SlideShare une entreprise Scribd logo
1  sur  43
Télécharger pour lire hors ligne
ISSAM FARES INSTITUTE
FOR PUBLIC POLICY & INTERNATIONAL AFFAIRS
Net Zero Energy Building Analysis
Arami Matevosyan | Flora Lee | Mourad Dabbour
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
TABLEOFCONTENTS
HVAC 23
Systems & Schedules 24
Base Model 25
Improved Model 26
ENERGY GENERATION 27
Energy Sources 28
On-Site Renewables 29
COST 30
Suites 31
Lower Cost Suite 32
Higher Cost Suite 33
Energy Generation Comparison 34
Summary 35
APPENDIX 36
Initial Energy Model 37
Measuring Comfort 39
Questions, Problems, Concerns 41
EXECUTIVE SUMMARY 1
BUILDING DOCUMENTATION 3
Data & Photographs 4
Plans & Assemblies 5
Internal Loads 6
CLIMATE & ENERGY 7
Climate Analysis 8
Energy Bills 10
BUILDING ANALYSIS 11
Simulation Inputs 12
Base Case Sensitivity 13
FILTER OPTIMIZATION 14
Thermal Mass 15
Glass Type 17
Visual Representation 19
COMFORT & THERMAL AUTONOMY 20
Suite A 21
Suite B 22
TABLE OF CONTENTS
Cost	
  Summary
This	
  analysis	
  assumes:
1.	
  No	
  Discount	
  Rate	
  (opportunity	
  cost	
  of	
  capital	
  over	
  time)
2.	
  No	
  rebates	
  or	
  incentives
3.	
  No	
  inflation	
  -­‐	
  all	
  costs	
  are	
  in	
  2013	
  dollars
4.	
  No	
  loan	
  or	
  mortgage	
  payments	
  (capital	
  is	
  available)
5.	
  Appliances	
  and	
  machines	
  to	
  be	
  replaced	
  are	
  at	
  end	
  of	
  life
6.	
  No	
  depreciation	
  of	
  value	
  or	
  performance	
  over	
  time
7.	
  No	
  additional	
  operations	
  and	
  maintenance	
  costs	
  for	
  ECMs
8.	
  Energy	
  calculations	
  use	
  flat	
  rates-­‐they	
  do	
  not	
  consider	
  time	
  of	
  use	
  or	
  other	
  rate	
  structures
Capital Cost Cost Formula Cost Cost Cost Cost Cost Cost
ECM	
  Suites Capital	
  Cost
(USD)
Energy	
  Savings	
  
(kWh/year)
Flat	
  Rate	
  Year	
  1	
  Energy	
  
Savings	
  (USD)
Flat	
  Rate	
  Simple	
  
Payback	
  (years)
Payback	
  @	
  4%	
  energy	
  
cost	
  escalation	
  (years)
Payback	
  @	
  8%	
  energy	
  cost	
  
escalation	
  (years)
10-­‐year	
  savings	
  @	
  4%
energy	
  cost	
  escalation	
  
20-­‐year	
  savings	
  @	
  4%
energy	
  cost	
  escalation	
  
30-­‐year	
  savings	
  @	
  4%
energy	
  cost	
  escalation	
  
30-­‐year	
  savings	
  @	
  8%	
  
energy	
  cost	
  escalation	
  
Lower	
  Cost	
  Suite
15,709$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   32,820	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   2,978$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   5 4 4 35,752$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   88,674$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   167,012$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   337,340$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Lower	
  Cost	
  Suite
+	
  Renewables 213,489$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   79,314	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   10,755$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   20 14 12 129,131$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   320,277$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   603,219$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   1,218,413$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Higher	
  Cost	
  Suite
81,748$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   49,264	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   3,109$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   26 18 14 37,332$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   92,592$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   174,390$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   352,242$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Higher	
  Cost	
  Suite
+	
  Renewables 223,048$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   86,625	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   9,334$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   24 17 13 112,070$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   277,961$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   523,519$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   1,057,431$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  $-­‐	
  	
  	
  	
  
	
  $200,000	
  	
  
	
  $400,000	
  	
  
	
  $600,000	
  	
  
	
  $800,000	
  	
  
	
  $1,000,000	
  	
  
	
  $1,200,000	
  	
  
	
  $1,400,000	
  	
  
Lower	
  Cost	
  Suite	
   Lower	
  Cost	
  Suite	
  
+	
  Renewables	
  
Higher	
  Cost	
  Suite	
   Higher	
  Cost	
  Suite	
  
+	
  Renewables	
  
Cost	
  (USD	
  2014)	
  
Capital	
  Cost	
  and	
  Payback	
  
with	
  energy	
  cost	
  escalaJon	
  assumpJons	
  
Capital	
  Cost	
  
(USD)	
  
10-­‐year	
  savings	
  @	
  4%	
  
energy	
  cost	
  escalaJon	
  	
  
20-­‐year	
  savings	
  @	
  4%	
  
energy	
  cost	
  escalaJon	
  	
  
30-­‐year	
  savings	
  @	
  4%	
  
energy	
  cost	
  escalaJon	
  	
  
30-­‐year	
  savings	
  @	
  8%	
  	
  
energy	
  cost	
  escalaJon	
  	
  
Heating	
  COP 0.7	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Cooling	
  COP 3.0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Thermal	
  Model	
  Outputs
Utility	
  Bill Benchmark Base	
  Model Lower	
  Cost	
  Suite Higher	
  Cost	
  Suite
Energy	
  Use
Lighting 3,150	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   13,988	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   11,190	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   11,190	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Cooling 752	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   12,501	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Ventilation 2,153	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   5,620	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   5,620	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   5,620	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Equipment 9,856	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   10,918	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   9,359	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   9,359	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Heating 27,056	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   11,246	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   17,204	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   760	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Hot	
  Water -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Total	
  (kWh) 42,232	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   54,273	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   43,373	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   26,929	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Energy	
  Use	
  Intensity
Lighting 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  40.4	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  23.0	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  18.4	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  18.4	
  
Cooling 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  26.7	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  20.6	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  
Ventilation 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  12.1	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9.2	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9.2	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9.2	
  
Equipment 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  16.2	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  18.0	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  15.4	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  15.4	
  
Heating 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  44.5	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  18.5	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  28.3	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1.3	
  
Fuel 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  22.0	
  
Electricity 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  91.0	
  
Total	
  (kWh/m2) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  113	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  139.9	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  89.3	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  71.3	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  44.3	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  19,856	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  19,766	
  
0
20
40
60
80
100
120
140
160
USlity	
  Bill	
  
Benchmark	
  
Base	
  Model	
  
Lower	
  Cost	
  
Suite	
  
Higher	
  Cost	
  
Suite	
  
Energy	
  Use	
  Intensity	
  (kWh/m2)	
  
COMPARATIVE	
  ENERGY	
  USE	
  INTENSITY	
  
HeaSng	
  
Cooling	
  
VenSlaSon	
  
LighSng	
  
Equipment	
  
Electricity	
  
Fuel	
  
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
1
EXECUTIVESUMMARY Overview and Recommendations
The Issam Fares Institute for Public Policy and International Affairs is a unique building
set in the Lebanese campus of the American University of Beirut. Its concrete massing
distinguishes it from its surrounding stone buildings and, consequentially, requires an
energy analysis specific to its design. The recommendations of this report will address
energy use in the categories of building envelope, equipment and appliances, lighting,
heating systems, cooling systems, and renewable energy.
Building Envelope
The building currenly employs thick exterior walls of 250mm of concrete with minimal
to no insulation. The lack of insulation does not deter from the building’s performance
because the thermal mass (concrete) is effective in balancing the thermal conditions of
the building (via thermal lag and reduced peak loads). However, increasing the massing
of the exterior roof from 150mm to 500mm will improve the building’s ability to store
and release trapped heat and coolth from the outside.
The thick, concrete façade doubles as a shading device for the recessed windows, which
are double-pane, low-e, clear glass with alumnium framing. This architectural shading
design blocks the direct solar radiation from the summer sun and allows some of the
direct solar radiation the winter sun to penetrate the space, aiding the thermal mass.
Switching to VE 1-85 window glass (triple-pane, double-coating, low-e, clear glass) will
increase the window’s capability to allow in more solar heat gain will decrease heat loss
from the inside to the outside due to a higher solar heat gain coefficient (SHGC) and a
lower u-value of 0.96, compared to 3.8 (SI units).
Lighting, Equipment, and Appliances
Requiring that all light fixtures use LED or 150-Watt halogen light bulbs will reduce the
energy use intensity of the building from 23.0 to 18.4 kWh/m2
. Additionally, replacing
large appliances and high-power office and kitchen equipment will also reduce internal
loads. It should be noted that reducing the number of equipment (i.e. one microwave
instead of two) would improve overall energy consumption levels.
40.4 23.0 18.4 18.4
26.7 20.6 -- --
12.1 20.6 -- --
16.2 18.0 15.4 15.4
44.5 18.5 28.3 1.3
22.0
91.0
Lighting
Cooling
Ventilation
Equipment
Heating
Fuel
Electricity
EUI	 Utility Bills Benchmark Base Model 	 Low-Cost	 High-Cost
Total (kWh/m2
)		 113.0 	 139.9 	 89.3	 	 71.3	 	 44.3
PAYBACK
4.0% escalation	 4-years	 14-years	 18-years	 17-years
8.0% escalation	 4-years	 12-years	 14-years	 13-years
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Hea7ng	
  and	
  Cooling	
  Energy	
  Use	
  
condi7oned	
  zone	
  
Hea7ng	
  (Wh)	
  
Cooling	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Ligh7ng	
  Energy	
  Use	
  
Ligh7ng	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Equipment	
  Energy	
  Use	
  
Equipment	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Ven7la7on	
  Fan	
  Energy	
  Use	
  
Equipment	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Hea7ng	
  and	
  Cooling	
  Energy	
  Use	
  
condi7oned	
  zone	
  
Hea7ng	
  (Wh)	
  
Cooling	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Ligh7ng	
  Energy	
  Use	
  
Ligh7ng	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Equipment	
  Energy	
  Use	
  
Equipment	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Hea7ng	
  and	
  Cooling	
  Energy	
  Use	
  
condi7oned	
  zone	
  
Hea7ng	
  (Wh)	
  
Cooling	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Ligh7ng	
  Energy	
  Use	
  
Ligh7ng	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Equipment	
  Energy	
  Use	
  
Equipment	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Ven7la7on	
  Fan	
  Energy	
  Use	
  
Equipment	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
Hea7ng	
  and	
  Cooling	
  Energy	
  Use	
  
condi7oned	
  zone	
  
Hea7ng	
  (Wh)	
  
Cooling	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
Ligh7ng	
  Energy	
  Use	
  
Ligh7ng	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
Equipment	
  Energy	
  Use	
  
Equipment	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
Ven7la7on	
  Fan	
  Energy	
  Use	
  
Equipment	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Hea7ng	
  and	
  Cooling	
  Energy	
  Use	
  
condi7oned	
  zone	
  
Hea7ng	
  (Wh)	
  
Cooling	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Ligh7ng	
  Energy	
  Use	
  
Ligh7ng	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Equipment	
  Energy	
  Use	
  
Equipment	
  (Wh)	
  
0	
  
3	
  
6	
  
9	
  
12	
  
15	
  
18	
  
21	
  
24	
  
J	
   F	
   M	
   A	
   M	
   J	
   J	
   A	
   S	
   O	
   N	
   D	
  
DAY	
  
Ven7la7on	
  Fan	
  Energy	
  Use	
  
Equipment	
  (Wh)	
  
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
2
EXECUTIVESUMMARY
Heating & Cooling Energy Use
[CONTINUED...]
Heating and Cooling Systems
Issam Fares Institute’s HVAC system consists of steam boiler and a roof chiller/water tower.
The coefficient of performance for these systems is 0.3 and 4.5, respectively. The graphs
on the right highlight the heating and cooling energy use of different HVAC systems.
The Base Model demonstrates the exisiting heating and cooling use throughout the year
while both the Lower Cost and Higher Cost Suits demonstrate the incorporation of Mixed
Mode Natural Ventilation in conjuction to the HVAC system.
As the graphs suggest, Mixed Mode Natural Ventilation is crucial for the performance
of this building. Not only does natural ventilation allow for the circulation of fresh air
which benefits occupant health, but it also eliminates the need for cooling during the
summer months. This savings can be an investment in vastly improving the efficiency of
the building’s heating coefficient of performance. Adding Radiant Heat to the system
(Higher Cost Suite) improves the COP from 0.3 to 5.5. The difference is evident in the
graphs.
Renewable Energy
In order for the building to reach net zero energy annually, PVs and a wind turbine are
required to offset the use of energy. We recommend installing 244 PVs and a Windspire
wind turbine for the Lower Cost Suite and 130 PVs and an Endurance wind turbine for
the Higher Cost Suite.
Regarding Cost
AlthoughtheLowerCostSuiteismoreaffordablethantheHigherCostSuite(withorwithout
the incorporation of renewables), we recommend the Lower Cost Suite with the addition
of Radiant Heat. Radiant Heat is a worthy investment and, coupled with Mixed Mode
Natural Ventilation, will cost less than the Higher Cost Suite and require less renewables
to achieve net zero energy (contributing to an overall lower cost towards renewables).
Base Model
Lower Cost
Suite
Higher Cost
Suite
BUILDINGDOCUMENTATION
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
4
BUILDINGDOCUMENTATION::DATA&PHOTOGRAPHS Issam Fares Institute
for Public Policy and International Affairs
Architect: Zaha Hadid
American University of Beirut
Bliss Street, Beirut, Lebanon
Constructed: 2011-2014
Total Built Floor Area: 3,000m2
Total Site Area: 7,000m2
Building Uses:
	 Auditorium (100 seats)
	 Classrooms
	 Office Spaces
	 Kitchenette
	 Professional Meeting Rooms
	 Lobby Areas
	 TV Room
SURFACE THICKNESS MATERIALS
Ceiling 15cm 1.5cm furred and mounted false ceiling with gypsum board | 1.5cm
plaster
Floors 40cm 30cm reinforced concrete slab | 5cm sand and mortar | 5cm tiles or
screen to false finishing
Interior Walls 25cm 15cm CMU* | 2cm mortar | 8cm fair-faced concrete finish
Interior Mass 30 x 60cm concrete columns
Exterior Walls 35cm 20cm CMU* | 10cm fair-faced concrete | 1.5cm plaster | 2cm mortar
Windows** & Doors alumnium framing
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
5
Fourth Floor Plan
General Building Assemblies
*CMU = Concrete Masonry Units
** Windows are double-pane with clear glass and air fill.
U-Factor = 3.8 W/m2
-o
C
Solar Heat Gain Coefficient (SHGC) = 33%
Visible Transmittance (VT) = 52%
Area: 608m2
Height: 3.7m
Volume: 2,250m3
Meeting Room
Office Space
BUILDINGDOCUMENTATION::PLANS&ASSEMBLIES
lighting
computer
A/C
fire alarm
led tv
coffee machine
fridge & water refregirator
internal loads
mircrowaveprinting machine
lighting
internal loads
mircrowaveprinting machine
co
fridge
lighting
computer
A/C
fire alarm
led tv
coffee machine
fridge & water refregirator
lighting
internal loads
mircrowave
c
printing machine
fridge & water refregirator
lighting
internal loads
mircrowave
computer
printing machine
fridge & water refregirator
lighting
mircrowave
computer
A/C
fire alarm
printing machine
led tv
coffee machine
fridge & water refregirator
lighting
mircrowave
computer
A/C
printing machine
led tv
coffee machine
fridge & water refregirator
computer
A/C
fire alarm
led tv
coffee machine
fridge & water refregirator
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
6
Lighting Equipment
Notes on Internal Loads:
Lighting includes incandescent, LED, and halogen light bulbs.
Equipment consists of both office equipment and kitchen appliances.
A full list of internal loads, with their relative energy usage and consumption,
can be found in the Appendix under Initial Energy Model.
BUILDINGDOCUMENTATION::INTERNALLOADS
CLIMATE&ENERGY
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
8
CLIMATE&ENERGY::CLIMATEANALYSIS
Solar Path Diagram from January to June
Solar Path Diagram from July to December
Psychrometric Chart
The climate is hot and dry in summer and is
relatively cool and wet in winter. Temperature
ranges between 7o
C~33o
C and it will typically
it reach about 8o
C in the winter and 28o
C in
the summer.
Understanding the Weather
There is a large amount of precipitation from
November to March which results in an increase
in humidity. However, the summer months of
June to August experience very little to no rain.
The sunshine condition here is optimal. Solar
radiation reaches 1000W/m2 in the summer
and 500W/m2 in the winter.
The probability of the cloud cover during the
day is fairly low in Beirut; this will dictate the
baselines for efficient PVs.
The main wind direction moves from east to
west and west to east.. More specificially, it
moves eastward when approaching winter and
west when approaching summer. The wind
speed is relatively high for the climate, which
makes windspires wind turbine operation
effective.
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
9
Wind speed decreases
towards sunrise and
increases towards
night.
Wind blows from west
to east throughout the
day.
Wind blows from east
to west and tends to be
stronger in the morning
and gradually weakens
by night.
Clouds clear up during
the day and return at
night.
Scattered clouds
but typically clear at
sunrise.
Clouds alternatively
present during the day
and lessen at night.
Very low diffused
radiation; some
varying conditions of
bright, sunny skies.
Some diffuse radiation
but consistently bright
and sunny.
High levels of diffuse
radiation in relation
to global horizontal
radiation.
Cool days & colder
nights; the relative
humidity much
higher than the dry
bulb temperature.
Hot days and warm
evenings; the dry
bulb temperature
consistently fall in
the comfort zone
with lower relative
humidity.
Warm days and cool
nights; equal intervals of
relative humdity and dry
bulb temperature.
Cold Weather Extreme Hot Weather Extreme Typical Mild Weather
Degrees from Adaptive Comfort (o
C)CLIMATE&ENERGY::CLIMATEANALYSIS
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
10
CLIMATE&ENERGY::ENERGYBILLS
Monthly Electricity Consumption (kWh)
Monthly Steam Consumption (lbs)
Energy Use Intensity
Electricity		 92.0 kWh/m2
Fuel			 22.0 kWh/m2
Total			 114.0 kWh/m2
BUILDINGANALYSIS
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
12
BUILDINGANALYSIS::SIMULATIONINPUTS
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
13
BUILDINGANALYSIS::BASECASESENSITIVITY
Parametrics that differ from reality: 0 people, 0 kWh of equipment, 0 ACH
ventilation, alternate building orientation
There can be no building that has no people or equipment; ventilation is a
human necessity; the building orientation typically remains consistent.
Most effectivie parametrics(s): Lights, Equipment, and Ventilation
These parametrics show the most noticeable decrease in energy use intensity.
However, increasing wall insulation and roof insulation, as well as reducing
infiltration, also were effective but they did not present drastic drops.
1000mm Exterior Roof Insulation
1000mm Exteiror Wall Insulation
10 W/m2
Equipment
5 W/m2
Lighting
0 ACH Infiltration
Least effective parametric(s): Glass SHGC, Glass U-Value, Mass, and Orientation
These parametrics are “lease effective” in comparison to the other parametrics. Generally these results are very similar to the base model, if not a little more energy consuming.
Differences in predictions: It was surprising that increasing the insulation for both the wall and the roof only slightly decreased the need for heating. Overall, it is surprising that the majority of the parametrics did not
fluctuate as much as one would expect. This suggests that the building is primarily affected by internal loads and ventilation. However, ventilation is necessary to have a healthy environment so reducing the amount
of energy consumption in lights and equipment is the most effective means to achieve enery efficiency.
• The improvements do no change the building aesthetic as it is limited to the equipment inside it, wall insulation and infiltration. Also
we could change the lights to energy saving lights with the same brightness/lumens.
• The building fits the pyramid category the most for it has low transparency and high mass, which is characterized by the high thermal
mass of the concrete walls.
• We changed the insulation to 1000mm so that when it is warm inside the zone the wall will absorb the heat (and release that heat
when the the zone becomes cooler). Additionally, changing the roof insulation to 1000mm allows it to act as a heat sink, which
further dampens the peak loads and creates thermal lag.
Observations
Analysis
FILTEROPTIMIZATION
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
15
FILTEROPTIMIZATION::THERMALMASS
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
16
FILTEROPTIMIZATION::THERMALMASS
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
17
FILTEROPTIMIZATION::GLASSTYPE
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
18
FILTEROPTIMIZATION::GLASSTYPE
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
19
FILTEROPTIMIZATION::VISUALREPRESENTATIONS
1-3/4” (44mm) VE 1-85
TRIPLE INSULATING
(DOUBLE COATING)
Clear Glass (Air Fill)
No Silk Screen
U-Value: 0.96
SHGC: 0.44
VLT: 0.65
Aluminum Framing
Double-Pane, Low-e
Clear Glass (Air Fill)
No Silk Screen
U-Value: 3.8
SHGC: 0.33
VLT: 0.52
Suggested Glass:Base Model Glass:
COMFORT&THERMALAUTONOMY
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
21
BASE SUITE A
Thermal Model Outputs
00_Base 01_Mixed Mode 02_Internal Loads 03_Ext. Wall_300mm Concrete 04_Ext. Roof_500mm Concrete 05_Glass Type_VE1-85
Energy Use
Lighting 13,988 13,988 11,190 11,190 11,190 11,190
Cooling 12,501 - - - - -
Ventilation 5,620 5,620 5,620 5,620 5,620 5,620
Equipment 10,918 10,918 8,933 8,933 8,933 8,933
Heating 11,246 4,809 5,292 5,223 4,696 4,200
Hot Water
Total (kWh) 54,272 35,334 31,035 30,965 30,439 29,943
Energy Use Intensity
Lighting 23.0 23.0 18.4 18.4 18.4 18.4
Cooling 20.6 - - - - -
Ventilation 9.2 9.2 9.2 9.2 9.2 9.2
Equipment 18.0 18.0 14.7 14.7 14.7 14.7
Heating 18.5 7.9 8.7 8.6 7.7 6.9
Hot Water - - - - - -
Fuel
Electricity
Total (kWh/m2) 89.3 58.1 51.0 50.9 50.1 49.2
0
10
20
30
40
50
60
70
80
90
100
00_Base
01_MixedMode
02_InternalLoads
03_Ext.
Wall_300mm
Concrete
04_Ext.
Roof_500mm
Concrete
05_Glass
Type_VE1-85
EnergyUseIntensity(kWh/m2)
Comparative Energy Use
Heating
Cooling
Ventilation
Lighting
Hot Water
Equipment
Electricity
Fuel
Thermal Model Outputs
00_Base 01_Mixed Mode 02_Internal Loads 03_Ext. Wall_300mm Concrete 04_Ext. Roof_500mm Concrete 05_Glass Type_VE1-85
Energy Use
Lighting 13,988 13,988 11,190 11,190 11,190 11,190
Cooling 12,501 - - - - -
Ventilation 5,620 5,620 5,620 5,620 5,620 5,620
Equipment 10,918 10,918 8,933 8,933 8,933 8,933
Heating 11,246 4,809 5,292 5,223 4,696 4,200
Hot Water
Total (kWh) 54,272 35,334 31,035 30,965 30,439 29,943
Energy Use Intensity
Lighting 23.0 23.0 18.4 18.4 18.4 18.4
Cooling 20.6 - - - - -
Ventilation 9.2 9.2 9.2 9.2 9.2 9.2
Equipment 18.0 18.0 14.7 14.7 14.7 14.7
Heating 18.5 7.9 8.7 8.6 7.7 6.9
Hot Water - - - - - -
Fuel
Electricity
Total (kWh/m2) 89.3 58.1 51.0 50.9 50.1 49.2
0
10
20
30
40
50
60
70
80
90
100
00_Base
01_MixedMode
02_InternalLoads
03_Ext.
Wall_300mm
Concrete
04_Ext.
Roof_500mm
Concrete
05_Glass
Type_VE1-85
EnergyUseIntensity(kWh/m2)
Comparative Energy Use
Heating
Cooling
Ventilation
Lighting
Hot Water
Equipment
Electricity
Fuel
Thermal Model Outputs
00_Base 01_Mixed Mode 02_Internal Loads 03_Ext. Wall_300mm Concrete 04_Ext. Roof_500mm Concrete 05_Glass Type_VE1-85
Energy Use
Lighting 13,988 13,988 11,190 11,190 11,190 11,190
Cooling 12,501 - - - - -
Ventilation 5,620 5,620 5,620 5,620 5,620 5,620
Equipment 10,918 10,918 8,933 8,933 8,933 8,933
Heating 11,246 4,809 5,292 5,223 4,696 4,200
Hot Water
Total (kWh) 54,272 35,334 31,035 30,965 30,439 29,943
Energy Use Intensity
Lighting 23.0 23.0 18.4 18.4 18.4 18.4
Cooling 20.6 - - - - -
Ventilation 9.2 9.2 9.2 9.2 9.2 9.2
Equipment 18.0 18.0 14.7 14.7 14.7 14.7
Heating 18.5 7.9 8.7 8.6 7.7 6.9
Hot Water - - - - - -
Fuel
Electricity
Total (kWh/m2) 89.3 58.1 51.0 50.9 50.1 49.2
0
10
20
30
40
50
60
70
80
90
100
00_Base
01_MixedMode
02_InternalLoads
03_Ext.
Wall_300mm
Concrete
04_Ext.
Roof_500mm
Concrete
05_Glass
Type_VE1-85
EnergyUseIntensity(kWh/m2)
Comparative Energy Use
Heating
Cooling
Ventilation
Lighting
Hot Water
Equipment
Electricity
Fuel
COLUMN NUMBER Zone Degrees from Comfort (C)
0
3
6
9
12
15
18
21
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
DO NOT ERASE!
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
21.7%
69.0%
9.3%
0.0%
0.0%
0.4%
4.6%
16.7%
9.3%
0.1%
0.0%
0.0%
0.0%
> 8 °C
+ 8 °C
+ 6 °C
+ 4 °C
+ 2 °C
OK
- 2 °C
- 4 °C
- 6 °C
- 8 °C
< -8 °C
-
5
10
15
20
25
30
35
40
J F M A M J J A S O N D
TEMPERATURE(°C)
Indoor and Outdoor Temperature
unconditioned zone
Outdoor Air Temp
Zone Operative Temp
Comfort Zone
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Equipment Energy Use
Equipment (Wh)
Ventilation Fan Energy Use
* Each new simulation is an add-on of the last simulation
Thermal Model Output
Energy Use
Lighting
Cooling
Ventilation
Equipment
Heating
Hot Water
Total (kWh)
Energy Use Intensity
Lighting
Cooling
Ventilation
Equipment
Heating
Hot Water
Fuel
Electricity
Total (kWh/m2)
0
10
20
30
40
50
60
70
80
90
100
EnergyUseIntensity(kWh/m2)
Comparative Ene
Heating
Cooling
Ventilation
Lighting
Hot Water
Equipment
Electricity
Fuel
There are no longer dots in this area because the Mixed Mode
schedule was corrected to begin on 05/22 instead of 05/15,
allowing for the cool days to pass so that ventilation would not
take place when the outside temperatures are much cooler,
thus requiring more heating.
COMFORT&THERMALAUTONOMY::SUITEA Comparative Energy UseThermal Autonomy and Energy Use
For Suite A, we redid the schedule for ventilation to decrease the cooling and heating which made
a great difference. Cutting down the internal loads helped decrease the energy use but increased
the need for heating. In an effort to reduce the heat, we made changes to the exterior roof (added
350mm concrete) and changed the glass type to be VE 1-85. Overall, the added insulation to the out-
side of the exterior wall made little to no difference.
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
22
BASE SUITE B
* Each new simulation is an add-on of the last simulation
These simulations have the heating setpoint at 20 degrees Celsius from 7:00am -
7:00pm M-F and turned off at all other times; the cooling setpoints are all set to 40
degrees Celsius to allow for natural ventilation to cool the spaces. Interestingly enough,
the energy decreases significantly when mixed mode ventilation is applied. While there
isn’t a significant energy difference in the application of XPS 200mm insulation, 0.2 ACH
infiltration, and VNE 1-63 glass type, including ceiling fans is important to improve the
thermal autonomy of the space (since adding air movement perceptually decreases
the temperature by 2 degrees Celcius) while accounting for an increase in equipment
energy use.
The existance of heating with the mixed mode schedule might suggest that investing
in thermal mass instead of insulation might provide more desirable results to achieve
little to no need for heating.
Thermal Model Outputs
00_Base 01_Int.Loads + M.M. 02_XPS 200mm 03_Infil 0.2ACH 04_Glass VNE 1-63 05_Ceiling Fans
Energy Use
Lighting 13,988 11,190 11,190 11,190 11,190 11,190
Cooling 12,501 - - - - -
Ventilation 5,620 5,620 5,620 5,620 5,620 5,620
Equipment 10,918 8,933 8,933 8,933 8,933 9,359
Heating 11,246 5,000 4,845 4,354 4,354 4,087
Hot Water
Total (kWh) 54,272 30,743 30,588 30,097 30,097 30,256
Energy Use Intensity
Lighting 23.0 18.4 18.4 18.4 18.4 18.4
Cooling 20.6 - - - - -
Ventilation 9.2 9.2 9.2 9.2 9.2 9.2
Equipment 18.0 14.7 14.7 14.7 14.7 15.4
Heating 18.5 8.2 8.0 7.2 7.2 6.7
Hot Water - - - - - -
Fuel
Electricity
Total (kWh/m2) 89.3 50.6 50.3 49.5 49.5 49.8
0
10
20
30
40
50
60
70
80
90
100
00_Base
01_Int.Loads+
M.M.
02_XPS200mm
03_Infil0.2ACH
04_GlassVNE1-63
05_CeilingFans
EnergyUseIntensity(kWh/m2)
Comparative Energy Use
Heating
Cooling
Ventilation
Lighting
Hot Water
Equipment
Electricity
Fuel
Thermal Model Output
Energy Use
Lighting
Cooling
Ventilation
Equipment
Heating
Hot Water
Total (kWh)
Energy Use Intensity
Lighting
Cooling
Ventilation
Equipment
Heating
Hot Water
Fuel
Electricity
Total (kWh/m2)
0
10
20
30
40
50
60
70
80
90
100
EnergyUseIntensity(kWh/m2)
Comparative En
Heating
Cooling
Ventilation
Lighting
Hot Water
Equipment
Electricity
Fuel
Thermal Model Outputs
00_Base 01_Int.Loads + M.M. 02_XPS 200mm 03_Infil 0.2ACH 04_Glass VNE 1-63 05_Ceiling Fans
Energy Use
Lighting 13,988 11,190 11,190 11,190 11,190 11,190
Cooling 12,501 - - - - -
Ventilation 5,620 5,620 5,620 5,620 5,620 5,620
Equipment 10,918 8,933 8,933 8,933 8,933 9,359
Heating 11,246 5,000 4,845 4,354 4,354 4,087
Hot Water
Total (kWh) 54,272 30,743 30,588 30,097 30,097 30,256
Energy Use Intensity
Lighting 23.0 18.4 18.4 18.4 18.4 18.4
Cooling 20.6 - - - - -
Ventilation 9.2 9.2 9.2 9.2 9.2 9.2
Equipment 18.0 14.7 14.7 14.7 14.7 15.4
Heating 18.5 8.2 8.0 7.2 7.2 6.7
Hot Water - - - - - -
Fuel
Electricity
Total (kWh/m2) 89.3 50.6 50.3 49.5 49.5 49.8
0
10
20
30
40
50
60
70
80
90
100
00_Base
01_Int.Loads+
M.M.
02_XPS200mm
03_Infil0.2ACH
04_GlassVNE1-63
05_CeilingFans
EnergyUseIntensity(kWh/m2)
Comparative Energy Use
Heating
Cooling
Ventilation
Lighting
Hot Water
Equipment
Electricity
Fuel
Thermal Model Outputs
00_Base 01_Int.Loads + M.M. 02_XPS 200mm 03_Infil 0.2ACH 04_Glass VNE 1-63 05_Ceiling Fans
Energy Use
Lighting 13,988 11,190 11,190 11,190 11,190 11,190
Cooling 12,501 - - - - -
Ventilation 5,620 5,620 5,620 5,620 5,620 5,620
Equipment 10,918 8,933 8,933 8,933 8,933 9,359
Heating 11,246 5,000 4,845 4,354 4,354 4,087
Hot Water
Total (kWh) 54,272 30,743 30,588 30,097 30,097 30,256
Energy Use Intensity
Lighting 23.0 18.4 18.4 18.4 18.4 18.4
Cooling 20.6 - - - - -
Ventilation 9.2 9.2 9.2 9.2 9.2 9.2
Equipment 18.0 14.7 14.7 14.7 14.7 15.4
Heating 18.5 8.2 8.0 7.2 7.2 6.7
Hot Water - - - - - -
Fuel
Electricity
Total (kWh/m2) 89.3 50.6 50.3 49.5 49.5 49.8
0
10
20
30
40
50
60
70
80
90
100
00_Base
01_Int.Loads+
M.M.
02_XPS200mm
03_Infil0.2ACH
04_GlassVNE1-63
05_CeilingFans
EnergyUseIntensity(kWh/m2)
Comparative Energy Use
Heating
Cooling
Ventilation
Lighting
Hot Water
Equipment
Electricity
Fuel
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Equipment Energy Use
Equipment (Wh)
0
Ventilation Fan Energy Use
Equipment (Wh)
The ceiling fans
make a big differ-
ence for Thermal
Autonomy. This
is due to the fact
that air movement
contributes to
the preception of
comfort.
Comparative Energy UseThermal Autonomy and Energy UseCOMFORT&THERMALAUTONOMY::SUITEB
HVAC
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
24
Improved Model :: Cooling Setpoints, Heating Setpoints,
Natural Ventilation Schedule, and Ceiling Fan Schedule
Base Model :: Cooling Setpoints, Heating Setpoints,
No Natural Ventilation or Ceiling Fan Schedule
HVAC Systems DiagramHVAC::SYSTEMS&SCHEDULES
Note on HVAC Systems Diagram:
This illustration does not accurately demonstrate the Air Handling Unit/Air Flow System. In the Issam Fares Institute,
hot and cold air are supplied from the bottom and the top of the building floors, respectively. They feed into each zone
through branches - this means that there is one central supply of hot and cold water that runs through the building and
branches off in each floor, which branches off into each room (zone). In this diagram, the Air Handling Unit suggests that
there is a mixing of fresh air and recovered heat when in reality there is no mixing box because each system is separate.
Thermal Model Outputs
00_Base // Existing
100% Efficient
Heating and Cooling Heat Pump
Heat Pump with
Heat Recovery
Radiant Heating & Cooling with Whole
House Fan
Energy Use
Lighting 13,988 13,988 13,988 13,988 13,988
Cooling 12,404 55,816 18,605 9,303 8,587
Ventilation 5,620 5,620 5,620 5,620 5,620
Equipment 10,918 10,918 10,918 10,918 10,918
Heating 33,263 9,979 4,989 1,996 1,814
Total (kWh) 53,794 45,778 45,046 43,700 42,922
Energy Use Intensity 00_Base // Existing
100% Efficient
Heating and Cooling Heat Pump
Heat Pump with
Heat Recovery
Radiant Heating & Cooling with Whole
House Fan
Lighting 23.0 23.0 23.0 23.0 23.0
Cooling 20.4 91.8 30.6 15.3 14.1
Ventilation 9.2 9.2 9.2 9.2 9.2
Equipment 18.0 18.0 18.0 18.0 18.0
Heating 54.7 16.4 8.2 3.3 3.0
Total (kWh/m2) 125.3 158.4 89.0 68.8 67.3
0
10
20
30
40
50
60
00_Base//Existing
100%Efficient
Heatingand
Cooling
HeatPump
HeatPumpwith
HeatRecovery
RadiantHeating&
CoolingwithWhole
HouseFan
EnergyUseIntensity(kWh/m2)
Comparative Energy Use Heating
Thermal Model Outputs
00_Base // Existing
100% Efficient
Heating and Cooling Heat Pump
Heat Pump with
Heat Recovery
Radiant Heating & Cooling with Whole
House Fan
Energy Use
Lighting 13,988 13,988 13,988 13,988 13,988
Cooling 12,404 55,816 18,605 9,303 8,587
Ventilation 5,620 5,620 5,620 5,620 5,620
Equipment 10,918 10,918 10,918 10,918 10,918
Heating 33,263 9,979 4,989 1,996 1,814
Total (kWh) 53,794 45,778 45,046 43,700 42,922
Energy Use Intensity 00_Base // Existing
100% Efficient
Heating and Cooling Heat Pump
Heat Pump with
Heat Recovery
Radiant Heating & Cooling with Whole
House Fan
Lighting 23.0 23.0 23.0 23.0 23.0
Cooling 20.4 91.8 30.6 15.3 14.1
Ventilation
0
10
20
30
40
50
60
70
80
90
100
00_Base//Existing
100%Efficient
Heatingand
Cooling
HeatPump
HeatPumpwith
HeatRecovery
RadiantHeating&
CoolingwithWhole
HouseFan
EnergyUseIntensity(kWh/m2)
Comparative Energy Use Cooling
BASE MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling
Heating 54.7 16.4 8.2 3.3 3
Cooling 20.4 91.8 30.6 15.3 14.1
IMPROVED MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling
Heating 20.8 6.2 3.1 1.2 1.1
Cooling -- -- -- -- --
BASE MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling
Heating 54.7 16.4 8.2 3.3 3
Cooling 20.4 91.8 30.6 15.3 14.1
IMPROVED MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling
Heating 20.8 6.2 3.1 1.2 1.1
Cooling -- -- -- -- --
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Equipment Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Ventilation Fan Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Equipment Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
DAY
Ventilation Fan Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
DAY
Equipment Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Equipment Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Ventilation Fan Energy Use
Equipment (Wh)
Heating and Cooling Energy Use
Existing
0.3 COP Heating
4.5 COP Cooling
100% Efficiency
1.0 COP Heating
1.0 COP Cooling
Heat Pump
2.0 COP Heating
3.0 COP Cooling
Heat Pump +
Heat Recovery
5.0 COP Heating
6.0 COP Cooling
Radiant
Heating/Cooling +
Whole House Fan
5.5 COP Heating
6.5 COP Cooling
It is important to acknowledge the scale
of these graphs. While it may appear that
cooling decreases in a relatively similar
amount to heating, the maximum amount
of cooling required is 91.8 kWh/m2 in
comparison to 54.7 kWh/m2.
Improving the
COPs for heating
and cooling will
primarily improve
(lessen) the need
for heating more
than cooling.
Since this is the
Base Model, it
is evident that
incorporating a
passive means
to cool down the
building, in
conjunction to
the HVAC system,
will improve the
energy use for
cooling.
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
25
HVAC::BASEMODEL
Thermal Model Outputs
00_Improved // Existing
100% Efficient
Heating and Cooling Heat Pump
Heat Pump with
Heat Recovery
Radiant Heating & Cooling with Whole
House Fan
Energy Use
Lighting 11,190 11,190 11,190 11,190 11,190
Cooling - - - - -
Ventilation 5,620 5,620 5,620 5,620 5,620
Equipment 9,359 9,359 9,359 9,359 9,359
Heating 12,642 3,793 1,896 759 690
Total (kWh) 53,794 45,778 45,046 43,700 42,922
Energy Use Intensity 00_Base // Existing
100% Efficient
Heating and Cooling Heat Pump
Heat Pump with
Heat Recovery
Radiant Heating & Cooling with Whole
House Fan
Lighting 18.4 18.4 18.4 18.4 18.4
Cooling - - - - -
Ventilation 9.2 9.2 9.2 9.2 9.2
Equipment 15.4 15.4 15.4 15.4 15.4
Heating 20.8 6.2 3.1 1.2 1.1
Total (kWh/m2) 63.8 49.3 46.2 44.3 44.2
0
5
10
15
20
25
00_Improved//
Existing
100%Efficient
Heatingand
Cooling
HeatPump
HeatPumpwith
HeatRecovery
RadiantHeating&
CoolingwithWhole
HouseFan
EnergyUseIntensity(kWh/m2)
Comparative Energy Use Heating
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Equipment Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Ventilation Fan Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Equipment Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
DAY
Ventilation Fan Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
DAY
Equipment Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Lighting Energy Use
Lighting (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Equipment Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Ventilation Fan Energy Use
Equipment (Wh)
0
3
6
9
12
15
18
21
24
J F M A M J J A S O N D
DAY
Heating and Cooling Energy Use
conditioned zone
Heating (Wh)
Cooling (Wh)
0
3
6
9
12
15
DAY
Lighting Energy Use
Lighting (Wh)
BASE MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling
Heating 54.7 16.4 8.2 3.3 3
Cooling 20.4 91.8 30.6 15.3 14.1
IMPROVED MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling
Heating 20.8 6.2 3.1 1.2 1.1
Cooling -- -- -- -- --
Heating and Cooling Energy Use
Existing
0.3 COP Heating
4.5 COP Cooling
100% Efficiency
1.0 COP Heating
1.0 COP Cooling
Heat Pump
2.0 COP Heating
3.0 COP Cooling
Heat Pump +
Heat Recovery
5.0 COP Heating
6.0 COP Cooling
Radiant Heating/Cooling +
Whole House Fan
5.5 COP Heating
6.5 COP Cooling
In regards to cooling:
There are no effects of improving the cooling COP because improving the Base Model
with natural ventilation as part of the mixed mode schedule (coupled with the HVAC
system) elminates the need for cooling the Improved Suite.
In regards to heating:
It is apparent that improving the heating COP greatly reduces the need for heating in
the building. This efficiency can be expanded upon by incorporating renewable energy
to “elminate” the rest of the this energy consumption, in addition to the energy con-
sumption from ventilation and internal loads (lighting and equipment).
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
26
HVAC::IMPROVEDMODEL
ENERGYGENERATION
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
28
51%43%
3%
2% 0.45% 0.32% 1%
Energy Balance in Lebanon according to
International Energy Agency (IEA)
Oil Energy Loses Coal Biofuels and Wastes
Electricity from Heat Solar/Tide/Wind Hydro
Diesel Power
Plant
30%
Hydro
7%
Oil/Diesel/Gas
63%
Electricity of
Lebanon
AUB Electricity Sources
Diesel Power
Plant
30%
Hydro
7%
Oil/Diesel/Gas
63%
Electricity of
Lebanon
AUB Electricity Sources
American University of Beirut enery settings (campus wide):
	 • Setting of campus buildings temperature at 76 F (24 C) and 86 F (30 C) 			
		 during summer occupied and unoccupied periods, respectively
	 • Setting of campus buildings temperature at 70 F (21 C) and 60 F (15 C) 			
		 during winter occupied and unoccupied periods, respectively
	 • Replacement of low efficiency equipment with new high efficiency ones 		
			 such as motors, air-conditioning equipment, electrical transformers, 	
				 heating boilers, etc.
	 • Installing aerating, low-flow faucets and showerheads to reduce water 			
		 consumption
•The total of produced and imported energy is 7423 ktoe
• 63% of the energy produced is consumed in transport
• The power plant is equipped with diesel engine generators. Electrical power	
		 is generated at 3,300 volts and distrubted on campus
•Electricity of Lebanon (EDL - Electricite du Liban) is the main governmental 		
	 provider of electricity in lebanon
	 >> Produces 2083 MW through thermal power plants that use oil, diesel, 	
		 and gas
	 >> Produces 220.6 MW through hydro power plants
Energy Source in Lebanon Energy Source in American University of Beirut
Hydro Power Plant, Lebanon
Hydro Power Plant, Lebanon
Thermal Power Plant, Lebanon
ENERGYGENERATION::ENERGYSOURCES
The Aesthetic of the Building:
We changed the PVs to emphasis the cantilever as well as the division of
the floor plates. These lines create a ribbon around the building to create
an overall aesthetic unique to the building. Additionally, creating this ribbon
allows for maxium coverage of the building without sacrificing the original
design by Zaha Hadid.
Cooling 0.0
Ventilation -5,619.6
Equipment -9,359 - 0.526316
Heating -4,371 -
PV 45,894 Adjust so that vertical axis scales match for top and bottom graphs.
Wind 0
Total (kWh) 15,354
-7,000
-6,000
-5,000
-4,000
-3,000
-2,000
-1,000
0
J F M A M J J A S O N D J
ENERGY[Wh]
Heating (Wh)
Cooling (Wh)
Ventilation
(Wh)
-40,000
-30,000
-20,000
-10,000
0
10,000
20,000
30,000
40,000
50,000
Energy[kWh]
ANNUAL ENERGY USE
PV
Wind
Heating
Cooling
Ventilation
Lighting
Equipment
0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
ENERGY GENERATION AND CONSUMPTION
2-WEEK RUNNING AVERAGE
PV Total
(Wh)
Cooling -11,904.1
Ventilation -5,619.6
Equipment -10,918 - 0.526316
Heating -11,784 -
PV 45,894 Adjust so that vertical axis scales match for top and bottom graphs.
Wind 14,809
Total (kWh) 6,489
-16,000
-12,000
-8,000
-4,000
0
ENERGY[Wh]
Heating (Wh)
Cooling (Wh)
Ventilation
(Wh)
-60,000
-40,000
-20,000
0
20,000
40,000
60,000
80,000
Energy[kWh]
ANNUAL ENERGY USE
PV
Wind
Heating
Cooling
Ventilation
Lighting
Equipment 0
4,000
8,000
12,000
16,000
ENERGY GENERATION AND CONSUMPTION
2-WEEK RUNNING AVERAGE
PV Total (Wh)
Wind Total
(Wh)
Cooling 0.0
Ventilation -5,619.6
Equipment -9,359 - 0.526316
Heating -4,371 -
PV 45,894 Adjust so that vertical axis scales match for top and bottom graphs.
Wind 0
Total (kWh) 15,354
-7,000
-6,000
-5,000
-4,000
-3,000
-2,000
-1,000
0
J F M A M J J A S O N D J
ENERGY[Wh]
Heating (Wh)
Cooling (Wh)
Ventilation
(Wh)
-40,000
-30,000
-20,000
-10,000
0
10,000
20,000
30,000
40,000
50,000
Energy[kWh]
ANNUAL ENERGY USE
PV
Wind
Heating
Cooling
Ventilation
Lighting
Equipment
0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
ENERGY GENERATION AND CONSUMPTION
2-WEEK RUNNING AVERAGE
PV Total
(Wh)
Base Model
Improved Model
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
29
ENERGYGENERATION::ON-SITERENEWABLES
COST
Lower Cost Suite
$$
Mixed Mode Operations
Ceiling Fans
Internal Loads
	 Lighting:
	 Circle Lights
	 Long Lights
	 Equipment:
	 Microwaves
	 Coffee Makers
	 Water Dispenser
	 Water Kettle
	 Printer
	 Computers
	 Refrigerators
Photovoltaics
Wind Turbine - Windspire
Existing Building | Base
$
None
None
Existing Internal Loads
2-Pane, Low-e, Air, Low-SHGC
150mm Concrete Ext. Roof
Heat Pump (COP: 0.3)
None
Higher Cost Suite
$$$
Mixed Mode Operations
Ceiling Fans
Internal Loads
	 Lighting:
	 Circle Lights
	 Long Lights
	 Equipment:
	 Microwaves
	 Coffee Makers
	 Water Dispenser
	 Water Kettle
	 Printer
	 Computers
	 Refrigerators
VE 1-85 Window Glass
Add 350mm Concrete for
	 Ext. Roof Thermal Mass
Radiant Heating (COP: 5.5)
Photovoltaics
Wind Turbine - Endurance
Compartive suites
Cost & Performance Implications
Renewable energy heavily impacts the value and performance of each suite. Over time, the renewable greatly contribute to the overall energy savings of the suites.
However, this can only be seen over large intervals of time, such as 20 or 30 years down the line (around the same time that the suites payback their capital costs.
The primary difference between Suite A + Renewables and Suite B + Renewables are the Additional Upgrade machines and appliances that are added as energy
efficient replacements. These added machines and appliances increase the costs dramatically (within $100,000) but offer slightly less energy savings. Based on this
trend, the clients can opt for the lower cost suite with the option to add one of the Additional Upgrade machines or appliances if they prefer.
Renewable Upgrades
Additional Upgrades
Basic Upgrades
Capital Cost
Arami Matevosyan | Flora Lee | Mourad Dabbour
Net Zero Energy Building Analysis
Summer 2015 :: UCB Arch 149
ISSAM FARES INSTITUTE
Beirut, Lebanon
33.900116, 35.479800
31
COST::SUITES
10_FINALproject_Arami.Flora.Mourad
10_FINALproject_Arami.Flora.Mourad
10_FINALproject_Arami.Flora.Mourad
10_FINALproject_Arami.Flora.Mourad
10_FINALproject_Arami.Flora.Mourad
10_FINALproject_Arami.Flora.Mourad
10_FINALproject_Arami.Flora.Mourad
10_FINALproject_Arami.Flora.Mourad
10_FINALproject_Arami.Flora.Mourad
10_FINALproject_Arami.Flora.Mourad

Contenu connexe

En vedette

Francesco Polesello Selected Projects
Francesco Polesello Selected ProjectsFrancesco Polesello Selected Projects
Francesco Polesello Selected Projects
Francesco Polesello
 
Final Year Project
Final Year ProjectFinal Year Project
Final Year Project
K B
 
Net-Zero Energy Case Studies
Net-Zero Energy Case StudiesNet-Zero Energy Case Studies
Net-Zero Energy Case Studies
aiahouston
 

En vedette (20)

TEI for building multilingual corpora
TEI for building multilingual corporaTEI for building multilingual corpora
TEI for building multilingual corpora
 
Francesco Polesello Selected Projects
Francesco Polesello Selected ProjectsFrancesco Polesello Selected Projects
Francesco Polesello Selected Projects
 
13 of the Latest Big Real Estate Projects in Lebanon
13 of the Latest Big Real Estate Projects in Lebanon13 of the Latest Big Real Estate Projects in Lebanon
13 of the Latest Big Real Estate Projects in Lebanon
 
Urban planning spring 2014
Urban planning spring 2014Urban planning spring 2014
Urban planning spring 2014
 
Facility mgmt solidere beirut central district (1)
Facility mgmt solidere beirut central district (1)Facility mgmt solidere beirut central district (1)
Facility mgmt solidere beirut central district (1)
 
Zero net energy of commercial building
Zero net energy of commercial buildingZero net energy of commercial building
Zero net energy of commercial building
 
Final Year Project
Final Year ProjectFinal Year Project
Final Year Project
 
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
 
Air 2014 energy_efficiency_forum
Air 2014 energy_efficiency_forumAir 2014 energy_efficiency_forum
Air 2014 energy_efficiency_forum
 
Net zero energy and beyond
Net zero energy and beyondNet zero energy and beyond
Net zero energy and beyond
 
Solar energy two case studies
Solar energy   two case studiesSolar energy   two case studies
Solar energy two case studies
 
Solar building design
Solar building designSolar building design
Solar building design
 
Net Zero Energy Buildings
Net Zero Energy BuildingsNet Zero Energy Buildings
Net Zero Energy Buildings
 
Case Study: Zero Net Energy and the Changing Shape of Architecture
Case Study: Zero Net Energy and the Changing Shape of ArchitectureCase Study: Zero Net Energy and the Changing Shape of Architecture
Case Study: Zero Net Energy and the Changing Shape of Architecture
 
Zero Energy Buildings
Zero Energy BuildingsZero Energy Buildings
Zero Energy Buildings
 
Net-Zero Energy Case Studies
Net-Zero Energy Case StudiesNet-Zero Energy Case Studies
Net-Zero Energy Case Studies
 
Ppt on zero energy building
Ppt on zero energy buildingPpt on zero energy building
Ppt on zero energy building
 
Zeor energy buliding
Zeor energy bulidingZeor energy buliding
Zeor energy buliding
 
ZERO ENERGY BUILDING ENVELOPE COMPONENTS
ZERO ENERGY BUILDING ENVELOPE COMPONENTSZERO ENERGY BUILDING ENVELOPE COMPONENTS
ZERO ENERGY BUILDING ENVELOPE COMPONENTS
 
Zero energy building
Zero energy buildingZero energy building
Zero energy building
 

Similaire à 10_FINALproject_Arami.Flora.Mourad

Pv system analysis
Pv system analysisPv system analysis
Pv system analysis
J C
 
Mini hubs
Mini hubsMini hubs
Mini hubs
mls2568
 
Bogardus spreadsheet example part 2
Bogardus spreadsheet example part 2Bogardus spreadsheet example part 2
Bogardus spreadsheet example part 2
LPE Learning Center
 
Sgs Sfp 2012 15 C
Sgs Sfp 2012 15 CSgs Sfp 2012 15 C
Sgs Sfp 2012 15 C
marsfs
 
Energy Conservation & Sustainability
Energy Conservation & Sustainability  Energy Conservation & Sustainability
Energy Conservation & Sustainability
Meg Thompson
 
Energy Efficiency
Energy Efficiency Energy Efficiency
Energy Efficiency
eecfncci
 
Geothermal - Fort Knox
Geothermal - Fort KnoxGeothermal - Fort Knox
Geothermal - Fort Knox
Chris Williams
 
PV System Cost Analysis
PV System Cost AnalysisPV System Cost Analysis
PV System Cost Analysis
cathexis123
 
1A - The Cloud: Was it manna from heaven or just a tin of rice pudding? Roger...
1A - The Cloud: Was it manna from heaven or just a tin of rice pudding? Roger...1A - The Cloud: Was it manna from heaven or just a tin of rice pudding? Roger...
1A - The Cloud: Was it manna from heaven or just a tin of rice pudding? Roger...
CFG
 
120516 sovello presentation-ainsworth
120516 sovello presentation-ainsworth120516 sovello presentation-ainsworth
120516 sovello presentation-ainsworth
IanHowes
 
AES library.corporate
 AES library.corporate AES library.corporate
AES library.corporate
finance19
 
AES library.corporate
 AES library.corporate AES library.corporate
AES library.corporate
finance19
 
AES library.corporate
 AES library.corporate AES library.corporate
AES library.corporate
finance19
 
Commercial Sample Proposal
Commercial Sample ProposalCommercial Sample Proposal
Commercial Sample Proposal
Cooper Bortz
 
Kelly hernandez lesson 8 chart presentation 1
Kelly hernandez lesson 8 chart presentation 1Kelly hernandez lesson 8 chart presentation 1
Kelly hernandez lesson 8 chart presentation 1
Hernandez_kelly
 

Similaire à 10_FINALproject_Arami.Flora.Mourad (20)

Pv system analysis
Pv system analysisPv system analysis
Pv system analysis
 
Mini hubs
Mini hubsMini hubs
Mini hubs
 
Bogardus spreadsheet example part 2
Bogardus spreadsheet example part 2Bogardus spreadsheet example part 2
Bogardus spreadsheet example part 2
 
Sgs Sfp 2012 15 C
Sgs Sfp 2012 15 CSgs Sfp 2012 15 C
Sgs Sfp 2012 15 C
 
Sample ROI
Sample ROISample ROI
Sample ROI
 
Energy Conservation & Sustainability
Energy Conservation & Sustainability  Energy Conservation & Sustainability
Energy Conservation & Sustainability
 
Energy Efficiency
Energy Efficiency Energy Efficiency
Energy Efficiency
 
Geothermal - Fort Knox
Geothermal - Fort KnoxGeothermal - Fort Knox
Geothermal - Fort Knox
 
PV System Cost Analysis
PV System Cost AnalysisPV System Cost Analysis
PV System Cost Analysis
 
1A - The Cloud: Was it manna from heaven or just a tin of rice pudding? Roger...
1A - The Cloud: Was it manna from heaven or just a tin of rice pudding? Roger...1A - The Cloud: Was it manna from heaven or just a tin of rice pudding? Roger...
1A - The Cloud: Was it manna from heaven or just a tin of rice pudding? Roger...
 
Ice Slurry TES for District Cooling
Ice Slurry TES for District CoolingIce Slurry TES for District Cooling
Ice Slurry TES for District Cooling
 
Global warning
Global warningGlobal warning
Global warning
 
120516 sovello presentation-ainsworth
120516 sovello presentation-ainsworth120516 sovello presentation-ainsworth
120516 sovello presentation-ainsworth
 
AES library.corporate
 AES library.corporate AES library.corporate
AES library.corporate
 
AES library.corporate
 AES library.corporate AES library.corporate
AES library.corporate
 
AES library.corporate
 AES library.corporate AES library.corporate
AES library.corporate
 
Optimus Energy Australian Wholesale Price list
Optimus Energy Australian Wholesale Price listOptimus Energy Australian Wholesale Price list
Optimus Energy Australian Wholesale Price list
 
Commercial Sample Proposal
Commercial Sample ProposalCommercial Sample Proposal
Commercial Sample Proposal
 
Kelly hernandez lesson 8 chart presentation 1
Kelly hernandez lesson 8 chart presentation 1Kelly hernandez lesson 8 chart presentation 1
Kelly hernandez lesson 8 chart presentation 1
 
Mo Ti Presentation
Mo Ti PresentationMo Ti Presentation
Mo Ti Presentation
 

Plus de Arami Matevosyan

Acoustics_Boards.compressed
Acoustics_Boards.compressedAcoustics_Boards.compressed
Acoustics_Boards.compressed
Arami Matevosyan
 
Acoustics_FinalPaper.compressed
Acoustics_FinalPaper.compressedAcoustics_FinalPaper.compressed
Acoustics_FinalPaper.compressed
Arami Matevosyan
 
WhitePaper_Shared Mobility & Caltrain
WhitePaper_Shared Mobility & CaltrainWhitePaper_Shared Mobility & Caltrain
WhitePaper_Shared Mobility & Caltrain
Arami Matevosyan
 
Daylighting_Gallery_project.compressed
Daylighting_Gallery_project.compressedDaylighting_Gallery_project.compressed
Daylighting_Gallery_project.compressed
Arami Matevosyan
 
Matevosyan_Nepomuceno_Worley_poster.compressed
Matevosyan_Nepomuceno_Worley_poster.compressedMatevosyan_Nepomuceno_Worley_poster.compressed
Matevosyan_Nepomuceno_Worley_poster.compressed
Arami Matevosyan
 
Architectural Terminology for Historic Era Residential Buildings in Fresno
Architectural Terminology for Historic Era Residential Buildings in FresnoArchitectural Terminology for Historic Era Residential Buildings in Fresno
Architectural Terminology for Historic Era Residential Buildings in Fresno
Arami Matevosyan
 

Plus de Arami Matevosyan (8)

Acoustics_Boards.compressed
Acoustics_Boards.compressedAcoustics_Boards.compressed
Acoustics_Boards.compressed
 
Acoustics_FinalPaper.compressed
Acoustics_FinalPaper.compressedAcoustics_FinalPaper.compressed
Acoustics_FinalPaper.compressed
 
WhitePaper_Shared Mobility & Caltrain
WhitePaper_Shared Mobility & CaltrainWhitePaper_Shared Mobility & Caltrain
WhitePaper_Shared Mobility & Caltrain
 
Daylighting_Gallery_project.compressed
Daylighting_Gallery_project.compressedDaylighting_Gallery_project.compressed
Daylighting_Gallery_project.compressed
 
Matevosyan_Nepomuceno_Worley_poster.compressed
Matevosyan_Nepomuceno_Worley_poster.compressedMatevosyan_Nepomuceno_Worley_poster.compressed
Matevosyan_Nepomuceno_Worley_poster.compressed
 
ED106.final
ED106.finalED106.final
ED106.final
 
my board
my boardmy board
my board
 
Architectural Terminology for Historic Era Residential Buildings in Fresno
Architectural Terminology for Historic Era Residential Buildings in FresnoArchitectural Terminology for Historic Era Residential Buildings in Fresno
Architectural Terminology for Historic Era Residential Buildings in Fresno
 

10_FINALproject_Arami.Flora.Mourad

  • 1. ISSAM FARES INSTITUTE FOR PUBLIC POLICY & INTERNATIONAL AFFAIRS Net Zero Energy Building Analysis Arami Matevosyan | Flora Lee | Mourad Dabbour
  • 2. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 TABLEOFCONTENTS HVAC 23 Systems & Schedules 24 Base Model 25 Improved Model 26 ENERGY GENERATION 27 Energy Sources 28 On-Site Renewables 29 COST 30 Suites 31 Lower Cost Suite 32 Higher Cost Suite 33 Energy Generation Comparison 34 Summary 35 APPENDIX 36 Initial Energy Model 37 Measuring Comfort 39 Questions, Problems, Concerns 41 EXECUTIVE SUMMARY 1 BUILDING DOCUMENTATION 3 Data & Photographs 4 Plans & Assemblies 5 Internal Loads 6 CLIMATE & ENERGY 7 Climate Analysis 8 Energy Bills 10 BUILDING ANALYSIS 11 Simulation Inputs 12 Base Case Sensitivity 13 FILTER OPTIMIZATION 14 Thermal Mass 15 Glass Type 17 Visual Representation 19 COMFORT & THERMAL AUTONOMY 20 Suite A 21 Suite B 22 TABLE OF CONTENTS
  • 3. Cost  Summary This  analysis  assumes: 1.  No  Discount  Rate  (opportunity  cost  of  capital  over  time) 2.  No  rebates  or  incentives 3.  No  inflation  -­‐  all  costs  are  in  2013  dollars 4.  No  loan  or  mortgage  payments  (capital  is  available) 5.  Appliances  and  machines  to  be  replaced  are  at  end  of  life 6.  No  depreciation  of  value  or  performance  over  time 7.  No  additional  operations  and  maintenance  costs  for  ECMs 8.  Energy  calculations  use  flat  rates-­‐they  do  not  consider  time  of  use  or  other  rate  structures Capital Cost Cost Formula Cost Cost Cost Cost Cost Cost ECM  Suites Capital  Cost (USD) Energy  Savings   (kWh/year) Flat  Rate  Year  1  Energy   Savings  (USD) Flat  Rate  Simple   Payback  (years) Payback  @  4%  energy   cost  escalation  (years) Payback  @  8%  energy  cost   escalation  (years) 10-­‐year  savings  @  4% energy  cost  escalation   20-­‐year  savings  @  4% energy  cost  escalation   30-­‐year  savings  @  4% energy  cost  escalation   30-­‐year  savings  @  8%   energy  cost  escalation   Lower  Cost  Suite 15,709$                                 32,820                                               2,978$                                                             5 4 4 35,752$                                                                       88,674$                                                                       167,012$                                                                   337,340$                                                                   Lower  Cost  Suite +  Renewables 213,489$                             79,314                                               10,755$                                                         20 14 12 129,131$                                                                   320,277$                                                                   603,219$                                                                   1,218,413$                                                             Higher  Cost  Suite 81,748$                                 49,264                                               3,109$                                                             26 18 14 37,332$                                                                       92,592$                                                                       174,390$                                                                   352,242$                                                                   Higher  Cost  Suite +  Renewables 223,048$                             86,625                                               9,334$                                                             24 17 13 112,070$                                                                   277,961$                                                                   523,519$                                                                   1,057,431$                                                              $-­‐          $200,000      $400,000      $600,000      $800,000      $1,000,000      $1,200,000      $1,400,000     Lower  Cost  Suite   Lower  Cost  Suite   +  Renewables   Higher  Cost  Suite   Higher  Cost  Suite   +  Renewables   Cost  (USD  2014)   Capital  Cost  and  Payback   with  energy  cost  escalaJon  assumpJons   Capital  Cost   (USD)   10-­‐year  savings  @  4%   energy  cost  escalaJon     20-­‐year  savings  @  4%   energy  cost  escalaJon     30-­‐year  savings  @  4%   energy  cost  escalaJon     30-­‐year  savings  @  8%     energy  cost  escalaJon     Heating  COP 0.7                                         Cooling  COP 3.0                                         Thermal  Model  Outputs Utility  Bill Benchmark Base  Model Lower  Cost  Suite Higher  Cost  Suite Energy  Use Lighting 3,150                                                   13,988                                                                                                                                                                                       11,190                                                                                                       11,190                                                                                                       Cooling 752                                                           12,501                                                                                                                                                                                       -­‐                                                                                                                     -­‐                                                                                                                     Ventilation 2,153                                                   5,620                                                                                                                                                                                             5,620                                                                                                           5,620                                                                                                           Equipment 9,856                                                   10,918                                                                                                                                                                                       9,359                                                                                                           9,359                                                                                                           Heating 27,056                                               11,246                                                                                                                                                                                       17,204                                                                                                       760                                                                                                                   Hot  Water -­‐                                                             -­‐                                                                                                                                                                                                     -­‐                                                                                                                     -­‐                                                                                                                     Total  (kWh) 42,232                                               54,273                                                                                                                                                                                       43,373                                                                                                       26,929                                                                                                       Energy  Use  Intensity Lighting                                                        40.4                                                                                                                                                                                                    23.0                                                                                                                  18.4                                                                                                                  18.4   Cooling                                                        26.7                                                                                                                                                                                                    20.6                                                                                                                            -­‐                                                                                                                                -­‐       Ventilation                                                        12.1                                                                                                                                                                                                        9.2                                                                                                                        9.2                                                                                                                        9.2   Equipment                                                        16.2                                                                                                                                                                                                    18.0                                                                                                                  15.4                                                                                                                  15.4   Heating                                                        44.5                                                                                                                                                                                                    18.5                                                                                                                  28.3                                                                                                                        1.3   Fuel                                                                                                                                                                                    22.0   Electricity                                                                                                                                                                                    91.0   Total  (kWh/m2)                                                                                                                                                                                      113                                                      139.9                                                                                                                                                                                                    89.3                                                                                                                  71.3                                                                                                                  44.3                                                                                                                                                                              19,856                                                                                                                                                                              19,766   0 20 40 60 80 100 120 140 160 USlity  Bill   Benchmark   Base  Model   Lower  Cost   Suite   Higher  Cost   Suite   Energy  Use  Intensity  (kWh/m2)   COMPARATIVE  ENERGY  USE  INTENSITY   HeaSng   Cooling   VenSlaSon   LighSng   Equipment   Electricity   Fuel   Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 1 EXECUTIVESUMMARY Overview and Recommendations The Issam Fares Institute for Public Policy and International Affairs is a unique building set in the Lebanese campus of the American University of Beirut. Its concrete massing distinguishes it from its surrounding stone buildings and, consequentially, requires an energy analysis specific to its design. The recommendations of this report will address energy use in the categories of building envelope, equipment and appliances, lighting, heating systems, cooling systems, and renewable energy. Building Envelope The building currenly employs thick exterior walls of 250mm of concrete with minimal to no insulation. The lack of insulation does not deter from the building’s performance because the thermal mass (concrete) is effective in balancing the thermal conditions of the building (via thermal lag and reduced peak loads). However, increasing the massing of the exterior roof from 150mm to 500mm will improve the building’s ability to store and release trapped heat and coolth from the outside. The thick, concrete façade doubles as a shading device for the recessed windows, which are double-pane, low-e, clear glass with alumnium framing. This architectural shading design blocks the direct solar radiation from the summer sun and allows some of the direct solar radiation the winter sun to penetrate the space, aiding the thermal mass. Switching to VE 1-85 window glass (triple-pane, double-coating, low-e, clear glass) will increase the window’s capability to allow in more solar heat gain will decrease heat loss from the inside to the outside due to a higher solar heat gain coefficient (SHGC) and a lower u-value of 0.96, compared to 3.8 (SI units). Lighting, Equipment, and Appliances Requiring that all light fixtures use LED or 150-Watt halogen light bulbs will reduce the energy use intensity of the building from 23.0 to 18.4 kWh/m2 . Additionally, replacing large appliances and high-power office and kitchen equipment will also reduce internal loads. It should be noted that reducing the number of equipment (i.e. one microwave instead of two) would improve overall energy consumption levels. 40.4 23.0 18.4 18.4 26.7 20.6 -- -- 12.1 20.6 -- -- 16.2 18.0 15.4 15.4 44.5 18.5 28.3 1.3 22.0 91.0 Lighting Cooling Ventilation Equipment Heating Fuel Electricity EUI Utility Bills Benchmark Base Model Low-Cost High-Cost Total (kWh/m2 ) 113.0 139.9 89.3 71.3 44.3 PAYBACK 4.0% escalation 4-years 14-years 18-years 17-years 8.0% escalation 4-years 12-years 14-years 13-years
  • 4. 0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Hea7ng  and  Cooling  Energy  Use   condi7oned  zone   Hea7ng  (Wh)   Cooling  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Ligh7ng  Energy  Use   Ligh7ng  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Equipment  Energy  Use   Equipment  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Ven7la7on  Fan  Energy  Use   Equipment  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Hea7ng  and  Cooling  Energy  Use   condi7oned  zone   Hea7ng  (Wh)   Cooling  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Ligh7ng  Energy  Use   Ligh7ng  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Equipment  Energy  Use   Equipment  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Hea7ng  and  Cooling  Energy  Use   condi7oned  zone   Hea7ng  (Wh)   Cooling  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Ligh7ng  Energy  Use   Ligh7ng  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Equipment  Energy  Use   Equipment  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Ven7la7on  Fan  Energy  Use   Equipment  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   Hea7ng  and  Cooling  Energy  Use   condi7oned  zone   Hea7ng  (Wh)   Cooling  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   Ligh7ng  Energy  Use   Ligh7ng  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   Equipment  Energy  Use   Equipment  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   Ven7la7on  Fan  Energy  Use   Equipment  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Hea7ng  and  Cooling  Energy  Use   condi7oned  zone   Hea7ng  (Wh)   Cooling  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Ligh7ng  Energy  Use   Ligh7ng  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Equipment  Energy  Use   Equipment  (Wh)   0   3   6   9   12   15   18   21   24   J   F   M   A   M   J   J   A   S   O   N   D   DAY   Ven7la7on  Fan  Energy  Use   Equipment  (Wh)   Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 2 EXECUTIVESUMMARY Heating & Cooling Energy Use [CONTINUED...] Heating and Cooling Systems Issam Fares Institute’s HVAC system consists of steam boiler and a roof chiller/water tower. The coefficient of performance for these systems is 0.3 and 4.5, respectively. The graphs on the right highlight the heating and cooling energy use of different HVAC systems. The Base Model demonstrates the exisiting heating and cooling use throughout the year while both the Lower Cost and Higher Cost Suits demonstrate the incorporation of Mixed Mode Natural Ventilation in conjuction to the HVAC system. As the graphs suggest, Mixed Mode Natural Ventilation is crucial for the performance of this building. Not only does natural ventilation allow for the circulation of fresh air which benefits occupant health, but it also eliminates the need for cooling during the summer months. This savings can be an investment in vastly improving the efficiency of the building’s heating coefficient of performance. Adding Radiant Heat to the system (Higher Cost Suite) improves the COP from 0.3 to 5.5. The difference is evident in the graphs. Renewable Energy In order for the building to reach net zero energy annually, PVs and a wind turbine are required to offset the use of energy. We recommend installing 244 PVs and a Windspire wind turbine for the Lower Cost Suite and 130 PVs and an Endurance wind turbine for the Higher Cost Suite. Regarding Cost AlthoughtheLowerCostSuiteismoreaffordablethantheHigherCostSuite(withorwithout the incorporation of renewables), we recommend the Lower Cost Suite with the addition of Radiant Heat. Radiant Heat is a worthy investment and, coupled with Mixed Mode Natural Ventilation, will cost less than the Higher Cost Suite and require less renewables to achieve net zero energy (contributing to an overall lower cost towards renewables). Base Model Lower Cost Suite Higher Cost Suite
  • 6. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 4 BUILDINGDOCUMENTATION::DATA&PHOTOGRAPHS Issam Fares Institute for Public Policy and International Affairs Architect: Zaha Hadid American University of Beirut Bliss Street, Beirut, Lebanon Constructed: 2011-2014 Total Built Floor Area: 3,000m2 Total Site Area: 7,000m2 Building Uses: Auditorium (100 seats) Classrooms Office Spaces Kitchenette Professional Meeting Rooms Lobby Areas TV Room
  • 7. SURFACE THICKNESS MATERIALS Ceiling 15cm 1.5cm furred and mounted false ceiling with gypsum board | 1.5cm plaster Floors 40cm 30cm reinforced concrete slab | 5cm sand and mortar | 5cm tiles or screen to false finishing Interior Walls 25cm 15cm CMU* | 2cm mortar | 8cm fair-faced concrete finish Interior Mass 30 x 60cm concrete columns Exterior Walls 35cm 20cm CMU* | 10cm fair-faced concrete | 1.5cm plaster | 2cm mortar Windows** & Doors alumnium framing Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 5 Fourth Floor Plan General Building Assemblies *CMU = Concrete Masonry Units ** Windows are double-pane with clear glass and air fill. U-Factor = 3.8 W/m2 -o C Solar Heat Gain Coefficient (SHGC) = 33% Visible Transmittance (VT) = 52% Area: 608m2 Height: 3.7m Volume: 2,250m3 Meeting Room Office Space BUILDINGDOCUMENTATION::PLANS&ASSEMBLIES
  • 8. lighting computer A/C fire alarm led tv coffee machine fridge & water refregirator internal loads mircrowaveprinting machine lighting internal loads mircrowaveprinting machine co fridge lighting computer A/C fire alarm led tv coffee machine fridge & water refregirator lighting internal loads mircrowave c printing machine fridge & water refregirator lighting internal loads mircrowave computer printing machine fridge & water refregirator lighting mircrowave computer A/C fire alarm printing machine led tv coffee machine fridge & water refregirator lighting mircrowave computer A/C printing machine led tv coffee machine fridge & water refregirator computer A/C fire alarm led tv coffee machine fridge & water refregirator Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 6 Lighting Equipment Notes on Internal Loads: Lighting includes incandescent, LED, and halogen light bulbs. Equipment consists of both office equipment and kitchen appliances. A full list of internal loads, with their relative energy usage and consumption, can be found in the Appendix under Initial Energy Model. BUILDINGDOCUMENTATION::INTERNALLOADS
  • 10. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 8 CLIMATE&ENERGY::CLIMATEANALYSIS Solar Path Diagram from January to June Solar Path Diagram from July to December Psychrometric Chart The climate is hot and dry in summer and is relatively cool and wet in winter. Temperature ranges between 7o C~33o C and it will typically it reach about 8o C in the winter and 28o C in the summer. Understanding the Weather There is a large amount of precipitation from November to March which results in an increase in humidity. However, the summer months of June to August experience very little to no rain. The sunshine condition here is optimal. Solar radiation reaches 1000W/m2 in the summer and 500W/m2 in the winter. The probability of the cloud cover during the day is fairly low in Beirut; this will dictate the baselines for efficient PVs. The main wind direction moves from east to west and west to east.. More specificially, it moves eastward when approaching winter and west when approaching summer. The wind speed is relatively high for the climate, which makes windspires wind turbine operation effective.
  • 11. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 9 Wind speed decreases towards sunrise and increases towards night. Wind blows from west to east throughout the day. Wind blows from east to west and tends to be stronger in the morning and gradually weakens by night. Clouds clear up during the day and return at night. Scattered clouds but typically clear at sunrise. Clouds alternatively present during the day and lessen at night. Very low diffused radiation; some varying conditions of bright, sunny skies. Some diffuse radiation but consistently bright and sunny. High levels of diffuse radiation in relation to global horizontal radiation. Cool days & colder nights; the relative humidity much higher than the dry bulb temperature. Hot days and warm evenings; the dry bulb temperature consistently fall in the comfort zone with lower relative humidity. Warm days and cool nights; equal intervals of relative humdity and dry bulb temperature. Cold Weather Extreme Hot Weather Extreme Typical Mild Weather Degrees from Adaptive Comfort (o C)CLIMATE&ENERGY::CLIMATEANALYSIS
  • 12. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 10 CLIMATE&ENERGY::ENERGYBILLS Monthly Electricity Consumption (kWh) Monthly Steam Consumption (lbs) Energy Use Intensity Electricity 92.0 kWh/m2 Fuel 22.0 kWh/m2 Total 114.0 kWh/m2
  • 14. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 12 BUILDINGANALYSIS::SIMULATIONINPUTS
  • 15. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 13 BUILDINGANALYSIS::BASECASESENSITIVITY Parametrics that differ from reality: 0 people, 0 kWh of equipment, 0 ACH ventilation, alternate building orientation There can be no building that has no people or equipment; ventilation is a human necessity; the building orientation typically remains consistent. Most effectivie parametrics(s): Lights, Equipment, and Ventilation These parametrics show the most noticeable decrease in energy use intensity. However, increasing wall insulation and roof insulation, as well as reducing infiltration, also were effective but they did not present drastic drops. 1000mm Exterior Roof Insulation 1000mm Exteiror Wall Insulation 10 W/m2 Equipment 5 W/m2 Lighting 0 ACH Infiltration Least effective parametric(s): Glass SHGC, Glass U-Value, Mass, and Orientation These parametrics are “lease effective” in comparison to the other parametrics. Generally these results are very similar to the base model, if not a little more energy consuming. Differences in predictions: It was surprising that increasing the insulation for both the wall and the roof only slightly decreased the need for heating. Overall, it is surprising that the majority of the parametrics did not fluctuate as much as one would expect. This suggests that the building is primarily affected by internal loads and ventilation. However, ventilation is necessary to have a healthy environment so reducing the amount of energy consumption in lights and equipment is the most effective means to achieve enery efficiency. • The improvements do no change the building aesthetic as it is limited to the equipment inside it, wall insulation and infiltration. Also we could change the lights to energy saving lights with the same brightness/lumens. • The building fits the pyramid category the most for it has low transparency and high mass, which is characterized by the high thermal mass of the concrete walls. • We changed the insulation to 1000mm so that when it is warm inside the zone the wall will absorb the heat (and release that heat when the the zone becomes cooler). Additionally, changing the roof insulation to 1000mm allows it to act as a heat sink, which further dampens the peak loads and creates thermal lag. Observations Analysis
  • 17. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 15 FILTEROPTIMIZATION::THERMALMASS
  • 18. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 16 FILTEROPTIMIZATION::THERMALMASS
  • 19. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 17 FILTEROPTIMIZATION::GLASSTYPE
  • 20. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 18 FILTEROPTIMIZATION::GLASSTYPE
  • 21. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 19 FILTEROPTIMIZATION::VISUALREPRESENTATIONS 1-3/4” (44mm) VE 1-85 TRIPLE INSULATING (DOUBLE COATING) Clear Glass (Air Fill) No Silk Screen U-Value: 0.96 SHGC: 0.44 VLT: 0.65 Aluminum Framing Double-Pane, Low-e Clear Glass (Air Fill) No Silk Screen U-Value: 3.8 SHGC: 0.33 VLT: 0.52 Suggested Glass:Base Model Glass:
  • 23. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 21 BASE SUITE A Thermal Model Outputs 00_Base 01_Mixed Mode 02_Internal Loads 03_Ext. Wall_300mm Concrete 04_Ext. Roof_500mm Concrete 05_Glass Type_VE1-85 Energy Use Lighting 13,988 13,988 11,190 11,190 11,190 11,190 Cooling 12,501 - - - - - Ventilation 5,620 5,620 5,620 5,620 5,620 5,620 Equipment 10,918 10,918 8,933 8,933 8,933 8,933 Heating 11,246 4,809 5,292 5,223 4,696 4,200 Hot Water Total (kWh) 54,272 35,334 31,035 30,965 30,439 29,943 Energy Use Intensity Lighting 23.0 23.0 18.4 18.4 18.4 18.4 Cooling 20.6 - - - - - Ventilation 9.2 9.2 9.2 9.2 9.2 9.2 Equipment 18.0 18.0 14.7 14.7 14.7 14.7 Heating 18.5 7.9 8.7 8.6 7.7 6.9 Hot Water - - - - - - Fuel Electricity Total (kWh/m2) 89.3 58.1 51.0 50.9 50.1 49.2 0 10 20 30 40 50 60 70 80 90 100 00_Base 01_MixedMode 02_InternalLoads 03_Ext. Wall_300mm Concrete 04_Ext. Roof_500mm Concrete 05_Glass Type_VE1-85 EnergyUseIntensity(kWh/m2) Comparative Energy Use Heating Cooling Ventilation Lighting Hot Water Equipment Electricity Fuel Thermal Model Outputs 00_Base 01_Mixed Mode 02_Internal Loads 03_Ext. Wall_300mm Concrete 04_Ext. Roof_500mm Concrete 05_Glass Type_VE1-85 Energy Use Lighting 13,988 13,988 11,190 11,190 11,190 11,190 Cooling 12,501 - - - - - Ventilation 5,620 5,620 5,620 5,620 5,620 5,620 Equipment 10,918 10,918 8,933 8,933 8,933 8,933 Heating 11,246 4,809 5,292 5,223 4,696 4,200 Hot Water Total (kWh) 54,272 35,334 31,035 30,965 30,439 29,943 Energy Use Intensity Lighting 23.0 23.0 18.4 18.4 18.4 18.4 Cooling 20.6 - - - - - Ventilation 9.2 9.2 9.2 9.2 9.2 9.2 Equipment 18.0 18.0 14.7 14.7 14.7 14.7 Heating 18.5 7.9 8.7 8.6 7.7 6.9 Hot Water - - - - - - Fuel Electricity Total (kWh/m2) 89.3 58.1 51.0 50.9 50.1 49.2 0 10 20 30 40 50 60 70 80 90 100 00_Base 01_MixedMode 02_InternalLoads 03_Ext. Wall_300mm Concrete 04_Ext. Roof_500mm Concrete 05_Glass Type_VE1-85 EnergyUseIntensity(kWh/m2) Comparative Energy Use Heating Cooling Ventilation Lighting Hot Water Equipment Electricity Fuel Thermal Model Outputs 00_Base 01_Mixed Mode 02_Internal Loads 03_Ext. Wall_300mm Concrete 04_Ext. Roof_500mm Concrete 05_Glass Type_VE1-85 Energy Use Lighting 13,988 13,988 11,190 11,190 11,190 11,190 Cooling 12,501 - - - - - Ventilation 5,620 5,620 5,620 5,620 5,620 5,620 Equipment 10,918 10,918 8,933 8,933 8,933 8,933 Heating 11,246 4,809 5,292 5,223 4,696 4,200 Hot Water Total (kWh) 54,272 35,334 31,035 30,965 30,439 29,943 Energy Use Intensity Lighting 23.0 23.0 18.4 18.4 18.4 18.4 Cooling 20.6 - - - - - Ventilation 9.2 9.2 9.2 9.2 9.2 9.2 Equipment 18.0 18.0 14.7 14.7 14.7 14.7 Heating 18.5 7.9 8.7 8.6 7.7 6.9 Hot Water - - - - - - Fuel Electricity Total (kWh/m2) 89.3 58.1 51.0 50.9 50.1 49.2 0 10 20 30 40 50 60 70 80 90 100 00_Base 01_MixedMode 02_InternalLoads 03_Ext. Wall_300mm Concrete 04_Ext. Roof_500mm Concrete 05_Glass Type_VE1-85 EnergyUseIntensity(kWh/m2) Comparative Energy Use Heating Cooling Ventilation Lighting Hot Water Equipment Electricity Fuel COLUMN NUMBER Zone Degrees from Comfort (C) 0 3 6 9 12 15 18 21 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC DO NOT ERASE! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21.7% 69.0% 9.3% 0.0% 0.0% 0.4% 4.6% 16.7% 9.3% 0.1% 0.0% 0.0% 0.0% > 8 °C + 8 °C + 6 °C + 4 °C + 2 °C OK - 2 °C - 4 °C - 6 °C - 8 °C < -8 °C - 5 10 15 20 25 30 35 40 J F M A M J J A S O N D TEMPERATURE(°C) Indoor and Outdoor Temperature unconditioned zone Outdoor Air Temp Zone Operative Temp Comfort Zone 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Equipment Energy Use Equipment (Wh) Ventilation Fan Energy Use * Each new simulation is an add-on of the last simulation Thermal Model Output Energy Use Lighting Cooling Ventilation Equipment Heating Hot Water Total (kWh) Energy Use Intensity Lighting Cooling Ventilation Equipment Heating Hot Water Fuel Electricity Total (kWh/m2) 0 10 20 30 40 50 60 70 80 90 100 EnergyUseIntensity(kWh/m2) Comparative Ene Heating Cooling Ventilation Lighting Hot Water Equipment Electricity Fuel There are no longer dots in this area because the Mixed Mode schedule was corrected to begin on 05/22 instead of 05/15, allowing for the cool days to pass so that ventilation would not take place when the outside temperatures are much cooler, thus requiring more heating. COMFORT&THERMALAUTONOMY::SUITEA Comparative Energy UseThermal Autonomy and Energy Use For Suite A, we redid the schedule for ventilation to decrease the cooling and heating which made a great difference. Cutting down the internal loads helped decrease the energy use but increased the need for heating. In an effort to reduce the heat, we made changes to the exterior roof (added 350mm concrete) and changed the glass type to be VE 1-85. Overall, the added insulation to the out- side of the exterior wall made little to no difference.
  • 24. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 22 BASE SUITE B * Each new simulation is an add-on of the last simulation These simulations have the heating setpoint at 20 degrees Celsius from 7:00am - 7:00pm M-F and turned off at all other times; the cooling setpoints are all set to 40 degrees Celsius to allow for natural ventilation to cool the spaces. Interestingly enough, the energy decreases significantly when mixed mode ventilation is applied. While there isn’t a significant energy difference in the application of XPS 200mm insulation, 0.2 ACH infiltration, and VNE 1-63 glass type, including ceiling fans is important to improve the thermal autonomy of the space (since adding air movement perceptually decreases the temperature by 2 degrees Celcius) while accounting for an increase in equipment energy use. The existance of heating with the mixed mode schedule might suggest that investing in thermal mass instead of insulation might provide more desirable results to achieve little to no need for heating. Thermal Model Outputs 00_Base 01_Int.Loads + M.M. 02_XPS 200mm 03_Infil 0.2ACH 04_Glass VNE 1-63 05_Ceiling Fans Energy Use Lighting 13,988 11,190 11,190 11,190 11,190 11,190 Cooling 12,501 - - - - - Ventilation 5,620 5,620 5,620 5,620 5,620 5,620 Equipment 10,918 8,933 8,933 8,933 8,933 9,359 Heating 11,246 5,000 4,845 4,354 4,354 4,087 Hot Water Total (kWh) 54,272 30,743 30,588 30,097 30,097 30,256 Energy Use Intensity Lighting 23.0 18.4 18.4 18.4 18.4 18.4 Cooling 20.6 - - - - - Ventilation 9.2 9.2 9.2 9.2 9.2 9.2 Equipment 18.0 14.7 14.7 14.7 14.7 15.4 Heating 18.5 8.2 8.0 7.2 7.2 6.7 Hot Water - - - - - - Fuel Electricity Total (kWh/m2) 89.3 50.6 50.3 49.5 49.5 49.8 0 10 20 30 40 50 60 70 80 90 100 00_Base 01_Int.Loads+ M.M. 02_XPS200mm 03_Infil0.2ACH 04_GlassVNE1-63 05_CeilingFans EnergyUseIntensity(kWh/m2) Comparative Energy Use Heating Cooling Ventilation Lighting Hot Water Equipment Electricity Fuel Thermal Model Output Energy Use Lighting Cooling Ventilation Equipment Heating Hot Water Total (kWh) Energy Use Intensity Lighting Cooling Ventilation Equipment Heating Hot Water Fuel Electricity Total (kWh/m2) 0 10 20 30 40 50 60 70 80 90 100 EnergyUseIntensity(kWh/m2) Comparative En Heating Cooling Ventilation Lighting Hot Water Equipment Electricity Fuel Thermal Model Outputs 00_Base 01_Int.Loads + M.M. 02_XPS 200mm 03_Infil 0.2ACH 04_Glass VNE 1-63 05_Ceiling Fans Energy Use Lighting 13,988 11,190 11,190 11,190 11,190 11,190 Cooling 12,501 - - - - - Ventilation 5,620 5,620 5,620 5,620 5,620 5,620 Equipment 10,918 8,933 8,933 8,933 8,933 9,359 Heating 11,246 5,000 4,845 4,354 4,354 4,087 Hot Water Total (kWh) 54,272 30,743 30,588 30,097 30,097 30,256 Energy Use Intensity Lighting 23.0 18.4 18.4 18.4 18.4 18.4 Cooling 20.6 - - - - - Ventilation 9.2 9.2 9.2 9.2 9.2 9.2 Equipment 18.0 14.7 14.7 14.7 14.7 15.4 Heating 18.5 8.2 8.0 7.2 7.2 6.7 Hot Water - - - - - - Fuel Electricity Total (kWh/m2) 89.3 50.6 50.3 49.5 49.5 49.8 0 10 20 30 40 50 60 70 80 90 100 00_Base 01_Int.Loads+ M.M. 02_XPS200mm 03_Infil0.2ACH 04_GlassVNE1-63 05_CeilingFans EnergyUseIntensity(kWh/m2) Comparative Energy Use Heating Cooling Ventilation Lighting Hot Water Equipment Electricity Fuel Thermal Model Outputs 00_Base 01_Int.Loads + M.M. 02_XPS 200mm 03_Infil 0.2ACH 04_Glass VNE 1-63 05_Ceiling Fans Energy Use Lighting 13,988 11,190 11,190 11,190 11,190 11,190 Cooling 12,501 - - - - - Ventilation 5,620 5,620 5,620 5,620 5,620 5,620 Equipment 10,918 8,933 8,933 8,933 8,933 9,359 Heating 11,246 5,000 4,845 4,354 4,354 4,087 Hot Water Total (kWh) 54,272 30,743 30,588 30,097 30,097 30,256 Energy Use Intensity Lighting 23.0 18.4 18.4 18.4 18.4 18.4 Cooling 20.6 - - - - - Ventilation 9.2 9.2 9.2 9.2 9.2 9.2 Equipment 18.0 14.7 14.7 14.7 14.7 15.4 Heating 18.5 8.2 8.0 7.2 7.2 6.7 Hot Water - - - - - - Fuel Electricity Total (kWh/m2) 89.3 50.6 50.3 49.5 49.5 49.8 0 10 20 30 40 50 60 70 80 90 100 00_Base 01_Int.Loads+ M.M. 02_XPS200mm 03_Infil0.2ACH 04_GlassVNE1-63 05_CeilingFans EnergyUseIntensity(kWh/m2) Comparative Energy Use Heating Cooling Ventilation Lighting Hot Water Equipment Electricity Fuel 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Equipment Energy Use Equipment (Wh) 0 Ventilation Fan Energy Use Equipment (Wh) The ceiling fans make a big differ- ence for Thermal Autonomy. This is due to the fact that air movement contributes to the preception of comfort. Comparative Energy UseThermal Autonomy and Energy UseCOMFORT&THERMALAUTONOMY::SUITEB
  • 25. HVAC
  • 26. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 24 Improved Model :: Cooling Setpoints, Heating Setpoints, Natural Ventilation Schedule, and Ceiling Fan Schedule Base Model :: Cooling Setpoints, Heating Setpoints, No Natural Ventilation or Ceiling Fan Schedule HVAC Systems DiagramHVAC::SYSTEMS&SCHEDULES Note on HVAC Systems Diagram: This illustration does not accurately demonstrate the Air Handling Unit/Air Flow System. In the Issam Fares Institute, hot and cold air are supplied from the bottom and the top of the building floors, respectively. They feed into each zone through branches - this means that there is one central supply of hot and cold water that runs through the building and branches off in each floor, which branches off into each room (zone). In this diagram, the Air Handling Unit suggests that there is a mixing of fresh air and recovered heat when in reality there is no mixing box because each system is separate.
  • 27. Thermal Model Outputs 00_Base // Existing 100% Efficient Heating and Cooling Heat Pump Heat Pump with Heat Recovery Radiant Heating & Cooling with Whole House Fan Energy Use Lighting 13,988 13,988 13,988 13,988 13,988 Cooling 12,404 55,816 18,605 9,303 8,587 Ventilation 5,620 5,620 5,620 5,620 5,620 Equipment 10,918 10,918 10,918 10,918 10,918 Heating 33,263 9,979 4,989 1,996 1,814 Total (kWh) 53,794 45,778 45,046 43,700 42,922 Energy Use Intensity 00_Base // Existing 100% Efficient Heating and Cooling Heat Pump Heat Pump with Heat Recovery Radiant Heating & Cooling with Whole House Fan Lighting 23.0 23.0 23.0 23.0 23.0 Cooling 20.4 91.8 30.6 15.3 14.1 Ventilation 9.2 9.2 9.2 9.2 9.2 Equipment 18.0 18.0 18.0 18.0 18.0 Heating 54.7 16.4 8.2 3.3 3.0 Total (kWh/m2) 125.3 158.4 89.0 68.8 67.3 0 10 20 30 40 50 60 00_Base//Existing 100%Efficient Heatingand Cooling HeatPump HeatPumpwith HeatRecovery RadiantHeating& CoolingwithWhole HouseFan EnergyUseIntensity(kWh/m2) Comparative Energy Use Heating Thermal Model Outputs 00_Base // Existing 100% Efficient Heating and Cooling Heat Pump Heat Pump with Heat Recovery Radiant Heating & Cooling with Whole House Fan Energy Use Lighting 13,988 13,988 13,988 13,988 13,988 Cooling 12,404 55,816 18,605 9,303 8,587 Ventilation 5,620 5,620 5,620 5,620 5,620 Equipment 10,918 10,918 10,918 10,918 10,918 Heating 33,263 9,979 4,989 1,996 1,814 Total (kWh) 53,794 45,778 45,046 43,700 42,922 Energy Use Intensity 00_Base // Existing 100% Efficient Heating and Cooling Heat Pump Heat Pump with Heat Recovery Radiant Heating & Cooling with Whole House Fan Lighting 23.0 23.0 23.0 23.0 23.0 Cooling 20.4 91.8 30.6 15.3 14.1 Ventilation 0 10 20 30 40 50 60 70 80 90 100 00_Base//Existing 100%Efficient Heatingand Cooling HeatPump HeatPumpwith HeatRecovery RadiantHeating& CoolingwithWhole HouseFan EnergyUseIntensity(kWh/m2) Comparative Energy Use Cooling BASE MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling Heating 54.7 16.4 8.2 3.3 3 Cooling 20.4 91.8 30.6 15.3 14.1 IMPROVED MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling Heating 20.8 6.2 3.1 1.2 1.1 Cooling -- -- -- -- -- BASE MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling Heating 54.7 16.4 8.2 3.3 3 Cooling 20.4 91.8 30.6 15.3 14.1 IMPROVED MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling Heating 20.8 6.2 3.1 1.2 1.1 Cooling -- -- -- -- -- 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Equipment Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Ventilation Fan Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Equipment Energy Use Equipment (Wh) 0 3 6 9 12 15 18 DAY Ventilation Fan Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 DAY Equipment Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Equipment Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Ventilation Fan Energy Use Equipment (Wh) Heating and Cooling Energy Use Existing 0.3 COP Heating 4.5 COP Cooling 100% Efficiency 1.0 COP Heating 1.0 COP Cooling Heat Pump 2.0 COP Heating 3.0 COP Cooling Heat Pump + Heat Recovery 5.0 COP Heating 6.0 COP Cooling Radiant Heating/Cooling + Whole House Fan 5.5 COP Heating 6.5 COP Cooling It is important to acknowledge the scale of these graphs. While it may appear that cooling decreases in a relatively similar amount to heating, the maximum amount of cooling required is 91.8 kWh/m2 in comparison to 54.7 kWh/m2. Improving the COPs for heating and cooling will primarily improve (lessen) the need for heating more than cooling. Since this is the Base Model, it is evident that incorporating a passive means to cool down the building, in conjunction to the HVAC system, will improve the energy use for cooling. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 25 HVAC::BASEMODEL
  • 28. Thermal Model Outputs 00_Improved // Existing 100% Efficient Heating and Cooling Heat Pump Heat Pump with Heat Recovery Radiant Heating & Cooling with Whole House Fan Energy Use Lighting 11,190 11,190 11,190 11,190 11,190 Cooling - - - - - Ventilation 5,620 5,620 5,620 5,620 5,620 Equipment 9,359 9,359 9,359 9,359 9,359 Heating 12,642 3,793 1,896 759 690 Total (kWh) 53,794 45,778 45,046 43,700 42,922 Energy Use Intensity 00_Base // Existing 100% Efficient Heating and Cooling Heat Pump Heat Pump with Heat Recovery Radiant Heating & Cooling with Whole House Fan Lighting 18.4 18.4 18.4 18.4 18.4 Cooling - - - - - Ventilation 9.2 9.2 9.2 9.2 9.2 Equipment 15.4 15.4 15.4 15.4 15.4 Heating 20.8 6.2 3.1 1.2 1.1 Total (kWh/m2) 63.8 49.3 46.2 44.3 44.2 0 5 10 15 20 25 00_Improved// Existing 100%Efficient Heatingand Cooling HeatPump HeatPumpwith HeatRecovery RadiantHeating& CoolingwithWhole HouseFan EnergyUseIntensity(kWh/m2) Comparative Energy Use Heating 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Equipment Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Ventilation Fan Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Equipment Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 DAY Ventilation Fan Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 DAY Equipment Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Lighting Energy Use Lighting (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Equipment Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Ventilation Fan Energy Use Equipment (Wh) 0 3 6 9 12 15 18 21 24 J F M A M J J A S O N D DAY Heating and Cooling Energy Use conditioned zone Heating (Wh) Cooling (Wh) 0 3 6 9 12 15 DAY Lighting Energy Use Lighting (Wh) BASE MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling Heating 54.7 16.4 8.2 3.3 3 Cooling 20.4 91.8 30.6 15.3 14.1 IMPROVED MODEL Energy Use Exisitng 100 % Efficiency Heat Pump Heat Pump + Heat Recover Radiant Heating + Cooling Heating 20.8 6.2 3.1 1.2 1.1 Cooling -- -- -- -- -- Heating and Cooling Energy Use Existing 0.3 COP Heating 4.5 COP Cooling 100% Efficiency 1.0 COP Heating 1.0 COP Cooling Heat Pump 2.0 COP Heating 3.0 COP Cooling Heat Pump + Heat Recovery 5.0 COP Heating 6.0 COP Cooling Radiant Heating/Cooling + Whole House Fan 5.5 COP Heating 6.5 COP Cooling In regards to cooling: There are no effects of improving the cooling COP because improving the Base Model with natural ventilation as part of the mixed mode schedule (coupled with the HVAC system) elminates the need for cooling the Improved Suite. In regards to heating: It is apparent that improving the heating COP greatly reduces the need for heating in the building. This efficiency can be expanded upon by incorporating renewable energy to “elminate” the rest of the this energy consumption, in addition to the energy con- sumption from ventilation and internal loads (lighting and equipment). Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 26 HVAC::IMPROVEDMODEL
  • 30. Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 28 51%43% 3% 2% 0.45% 0.32% 1% Energy Balance in Lebanon according to International Energy Agency (IEA) Oil Energy Loses Coal Biofuels and Wastes Electricity from Heat Solar/Tide/Wind Hydro Diesel Power Plant 30% Hydro 7% Oil/Diesel/Gas 63% Electricity of Lebanon AUB Electricity Sources Diesel Power Plant 30% Hydro 7% Oil/Diesel/Gas 63% Electricity of Lebanon AUB Electricity Sources American University of Beirut enery settings (campus wide): • Setting of campus buildings temperature at 76 F (24 C) and 86 F (30 C) during summer occupied and unoccupied periods, respectively • Setting of campus buildings temperature at 70 F (21 C) and 60 F (15 C) during winter occupied and unoccupied periods, respectively • Replacement of low efficiency equipment with new high efficiency ones such as motors, air-conditioning equipment, electrical transformers, heating boilers, etc. • Installing aerating, low-flow faucets and showerheads to reduce water consumption •The total of produced and imported energy is 7423 ktoe • 63% of the energy produced is consumed in transport • The power plant is equipped with diesel engine generators. Electrical power is generated at 3,300 volts and distrubted on campus •Electricity of Lebanon (EDL - Electricite du Liban) is the main governmental provider of electricity in lebanon >> Produces 2083 MW through thermal power plants that use oil, diesel, and gas >> Produces 220.6 MW through hydro power plants Energy Source in Lebanon Energy Source in American University of Beirut Hydro Power Plant, Lebanon Hydro Power Plant, Lebanon Thermal Power Plant, Lebanon ENERGYGENERATION::ENERGYSOURCES
  • 31. The Aesthetic of the Building: We changed the PVs to emphasis the cantilever as well as the division of the floor plates. These lines create a ribbon around the building to create an overall aesthetic unique to the building. Additionally, creating this ribbon allows for maxium coverage of the building without sacrificing the original design by Zaha Hadid. Cooling 0.0 Ventilation -5,619.6 Equipment -9,359 - 0.526316 Heating -4,371 - PV 45,894 Adjust so that vertical axis scales match for top and bottom graphs. Wind 0 Total (kWh) 15,354 -7,000 -6,000 -5,000 -4,000 -3,000 -2,000 -1,000 0 J F M A M J J A S O N D J ENERGY[Wh] Heating (Wh) Cooling (Wh) Ventilation (Wh) -40,000 -30,000 -20,000 -10,000 0 10,000 20,000 30,000 40,000 50,000 Energy[kWh] ANNUAL ENERGY USE PV Wind Heating Cooling Ventilation Lighting Equipment 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 ENERGY GENERATION AND CONSUMPTION 2-WEEK RUNNING AVERAGE PV Total (Wh) Cooling -11,904.1 Ventilation -5,619.6 Equipment -10,918 - 0.526316 Heating -11,784 - PV 45,894 Adjust so that vertical axis scales match for top and bottom graphs. Wind 14,809 Total (kWh) 6,489 -16,000 -12,000 -8,000 -4,000 0 ENERGY[Wh] Heating (Wh) Cooling (Wh) Ventilation (Wh) -60,000 -40,000 -20,000 0 20,000 40,000 60,000 80,000 Energy[kWh] ANNUAL ENERGY USE PV Wind Heating Cooling Ventilation Lighting Equipment 0 4,000 8,000 12,000 16,000 ENERGY GENERATION AND CONSUMPTION 2-WEEK RUNNING AVERAGE PV Total (Wh) Wind Total (Wh) Cooling 0.0 Ventilation -5,619.6 Equipment -9,359 - 0.526316 Heating -4,371 - PV 45,894 Adjust so that vertical axis scales match for top and bottom graphs. Wind 0 Total (kWh) 15,354 -7,000 -6,000 -5,000 -4,000 -3,000 -2,000 -1,000 0 J F M A M J J A S O N D J ENERGY[Wh] Heating (Wh) Cooling (Wh) Ventilation (Wh) -40,000 -30,000 -20,000 -10,000 0 10,000 20,000 30,000 40,000 50,000 Energy[kWh] ANNUAL ENERGY USE PV Wind Heating Cooling Ventilation Lighting Equipment 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 ENERGY GENERATION AND CONSUMPTION 2-WEEK RUNNING AVERAGE PV Total (Wh) Base Model Improved Model Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 29 ENERGYGENERATION::ON-SITERENEWABLES
  • 32. COST
  • 33. Lower Cost Suite $$ Mixed Mode Operations Ceiling Fans Internal Loads Lighting: Circle Lights Long Lights Equipment: Microwaves Coffee Makers Water Dispenser Water Kettle Printer Computers Refrigerators Photovoltaics Wind Turbine - Windspire Existing Building | Base $ None None Existing Internal Loads 2-Pane, Low-e, Air, Low-SHGC 150mm Concrete Ext. Roof Heat Pump (COP: 0.3) None Higher Cost Suite $$$ Mixed Mode Operations Ceiling Fans Internal Loads Lighting: Circle Lights Long Lights Equipment: Microwaves Coffee Makers Water Dispenser Water Kettle Printer Computers Refrigerators VE 1-85 Window Glass Add 350mm Concrete for Ext. Roof Thermal Mass Radiant Heating (COP: 5.5) Photovoltaics Wind Turbine - Endurance Compartive suites Cost & Performance Implications Renewable energy heavily impacts the value and performance of each suite. Over time, the renewable greatly contribute to the overall energy savings of the suites. However, this can only be seen over large intervals of time, such as 20 or 30 years down the line (around the same time that the suites payback their capital costs. The primary difference between Suite A + Renewables and Suite B + Renewables are the Additional Upgrade machines and appliances that are added as energy efficient replacements. These added machines and appliances increase the costs dramatically (within $100,000) but offer slightly less energy savings. Based on this trend, the clients can opt for the lower cost suite with the option to add one of the Additional Upgrade machines or appliances if they prefer. Renewable Upgrades Additional Upgrades Basic Upgrades Capital Cost Arami Matevosyan | Flora Lee | Mourad Dabbour Net Zero Energy Building Analysis Summer 2015 :: UCB Arch 149 ISSAM FARES INSTITUTE Beirut, Lebanon 33.900116, 35.479800 31 COST::SUITES