operations The Challenge - HOW TO SAMPLE INFRASTRUCTURE?
  9. 9. Rinse Samples Why? If done consistently, comparable results How? Consistent surface areas and rinse water volume Method blanks and PFAS- free sourced rinse water What? Tanks and pavement surfaces
  10. 10. Unique Low Cost HDPE sheeting and sand bags to dam up rinse water
  11. 11. Soil Samples Soil sampling to assess the vertical extent of PFAS Collected at locations of asphalt cracks
  12. 12. A-1 27 A-2 50 A-3 13 A-4 212 A-5 226 A-6 160 A-7 50 A-8 144 A-9 55 A-10 34 A-11 51 Asphalt Rinse Results PFAS total (ppt)
  13. 13. AST and Chip Seal Rinse Results PFAS total (ppt) AST-1 1,742 AST-2 29,800 AST-3 3,891 AST-4 20,470 AST-5 100 CS-1 137 CS-2 9,289 CS-3 432 CS-4 20,290
  14. 14. eS-1 1,032,000 eS-2 700 eS-3 2,450 eS-4 670 S-1 (0-0.5') 5,680 (0.5-1') 2,770 S-2 (0-0.5') 62,590 (0.5-1') 83,390 S-3 (0-0.5') 360 (0.5-1') 670 S-4 (0-0.5') 1,700 (0.5-1') 550 Soil Boring Results PFAS total (ppt)eS-1 eS-2 eS-3 eS-4
  15. 15. Crack in pavement Stormwater to excavation was controlled with a berm and diverted away Excavation activity can could also drag PFAS to lower soil horizons Soil Delineation Assessment Analytical Results in ppb Sample ID Depth Date PFBS (ppb) PFHxS (ppb) PFHpA (ppb) PFOA (ppb) PFOS (ppb) PFNA (ppb) S-1 (0-0.5') 3/20/17 < 0.11 0.38 < 0.094 0.14 J 5.3 < 0.089 S-1 (0.5-1') 3/20/17 < 0.13 0.27 < 0.11 < 0.13 2.5 0.20 J S-2 (0-0.5') 3/20/17 1.1 6.3 0.24 0.95 54 < 0.089 S-2 (0.5-1') 3/20/17 0.47 4.9 1.2 0.82 76 < 0.11 S-3 (0-0.5') 3/20/17 < 0.11 < 0.13 < 0.098 < 0.11 0.36 < 0.092 S-3 (0.5-1') 3/20/17 < 0.11 < 0.12 < 0.093 < 0.11 0.67 < 0.088 S-4 (0-0.5') 3/20/17 < 0.11 0.30 0.15 J < 0.11 1.4 < 0.088 S-4 (0.5-1') 3/20/17 < 0.12 0.17 J < 0.099 < 0.12 0.55 < 0.094 DUP01 (0.5-1') 3/20/17 < 0.11 < 0.12 < 0.091 < 0.11 0.35 < 0.086 eS-1 (1.5') 4/11/17 1.1 20 2.9 7.6 1,000 0.66 eS-2 (1.5') 4/11/17 0.17 J 0.40 0.3 <0.14 <0.17 <0.11 eS-3 (1.5') 4/11/17 <0.11 0.45 0.14 J 0.17 J 2.0 <0.091 eS-4 (1.5') 4/11/17 0.14 J 0.67 0.16 J 0.21 J <0.14 <0.090
  16. 16. Sample ID Date PFBS (ppt) PFHxS (ppt) PFHpA (ppt) PFOA (ppt) PFOS (ppt) PFNA (ppt) A-1 3/21/17 <0.91 2.5 1.3 J 2.1 22 0.78 J A-2 3/21/17 <0.89 9.2 4.9 5.1 31 1.2 J A-3 3/21/17 <0.90 2.0 1.8 J 2.0 8.7 <0.94 A-4 3/21/17 <0.90 26 5.5 60 120 <0.94 A-5 3/21/17 <0.88 26 7.4 11 180 1.9 A-6 3/21/17 <0.92 24 17 15 100 4.2 A-7 3/21/17 <0.93 10 6.6 7.9 23 2.7 A-8 3/21/17 3.5 17 7.4 6.3 110 1.9 J A-9 3/21/17 <0.90 3.7 2.3 3.5 46 0.93 J A-10 3/21/17 <0.93 4.3 3.1 4.5 23 1.1 J A-11 3/21/17 <0.88 8.1 6.1 7.7 27 2.6 AST-1 3/22/17 40 180 75 34 1,400 13 AST-2 3/22/17 210 2,400 1,100 650 25,000 440 AST-3 3/22/17 51 320 92 92 3,300 36 AST-4 3/22/17 400 2,100 400 450 17,000 120 AST-5 3/22/17 < 1.9 6.7 3.4 4.2 86 1.4 J CS-1 3/20/17 <0.81 4.4 1.3 J 3.0 130 0.73 J CS-2 3/20/17 1.9 28 28 170 9,000 62 CS-3 3/20/17 <0.93 9.4 4.0 6.3 410 2.6 CS-4 3/20/17 3.7 79 36 120 20,000 52 DUP02 3/21/17 <0.92 8.9 2.4 3.8 88 0.73 J EB_170320 3/20/17 <0.87 <0.82 <0.76 <0.71 <1.2 <0.62 EB_170321 3/21/17 <0.90 <0.85 <0.78 <0.73 <1.2 <0.64 EB_170322 3/22/17 < 0.86 <0.82 <0.75 <0.70 6.4 <0.61 Rinsate-Structural 4/10/17 1.1 J 1.3 J <0.76 <0.71 8.0 <0.62 All method blanks below MDLs or very low PFAS-free water not a source Cross-contamination during AST sampling at 6.4 ppt where ASTs were up to 25,000 ppt Delineation Assessment Analytical Results
  17. 17. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 1 10 100 1000 10000 100000 1000000 PRECIPITATIONININCHES (ng/L) EPA Drinking Water Advisory Level PFOA in Stormwater Runoff PFOS in Stormwater Runoff Daily Precipitation October ‘16: Stormwater asphalt cleaning March ‘17: AST removal April ‘17: Chip seal removal May ‘17 Stormwater after AST and chip seal removal Success and Value Achieved closure within one year Saved client several million dollars in long- term on-site treatment and OM&M PFOS/ PFOA in Stormwater
  18. 18. 1 10 100 1,000 10,000 100,000 1,000,000 PFOA (ng/L) PFOS (ng/L) PFBS (ng/L) PFHxS (ng/L) Stormwater Runoff Sampling Data 10/21/16 11/2/16 12/1/16 1/5/17 1/13/17 1/23/17 2/23/17 3/20/17 4/3/17 4/24/17 5/9/17 6/1/17 0.1 1 10 100 1000 10000 100000 PFOA (ppt) PFOS (ppt) PFBS (ppt) PFHxS (ppt) Rinse Data A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-10 0.01 0.1 1 10 100 PFOA (ppb) PFOS (ppb) PFBS (ppb) PFHxS (ppb) Soil Boring Samples S-1 (0-0.5') S-1 (0.5-1') S-2 (0-0.5') S-2 (0.5-1') S-3 (0-0.5') S-3 (0.5-1') S-4 (0-0.5') S-4 (0.5-1') Media Pattern Comparisons
  19. 19. Site One Takeaways • PFAS of concern are resilient and persist after high intensity washing. Residuals can remain in infrastructure for decades above regulated levels • Small cracks in pavement resulted in migration to underlying soils • Rinse samples are effective to define hot spots and extent • PFAS readily mobilizes into soil. Excavation into paved areas could introduce PFAS to deeper soil horizons • Elevated PFOS in all media samples suggests the AFFF was likely made before 2002
  20. 20. SITE TWO
  21. 21. C A T H O D E A N O D E Chromic Acid Mist Gas Bubbles due to Hydrolysis Facility formulates fume suppressants for chrome plating baths Changing regulatory climate prompted facility to think about product safety and messaging to its customers Historically, used exempted long-chain raw materials (fluoro surfactants) to formulate their products Chemical Manufacturing Facility
  22. 22. PFAS Management Plan • Conduct site walk • Review raw material Safety Data Sheets (seven total) and CAS numbers versus analytical CAS numbers • Develop plan to sample raw materials, wastewater, and production infrastructure • Discuss analytical method with lab, especially dilution • Review results and complete data validation • Determine path forward with client
  23. 23. Facility Map Stormwater flow Tank Floor drain Sump & pump Wastewater treatment line Overhead wastewater treatment line
  24. 24. Sampling Procedures Standard PFAS SOP No cosmetics or deodorant No waterproof clothing Nitrile gloves Face shield
  25. 25. Production Area Considerations • Identify raw material use in each area of the plant • Determine method to sample infrastructure • Determine impact of steam cleaning
  26. 26. Raw Material/Sump Sampling • Sample only new drums or containers • Avoid retainage samples stored in glass • Use polypropylene pump or pour into polypropylene beaker for transfer to sample containers Sump area Raw materials
  27. 27. Dip Sampler Used for Weir and Sumps
  28. 28. Wastewater Sampling • Six tanks that can individually discharge to municipal sewer, blend with roof water • Treatment only for cyanide, metals, and phosphorus • Receives water from stormwater sump plus facility
  29. 29. Sampling Results - Raw Materials • PFAS concentrations ranged from 0.27 ng/L to 2.6% in raw materials! • 6:2 FTS precursor major constituent of raw materials • PFOA and PFHxS detected!
  30. 30. 6:2 Fluorotelomer Sulfonic acid (6:2 FTS) (C6) 8:2 Fluorotelomer Sulfonic acid (8:2 FTS) (C8) Perfluorobutanoic acid (PFBA) (C4) Perfluoropentanoic acid (PFPeA) (C5) Perfluorohexanoic acid (PFHXA) (C6) Perfluorobutanesulfonic acid (PFBS) (C4) Perfluorohexanesulfonic acid (PFHxS) (C6) Perfluoroheptanoic acid (PFHpA) (C7) Perfluorooctanoic acid (PFOA) (C8) 22 ng/L of 6:2 FTS in field blank Sampling Results - Raw Materials
  31. 31. • 2 rounds of sampling • PFAS concentrations ranged from 3.1 ng/L to 290,000 ng/L! • 4:2, 6:2 and 8:2 FTS precursors detected • PFOA, PFOS and PFHxS detected! • More PFAS analytes in wastewater than raw materials analysis showed Sampling Results - Wastewater
  32. 32. 17 PFAS Analytes Detected in Wastewater per Event PFAS Analyte WW 1 WW 2 6:2 FTS (C6) Yes Yes 8:2 FTS (C8) Yes Yes PFPeA (C5) Yes Yes PFHxA (C6) Yes Yes PFBS (C4) Yes Yes PFHxS (C6) Yes Yes PFNA (C9) Yes Yes PFDA (C10) Yes Yes PFUnA (C11) Yes Yes PFDoA (C12) Yes Yes PFTriA (C13) Yes Yes PFTeA (C14) Yes Yes PFHpS (C7) Yes Yes PFOS (C8) Yes Yes PFHpA (C7) Yes Yes PFOA (C8) Yes Yes PFOSA or FOSA (C8) Yes No Field Blank = No detections
  33. 33. Site Two Takeaways • PFAS of concern are resilient and persist after high intensity washing. Residuals can remain in infrastructure for decades above regulated levels • Raw materials may contain impurities • Precursors can be present at significant concentrations • Many wastewater treatment system are not able to remove PFAS • Sampling in complex scenarios requires careful planning and consultation with the lab
  34. 34. We do more than effectively solve client challenges; we deliver sustainable results for a better future. Thank you If you have more questions… Jack Sheldon, Senior Remediation Specialist Caron Koll, LSP, PG Katie Angel, EIT Gordon Hinshalwood, PhD, PG

×