Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Lecture 05-SchemaMatching.ppt

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Chargement dans…3
×

Consultez-les par la suite

1 sur 29 Publicité

Plus De Contenu Connexe

Similaire à Lecture 05-SchemaMatching.ppt (20)

Publicité

Plus récents (20)

Lecture 05-SchemaMatching.ppt

  1. 1. Schema Matching and Integration IIS 651 (S 2022) 1
  2. 2. Outline  Schema and Schema Matching  Schema Heterogeneity & Data Interoperability  Large Scale Scenarios concerning Schema Matching and Integration  Related Work  Our approach to handle Large Scale Scenario  PORSCHE (Performance Oriented Schema Mediation)  Future Research Directions 2
  3. 3. Schema origin in Greek, meaning "shape“ or "plan" From computer science perspective – • description of the relationship of data/ information in some structured way or • a set of rules defining the relationship or • a model to represent the data For example • Relational Schema • XML Schema • Class Diagram …. 3
  4. 4. Relational Database Schema 4 book_id book title author_id author name pub_id publisher name book_id detail author_id pub_id books
  5. 5. XML Schema 5 <?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:element name="time"> <xs:complexType/> </xs:element> <xs:element name="day"> <xs:complexType/> </xs:element> <xs:element name="courseCode"> <xs:complexType mixed="true"> <xs:sequence> <xs:element ref="time"/> <xs:element ref="day"/> <xs:element ref="Instructor"/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="arizonaCourses"> <xs:complexType> <xs:sequence> <xs:element ref="courseCode"/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="Instructor"> <xs:complexType/> </xs:element> </xs:schema>
  6. 6. Web Interface Form Schema From city or airport* To city or airport* I f y o u a r e u n s u r e o f t h e s p e l l i n g o f a c i t y o r a i r p o r t , e n t e r t h e f i r s t 3 o r m o r e l e t t e r s f o l l o w e d b y a n a s t e r i s k ( * ) . Departure date Departure time Jul 2008 23 Any Time Wednesday Return Date Return time Jul 2008 24 Any Time Thursday Traveler types Adults (12-64 yrs) 1 Children (2-11 yrs) 0 Seniors (65+ yrs) 0 Infants (0- 23 months) 0 Cabin type Coach Direct or Non-Stop flights only More search options 6
  7. 7. Schema Matching 7 • Takes two schemas/ontologies as input and produces a mapping between elements of the two schemas that correspond semantically to each other [Halevy05] 1-1 match complex match 26,60 Harry Potter J. K. Rowling 11,50 Marie Des Juliette Benzoni Intrigues 16,50 Nous Les Bernard Werber Dieux 24 Pompei Robert Harris price book-title author-name Books Source A listed-price title a-fname a-lname Books Source B
  8. 8. Applications of Schema Matching • Data Interoperability • Data Integration • Data Warehousing • Catalogue Integration • Web Services Discovery and Composition • Query over the Web • ... • Data Exchange • E-commerce • Agents Communication • ... 8 Static Dynamic Contributing Schema Set Not Evolving >> Matching and Mapping is one time process Contributing Schema Set Evolving >> Matching and Mapping also evolve
  9. 9. PROBLEM? 9
  10. 10. Schema Heterogeneity & Data Interoperability • A key roadblock for information integration! • Different data sources speak their own schema 10 Consumer Data Source Data Source Data Source Hotels, Youth Centers Lodges, Restaurants Beaches, Volcanoes Hotel, Restaurant, AdventureSports, HistoricalSites
  11. 11. SOLUTION! Schema Mediation 11
  12. 12. Schema Integration and Mediation • All concerned data sources schemas are merged together into one schema, without any concept redundancy. i.e. similar concepts are represented by one concept • All the input data sources schemas are mapped to this integrated schema, also called the mediated schema 12 Consumer Data Source Data Source Data Source Hotels, Youth Centers Lodges, Restaurants Beaches, Volcanoes Hotel, Restaurant, AdventureSports, HistoricalSites Mediation
  13. 13. Mediation Schema Mapping is key to any data sharing architecture 13 [Tomasic et al. IEEE TKDE 1998]. Mediated Schema Source n Source 1 Source 2 mappings ... wrapper wrapper wrapper User Query sub-query sub-query sub-query
  14. 14. Schema Matching, Mapping, Integration & Mediation 14 S1 B C S2 B1 C2 C1 Matching S1 B C S2 B1 C2 C1 Mapping Merging/ Integration Si B C1 C Mediation Si B C1 C S1 B C S2 B1 C2 C1 Finding similarities between schemas Final correspondences between elements of two schemas Based upon schema mappings, merging schemas into one schema Mappings from source schemas to the integrated schema for data interoperability
  15. 15. Different Research Domains - Mediation 15 Mediation Distributed Databases Data Warehousin g Data Mining …………… Informatio n Retrieval Knowledge Extraction
  16. 16. LARGE SCALE PROBLEM! 16
  17. 17. Large Scale Scenario • Creating a mediated schema from two large schemas (with thousands of nodes). • For example Open Applications Group Integration Specification (OAGIS)1 XML schema instances with number of elements in thousands • Creating a mediated schema from a large set of schemas (with hundreds of schemas and thousands of nodes) • For example creating a mediated web interface input form (schema) from the hundreds of web interface forms (schemas) related to travel domain2 17 1. http://www.openapplications.org/ 2. http://metaquerier.cs.uiuc.edu Large scale schema matching and integration requires automated approach
  18. 18. Related Work 18 Pre-Match eTuner [Lee&Doan 07] Amid-Match SCIA [Wang et al 07] Post-Match COMA++ [Do et al 07, Manakanatas06] Tuning approach Large Scale Schema Matching and Integration Approaches Incremental Holistic Fragmentation Clustering Mining Data-mining Element Level Schema Level Tree-mining COMA++ [Do&Rahm07] BellFlower [Smiljanic06] DCM [He et al 04] xClust [Lee et al 02] PORSCHE [Saleem et al 08]
  19. 19. An approach to handle Large Scale Scenario  Handle Schemas as Trees  Apply the Clustering Method  Use Tree Mining  Devise Hybrid Approach 19 Result Automated Approach having Good Time Performance with Approximate Match Quality
  20. 20. From city or airport* To city or airport* I f y o u a r e u n s u r e o f t h e s p e l l i n g o f a c i t y o r a i r p o r t , e n t e r t h e f i r s t 3 o r m o r e l e t t e r s f o l l o w e d b y a n a s t e r i s k ( * ) . Departure date Departure time Jul 2008 23 Any Time Wednesday Return Date Return time Jul 2008 24 Any Time Thursday Traveler types Adults (12-64 yrs) 1 Children (2-11 yrs) 0 Seniors (65+ yrs) 0 Infants (0- 23 months) 0 Cabin type Coach Direct or Non-Stop flights only More search options 20 Schemas as trees – Web Interface Forms absTravel From D_City To A_City Departure Date D_Month D_Day D_Time Return Date R_Month R_Day R_Time CabinType TravelerTypes Adults Children Seniors Infants absTravel D_City D_Day Return D_Month Departure A_City D_Time CabinType Adults Children Seniors Infants D_Day D_Month D_Time TravlerTypes From To Date Date [He et al. KDD 2004]
  21. 21. Schemas as trees – Relational Database 21 books book_id author_id author detail name publisher title pub_id name book_id book title author_id author name pub_id publisher name book_id detail author_id pub_id books [Lee et al. CIKM 2006]
  22. 22. Schemas as trees – XML Schema 22 <?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:element name="time"> <xs:complexType/> </xs:element> <xs:element name="day"> <xs:complexType/> </xs:element> <xs:element name="courseCode"> <xs:complexType mixed="true"> <xs:sequence> <xs:element ref="time"/> <xs:element ref="day"/> <xs:element ref="Instructor"/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="arizonaCourses"> <xs:complexType> <xs:sequence> <xs:element ref="courseCode"/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="Instructor"> <xs:complexType/> </xs:element> </xs:schema> arizonaCourses courseCode day time place instructor
  23. 23. A speculatively rooted tree for rRNA genes 23
  24. 24. Schema Tree Benefit • Tree structure for a data model inherently supports the contextual meanings of the descendent nodes. 24 A B C S1 D A1 B1 C11 C1 S2 D D X A B C D S1 A1 B C11 C1 D D S2
  25. 25. Element Level Clustering • Clustering helps in target search space optimization • Schema elements clustering based on label similarity 25 A B C A1 B1 C4 C1 A B C2 A1 B1 C3 C5 D D S1 S2 S3 Si Node Labels Similarity C ≈ C1 ≈ C2 ≈ C3 ≈ C4 ≈ C5 t1 t2 t3 t4 …… tn s1 s2 s3 s4 … sm a1 a2 a3 a4 … aq Typical matching scenario
  26. 26. Tree Mining Aspect • Tree mining finds frequent sub-trees in a given set of trees; • similar to schema matching, which finds similar concepts among a set of schemas • Use of data structures supporting tree mining algorithms for schema matching is possible • Helps in handling Large Scale Scenario • Supports the context of nodes 26 computers Desktop notebook Software Desktop notepad
  27. 27. Tree mining example • Element Level Matching (sub-tree size 1) • Structure Level Matching (sub-tree size > 1) 27 b a p n t n b a f n t p i n b d a f t p r a n h b t a n b t b p t ……
  28. 28. Hybrid Approach 28 Matching Mapping Integratio n Mediation Schema Trees Clustering Tree Mining
  29. 29. Database Research Advances Reports • https://dsf.berkeley.edu/claremont/claremontreport08.pdf • https://beckman.cs.wisc.edu/beckman-report2013.pdf • https://link.springer.com/article/10.1007/s10796-017-9819-2 • https://sigmodrecord.org/publications/sigmodRecord/1912/pdfs/07_ Reports_Abadi.pdf Last one 2018 … • https://www.sciencedirect.com/science/article/pii/S0306437908000 15X • https://vldb.org/2021/?papers-research 29

×