SlideShare une entreprise Scribd logo
1  sur  34
Electrical Engineering Specialization
Power System Protection and Protection Devices using DIgSILENT
PowerFactory
Presented By: Examiner 1:
Areeb Abdullah (217205647) Prof.Dr.-Ing.Lijun Cai
Salah Shehata (217205346) Examiner 2 :
M.Sc. Qusay Abdel Latif
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 1
1. Introduction
2. Literature Review
3. Functional Blocks Study
4. Procedure
5. Simulations
6. Results
7. Conclusion
Contents
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 2
• Need of protection devices in the power system.
• Theoretical study of protection devices and both protection schemes.
• Analysis of control and logical blocks of Siemens and Generic relays.
• Modelling of network followed by Load Flow and Short Circuit Analysis.
• Representation and implementation of Overcurrent Protection and Distance
Protection in DIgSILENT PowerFactory.
• Application of various faults with different protective characteristics to observe
the best possible relay coordination protection.
Introduction
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 3
Literature Review
and Functional
Blocks Study
System Modelling
in Power Factory
Load Flow and
Short Circuit
Analysis
Overcurrent/
Distance Relay
Coordination
Investigate
Results
Methodology
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 4
Fuse:
Interrupts current when current reaches the pre defined value. Its operation
involves two phases i.e. melting and current interruption.
Relay:
Protective equipment detects a fault and sends trip signal to circuit breakers.
Circuit Breaker:
Receives input from relay and opens its contact to clear a fault.
Recloser:
Limited fault interrupting capability and recloses automatically in a programmed
sequence.
Protection Devices
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 5
There are two types of instrument transformers:
i. Current Transformer.
ii. Voltage/Potential Transformer.
Instrument Transformers are used to step down the voltage and current within
range of the existing measuring instruments of moderate size.
Instrument Transformers
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 6
CTs are designed to withstand fault current
for a few seconds.
Construction Types of CT:
1. Window.
2. Bar type.
Categories of CT of standard secondary rating (IEC61869-2):
1. 1 Amp 2. 2 Amp 3. 5 Amp
CT selection criteria :
a) CT class criteria.
b) Core construction.
c) Capacity.
Current transformer (CT)
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 7
500/1A 5VA 5P 20
BurdenPri. A/Sec. A
Accuracy
Abbreviation for protection
Name Plate Identification
Highest current value
with respect to rated
value
https://goo.gl/images/e6dkNf
CT equivalent circuit
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 8
https://goo.gl/images/WvmBGR
Used in electrical power system for stepping down the system voltage to a safe value
which can be fed to low rating meters and relays.
Type of potential transformers:
1. Electromagnetic voltage transformer.
2. Capacitive voltage transformer.
Category of VT of standard secondary rating(IEC61868-3):
a) Based on the current practice of a group of European countries:
– 100 V and 110 V.
– 200 V for extended secondary circuits.
b) Based on the current practice in United States and Canada:
– 120 V for distribution systems.
– 115 V for transmission systems.
– 230 V for extended secondary circuits.
Voltage transformer (VT)
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 9
VT equivalent circuit
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 10
https://goo.gl/images/ZYMWha
Based on operating characteristics, it can be divided
into three groups:
1) Instantaneous or Definite Time.
2) Inverse Definite Minimum Time.
I. Standard Inverse
II. Very Inverse (VI)
III. Extremely Inverse
3) Directional Overcurrent Relay.
Overcurrent Protection
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 11
• Load flow and Short Circuit Analysis.
• Minimizing the overall operating time of relay.
• IEC 60255 defines a formula to simulate different time/overcurrent
characteristics of overcurrent relays.
𝑇𝑝 =
𝑐
𝐼𝑓
𝐼 𝑝
𝛼
− 1
× 𝑇𝑀𝑆
𝑇𝑝 = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , 𝑇𝑀𝑆 = 𝑇𝑖𝑚𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠
𝑐 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑟𝑒𝑙𝑎𝑦 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑖𝑡𝑐𝑠, 𝛼= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑅𝑒𝑙𝑎𝑦
𝐼𝑓 = 𝐹𝑎𝑢𝑙𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒, 𝐼 𝑝 = 𝑅𝑒𝑙𝑎𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑡𝑡𝑖𝑛𝑔
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 12
Plug Setting Multiplier and Time Setting Multiplier
7SJ61 Overcurrent Relay
Control and Logical Blocks
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 13
• Set up a model using modified IEEE system.
• Load Flow and Short Circuit Analysis.
• Finding PSM and TSM using both analysis to obtain relay operating
parameters for proper coordination.
• Implementation of Siemens and Generic relays.
Procedure
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 14
Single line diagram of network model use for overcurrent protection
Simulations
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 15
Relay Types and Settings
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 16
Protection
Device
Location Model Stage Current
(pri.A)
Current
(sec.A)
Time Characteristic
Relay1 Bus 1 7SJ61_1A_1A_EF Ip51 100 1.00 0.57 IEC 255-3 Inverse
I>50_1 1171 11.71 0.38 Definite
Relay 2 Bus 2 7SJ61_1A_1A_EF Ip51 100 1.00 0.50 IEC 255-3 Inverse
I>50_1 586 5.86 0.38 Definite
Relay 3 Bus 3 7SJ61_1A_1A_EF Ip51 100 1.00 0.36 IEC 255-3 Inverse
I>50_1 391 3.91 0.38 Definite
Relay 4 Bus 4 7SJ61_1A_1A_EF Ip51 100 1.00 0.16 IEC 255-3 Inverse
I>50_1 293 2.93 0.38 Definite
Generic Bus 4 F50_F51 Phase
Overcurrent
I> 110 1.10 1.00 IEC Class B
(Very Intensive)
I>> 300 3.00 1.00 Definite
Single Phase to Ground Fault at Bus 3
Results
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 17
Three Phase Fault at Bus 5 with Generic Relay Protection
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 18
Short Circuit Sweep
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 19
1. Overcurrent protection coordination is highly constrained objective in radial
feeder distribution system.
2. Change in method for short circuit analysis for real time applications.
3. Time-Overcurrent characteristic curve influence tripping time of relay.
4. Generic protection is slow as compared to Siemens Relay.
5. Relay coordination with proper grading margin is successfully demonstrated.
6. Appropriate functionality of relay cannot be achieved in case of meshed
networks.
7. Blinding problem caused by Distributed Generators.
Conclusion
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 20
• The principle describes as when impedance of transmission line is proportional to its
length. Where,
• Implement secondary impedance because measuring values for voltage and current from
secondary side of CT and VT,
Mode of Operation:
• Due to inaccuracy in the distance measurement, practical 100% of line length is not
possible.
• Grading which is coordination between zone reach and time.
Distance protection
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 21
I
VZ 
prim
ratio
ratio
Z
VT
CT
Z sec
Siemens Distance Protection Relay (7SA6)
• Sta-Vt Block: This block represents the behavior of voltage transformer (VT).
• ElmRelay Block: This is compilation block .CT, Measurement and Logic
blocks are same as explained in overcurrent section.
Generic Distance Protection Relay (7SA6)
1. Reldisloadenc Block
2. RelFdetect Block
3. RelDisdir Block
4. RelDispoly Block
5. RelZpol Block
Control and Logical Blocks
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 22
• Operation boundaries can be determined and defined by fixed shape in R-X diagram.
• Relay operates at any values inside this shape.
• Choice of characteristics of relay depend on the application, direction option and load
impedance.
Basic Distance Relay Characteristic types:
1. Impedance
It is represented by circle with center at the origin.
Distance Relay Characteristics
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 23
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 24
It is represented by circle with its circumference passing
through origin.
2. MHO
3. Offset MHO
It is represented by circle being shifted.
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 25
.
4. Reactance
It is represented by straight line parallel to R-axis. It
provides non directional trip under load.
5. Quadrilateral
It is represented by shape with 4 sides.
.
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 26
It looks like offset mho but shaped by lens while aspect
ratio is adjustable to reduce sensitivity in high load
impedance.
6. Lenticular
7. Polygonal
It looks like quadrilateral but choice between
both depends on application.
• Set up a model using modified IEEE system and select the path.
• Load Flow and select CTs and VTs.
• Implementation of Siemens and Generic relays.
• Implement distance coordination method and tripping time.
• Studying cases.
Procedure
Simulation
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 27
Set up a model using modified IEEE system and select the path
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 28
Current and Voltage Transformer Ratio
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 29
No. Line Length(km) CT Ratio
(pri/sec)
VT Ratio
(pri/sec)
Protection
Relay
Manufacture
1 Line_009_014 40 200/1 33000/100 F21 Distance
Polygonal
DIgSILENT
2 Line_013_014 50 150/1 33000/100 F21 Distance
Polygonal
DIgSILENT
3 Line_013_016 60 400/1 33000/100 F21 Distance
Polygonal
DIgSILENT
• Independent method with zone factor (zone1=85%, zone2=40% and zone 3=20%).
• Tripping time calculated by coordination results.
Implement distance coordination method and tripping time
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 30
As expected from time distance diagram, both of relays trip
CB instantaneously
Case 1 : Three phase short circuit at line_0013_0014 at 50% of length
(Siemens relay)
Study cases (Siemens relay)
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 31
Case 2: Three phase short circuit at line_0006_0013 at 5% of length from
bus_0013.
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 32
As expected from time distance diagram one of them trip CB
instantaneously and other one back ups after time grading
Compare time distance diagram so it failed
in this study case
Study cases (Generic relay)
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 33
17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 34
Thank you

Contenu connexe

Tendances

Basic types of facts controllers
Basic types of facts controllersBasic types of facts controllers
Basic types of facts controllers
Ayyarao T S L V
 
Introduction to power system protection
Introduction to power system protectionIntroduction to power system protection
Introduction to power system protection
SaifUrrehman183
 
Tripping and control of impulse generators
Tripping and control of impulse generatorsTripping and control of impulse generators
Tripping and control of impulse generators
Fariza Zahari
 

Tendances (20)

Choice of converter configuration
Choice of converter configurationChoice of converter configuration
Choice of converter configuration
 
Symmetrical Fault Analysis
Symmetrical Fault AnalysisSymmetrical Fault Analysis
Symmetrical Fault Analysis
 
Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?
Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?
Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?
 
Facts devices
Facts devicesFacts devices
Facts devices
 
BUSBAR PROTECTION
BUSBAR PROTECTIONBUSBAR PROTECTION
BUSBAR PROTECTION
 
Fault Calculations
Fault CalculationsFault Calculations
Fault Calculations
 
Basic types of facts controllers
Basic types of facts controllersBasic types of facts controllers
Basic types of facts controllers
 
distance relay
distance relaydistance relay
distance relay
 
Generation of High D.C. Voltage (HVDC generation)
Generation of High D.C. Voltage (HVDC generation)Generation of High D.C. Voltage (HVDC generation)
Generation of High D.C. Voltage (HVDC generation)
 
Over current protection
Over current protectionOver current protection
Over current protection
 
Reactive power management and voltage control by using statcom
Reactive power management and voltage control by using statcomReactive power management and voltage control by using statcom
Reactive power management and voltage control by using statcom
 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Devices
 
Transient in Power system
Transient in Power systemTransient in Power system
Transient in Power system
 
Protection of transmission lines (distance)
Protection of transmission lines (distance)Protection of transmission lines (distance)
Protection of transmission lines (distance)
 
Disadvantages of corona, radio interference, inductive interference between p...
Disadvantages of corona, radio interference, inductive interference between p...Disadvantages of corona, radio interference, inductive interference between p...
Disadvantages of corona, radio interference, inductive interference between p...
 
Ipsa mv relay co-ordiantion shaik adam
Ipsa  mv relay  co-ordiantion shaik adamIpsa  mv relay  co-ordiantion shaik adam
Ipsa mv relay co-ordiantion shaik adam
 
Introduction to power system protection
Introduction to power system protectionIntroduction to power system protection
Introduction to power system protection
 
Harmonics and mitigation techniques
Harmonics and mitigation techniquesHarmonics and mitigation techniques
Harmonics and mitigation techniques
 
Unit 03 Protective relays
Unit  03 Protective relaysUnit  03 Protective relays
Unit 03 Protective relays
 
Tripping and control of impulse generators
Tripping and control of impulse generatorsTripping and control of impulse generators
Tripping and control of impulse generators
 

Similaire à Overcurrent and Distance Protection in DigSilent PowerFactory

Similaire à Overcurrent and Distance Protection in DigSilent PowerFactory (20)

main-project1
main-project1main-project1
main-project1
 
MULTIPLE TESTS ON TRANSFORMER WITH THE HELP OF MATLAB SIMULINK
MULTIPLE TESTS ON TRANSFORMER WITH THE HELP OF MATLAB SIMULINKMULTIPLE TESTS ON TRANSFORMER WITH THE HELP OF MATLAB SIMULINK
MULTIPLE TESTS ON TRANSFORMER WITH THE HELP OF MATLAB SIMULINK
 
Analysis of distance protection relay in presence of static synchronous compe...
Analysis of distance protection relay in presence of static synchronous compe...Analysis of distance protection relay in presence of static synchronous compe...
Analysis of distance protection relay in presence of static synchronous compe...
 
STUDY AND ANALYSIS OF PROTECTION SCHEME OF DIGITAL SUBSTATION USING IEC61850-...
STUDY AND ANALYSIS OF PROTECTION SCHEME OF DIGITAL SUBSTATION USING IEC61850-...STUDY AND ANALYSIS OF PROTECTION SCHEME OF DIGITAL SUBSTATION USING IEC61850-...
STUDY AND ANALYSIS OF PROTECTION SCHEME OF DIGITAL SUBSTATION USING IEC61850-...
 
Agent based Load Management for Microgrid
Agent based Load Management for MicrogridAgent based Load Management for Microgrid
Agent based Load Management for Microgrid
 
Six-port Interferometer for W-band Transceivers: Design and Characterization
Six-port Interferometer for W-band Transceivers: Design and CharacterizationSix-port Interferometer for W-band Transceivers: Design and Characterization
Six-port Interferometer for W-band Transceivers: Design and Characterization
 
IRJET- Multi-Level Inverter for Solar On-Grid System Design
IRJET- Multi-Level Inverter for Solar On-Grid System DesignIRJET- Multi-Level Inverter for Solar On-Grid System Design
IRJET- Multi-Level Inverter for Solar On-Grid System Design
 
Arc Fault and Flash Signal Analysis and Detection in DC Distribution Systems ...
Arc Fault and Flash Signal Analysis and Detection in DC Distribution Systems ...Arc Fault and Flash Signal Analysis and Detection in DC Distribution Systems ...
Arc Fault and Flash Signal Analysis and Detection in DC Distribution Systems ...
 
TRANSFORMER FAULT DETECTION AND MONITORING
TRANSFORMER FAULT DETECTION AND MONITORINGTRANSFORMER FAULT DETECTION AND MONITORING
TRANSFORMER FAULT DETECTION AND MONITORING
 
Improved Nine-Level Transformerless Inverter with Reduced Part Count
Improved Nine-Level Transformerless Inverter with Reduced Part CountImproved Nine-Level Transformerless Inverter with Reduced Part Count
Improved Nine-Level Transformerless Inverter with Reduced Part Count
 
Fault analysis in power system using power systems computer aided design
Fault analysis in power system using power systems computer aided designFault analysis in power system using power systems computer aided design
Fault analysis in power system using power systems computer aided design
 
Nonlinear control of GTI for stabilizing future smart grids
Nonlinear control of GTI for stabilizing future smart gridsNonlinear control of GTI for stabilizing future smart grids
Nonlinear control of GTI for stabilizing future smart grids
 
Applications of VILLASframework
Applications of VILLASframeworkApplications of VILLASframework
Applications of VILLASframework
 
IRJET- Current Limiting Transformer
IRJET-  	  Current Limiting TransformerIRJET-  	  Current Limiting Transformer
IRJET- Current Limiting Transformer
 
IRJET- Comparative Study of Carrier-Based Pwm Techniques for Control of Doubl...
IRJET- Comparative Study of Carrier-Based Pwm Techniques for Control of Doubl...IRJET- Comparative Study of Carrier-Based Pwm Techniques for Control of Doubl...
IRJET- Comparative Study of Carrier-Based Pwm Techniques for Control of Doubl...
 
Design Development and Simulation of Mobile Substation for Distribution Network
Design Development and Simulation of Mobile Substation for Distribution NetworkDesign Development and Simulation of Mobile Substation for Distribution Network
Design Development and Simulation of Mobile Substation for Distribution Network
 
IRJET- Design and Simulation of Solar PV DC Microgrid for Rural Electrification
IRJET- Design and Simulation of Solar PV DC Microgrid for Rural ElectrificationIRJET- Design and Simulation of Solar PV DC Microgrid for Rural Electrification
IRJET- Design and Simulation of Solar PV DC Microgrid for Rural Electrification
 
Underground Cable Fault Detection Using IOT
Underground Cable Fault Detection Using IOTUnderground Cable Fault Detection Using IOT
Underground Cable Fault Detection Using IOT
 
IRJET- Review on Performance of OTA Structure
IRJET- Review on Performance of OTA StructureIRJET- Review on Performance of OTA Structure
IRJET- Review on Performance of OTA Structure
 
Analysis of Fault Detection and its Location using Microcontroller for Underg...
Analysis of Fault Detection and its Location using Microcontroller for Underg...Analysis of Fault Detection and its Location using Microcontroller for Underg...
Analysis of Fault Detection and its Location using Microcontroller for Underg...
 

Dernier

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Dernier (20)

Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 

Overcurrent and Distance Protection in DigSilent PowerFactory

  • 1. Electrical Engineering Specialization Power System Protection and Protection Devices using DIgSILENT PowerFactory Presented By: Examiner 1: Areeb Abdullah (217205647) Prof.Dr.-Ing.Lijun Cai Salah Shehata (217205346) Examiner 2 : M.Sc. Qusay Abdel Latif 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 1
  • 2. 1. Introduction 2. Literature Review 3. Functional Blocks Study 4. Procedure 5. Simulations 6. Results 7. Conclusion Contents 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 2
  • 3. • Need of protection devices in the power system. • Theoretical study of protection devices and both protection schemes. • Analysis of control and logical blocks of Siemens and Generic relays. • Modelling of network followed by Load Flow and Short Circuit Analysis. • Representation and implementation of Overcurrent Protection and Distance Protection in DIgSILENT PowerFactory. • Application of various faults with different protective characteristics to observe the best possible relay coordination protection. Introduction 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 3
  • 4. Literature Review and Functional Blocks Study System Modelling in Power Factory Load Flow and Short Circuit Analysis Overcurrent/ Distance Relay Coordination Investigate Results Methodology 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 4
  • 5. Fuse: Interrupts current when current reaches the pre defined value. Its operation involves two phases i.e. melting and current interruption. Relay: Protective equipment detects a fault and sends trip signal to circuit breakers. Circuit Breaker: Receives input from relay and opens its contact to clear a fault. Recloser: Limited fault interrupting capability and recloses automatically in a programmed sequence. Protection Devices 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 5
  • 6. There are two types of instrument transformers: i. Current Transformer. ii. Voltage/Potential Transformer. Instrument Transformers are used to step down the voltage and current within range of the existing measuring instruments of moderate size. Instrument Transformers 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 6
  • 7. CTs are designed to withstand fault current for a few seconds. Construction Types of CT: 1. Window. 2. Bar type. Categories of CT of standard secondary rating (IEC61869-2): 1. 1 Amp 2. 2 Amp 3. 5 Amp CT selection criteria : a) CT class criteria. b) Core construction. c) Capacity. Current transformer (CT) 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 7 500/1A 5VA 5P 20 BurdenPri. A/Sec. A Accuracy Abbreviation for protection Name Plate Identification Highest current value with respect to rated value https://goo.gl/images/e6dkNf
  • 8. CT equivalent circuit 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 8 https://goo.gl/images/WvmBGR
  • 9. Used in electrical power system for stepping down the system voltage to a safe value which can be fed to low rating meters and relays. Type of potential transformers: 1. Electromagnetic voltage transformer. 2. Capacitive voltage transformer. Category of VT of standard secondary rating(IEC61868-3): a) Based on the current practice of a group of European countries: – 100 V and 110 V. – 200 V for extended secondary circuits. b) Based on the current practice in United States and Canada: – 120 V for distribution systems. – 115 V for transmission systems. – 230 V for extended secondary circuits. Voltage transformer (VT) 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 9
  • 10. VT equivalent circuit 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 10 https://goo.gl/images/ZYMWha
  • 11. Based on operating characteristics, it can be divided into three groups: 1) Instantaneous or Definite Time. 2) Inverse Definite Minimum Time. I. Standard Inverse II. Very Inverse (VI) III. Extremely Inverse 3) Directional Overcurrent Relay. Overcurrent Protection 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 11
  • 12. • Load flow and Short Circuit Analysis. • Minimizing the overall operating time of relay. • IEC 60255 defines a formula to simulate different time/overcurrent characteristics of overcurrent relays. 𝑇𝑝 = 𝑐 𝐼𝑓 𝐼 𝑝 𝛼 − 1 × 𝑇𝑀𝑆 𝑇𝑝 = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , 𝑇𝑀𝑆 = 𝑇𝑖𝑚𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠 𝑐 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑟𝑒𝑙𝑎𝑦 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑖𝑡𝑐𝑠, 𝛼= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑅𝑒𝑙𝑎𝑦 𝐼𝑓 = 𝐹𝑎𝑢𝑙𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒, 𝐼 𝑝 = 𝑅𝑒𝑙𝑎𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 12 Plug Setting Multiplier and Time Setting Multiplier
  • 13. 7SJ61 Overcurrent Relay Control and Logical Blocks 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 13
  • 14. • Set up a model using modified IEEE system. • Load Flow and Short Circuit Analysis. • Finding PSM and TSM using both analysis to obtain relay operating parameters for proper coordination. • Implementation of Siemens and Generic relays. Procedure 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 14
  • 15. Single line diagram of network model use for overcurrent protection Simulations 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 15
  • 16. Relay Types and Settings 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 16 Protection Device Location Model Stage Current (pri.A) Current (sec.A) Time Characteristic Relay1 Bus 1 7SJ61_1A_1A_EF Ip51 100 1.00 0.57 IEC 255-3 Inverse I>50_1 1171 11.71 0.38 Definite Relay 2 Bus 2 7SJ61_1A_1A_EF Ip51 100 1.00 0.50 IEC 255-3 Inverse I>50_1 586 5.86 0.38 Definite Relay 3 Bus 3 7SJ61_1A_1A_EF Ip51 100 1.00 0.36 IEC 255-3 Inverse I>50_1 391 3.91 0.38 Definite Relay 4 Bus 4 7SJ61_1A_1A_EF Ip51 100 1.00 0.16 IEC 255-3 Inverse I>50_1 293 2.93 0.38 Definite Generic Bus 4 F50_F51 Phase Overcurrent I> 110 1.10 1.00 IEC Class B (Very Intensive) I>> 300 3.00 1.00 Definite
  • 17. Single Phase to Ground Fault at Bus 3 Results 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 17
  • 18. Three Phase Fault at Bus 5 with Generic Relay Protection 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 18
  • 19. Short Circuit Sweep 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 19
  • 20. 1. Overcurrent protection coordination is highly constrained objective in radial feeder distribution system. 2. Change in method for short circuit analysis for real time applications. 3. Time-Overcurrent characteristic curve influence tripping time of relay. 4. Generic protection is slow as compared to Siemens Relay. 5. Relay coordination with proper grading margin is successfully demonstrated. 6. Appropriate functionality of relay cannot be achieved in case of meshed networks. 7. Blinding problem caused by Distributed Generators. Conclusion 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 20
  • 21. • The principle describes as when impedance of transmission line is proportional to its length. Where, • Implement secondary impedance because measuring values for voltage and current from secondary side of CT and VT, Mode of Operation: • Due to inaccuracy in the distance measurement, practical 100% of line length is not possible. • Grading which is coordination between zone reach and time. Distance protection 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 21 I VZ  prim ratio ratio Z VT CT Z sec
  • 22. Siemens Distance Protection Relay (7SA6) • Sta-Vt Block: This block represents the behavior of voltage transformer (VT). • ElmRelay Block: This is compilation block .CT, Measurement and Logic blocks are same as explained in overcurrent section. Generic Distance Protection Relay (7SA6) 1. Reldisloadenc Block 2. RelFdetect Block 3. RelDisdir Block 4. RelDispoly Block 5. RelZpol Block Control and Logical Blocks 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 22
  • 23. • Operation boundaries can be determined and defined by fixed shape in R-X diagram. • Relay operates at any values inside this shape. • Choice of characteristics of relay depend on the application, direction option and load impedance. Basic Distance Relay Characteristic types: 1. Impedance It is represented by circle with center at the origin. Distance Relay Characteristics 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 23
  • 24. 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 24 It is represented by circle with its circumference passing through origin. 2. MHO 3. Offset MHO It is represented by circle being shifted.
  • 25. 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 25 . 4. Reactance It is represented by straight line parallel to R-axis. It provides non directional trip under load. 5. Quadrilateral It is represented by shape with 4 sides.
  • 26. . 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 26 It looks like offset mho but shaped by lens while aspect ratio is adjustable to reduce sensitivity in high load impedance. 6. Lenticular 7. Polygonal It looks like quadrilateral but choice between both depends on application.
  • 27. • Set up a model using modified IEEE system and select the path. • Load Flow and select CTs and VTs. • Implementation of Siemens and Generic relays. • Implement distance coordination method and tripping time. • Studying cases. Procedure Simulation 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 27
  • 28. Set up a model using modified IEEE system and select the path 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 28
  • 29. Current and Voltage Transformer Ratio 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 29 No. Line Length(km) CT Ratio (pri/sec) VT Ratio (pri/sec) Protection Relay Manufacture 1 Line_009_014 40 200/1 33000/100 F21 Distance Polygonal DIgSILENT 2 Line_013_014 50 150/1 33000/100 F21 Distance Polygonal DIgSILENT 3 Line_013_016 60 400/1 33000/100 F21 Distance Polygonal DIgSILENT
  • 30. • Independent method with zone factor (zone1=85%, zone2=40% and zone 3=20%). • Tripping time calculated by coordination results. Implement distance coordination method and tripping time 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 30
  • 31. As expected from time distance diagram, both of relays trip CB instantaneously Case 1 : Three phase short circuit at line_0013_0014 at 50% of length (Siemens relay) Study cases (Siemens relay) 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 31
  • 32. Case 2: Three phase short circuit at line_0006_0013 at 5% of length from bus_0013. 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 32 As expected from time distance diagram one of them trip CB instantaneously and other one back ups after time grading
  • 33. Compare time distance diagram so it failed in this study case Study cases (Generic relay) 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 33
  • 34. 17.03.2019 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK 34 Thank you