SlideShare une entreprise Scribd logo
1  sur  38
INTRODUCTORY MATHEMATICALINTRODUCTORY MATHEMATICAL
ANALYSISANALYSISFor Business, Economics, and the Life and Social Sciences
©2007 Pearson Education Asia
Chapter 13Chapter 13
Curve SketchingCurve Sketching
©2007 Pearson Education Asia
INTRODUCTORY MATHEMATICAL
ANALYSIS
0. Review of Algebra
1. Applications and More Algebra
2. Functions and Graphs
3. Lines, Parabolas, and Systems
4. Exponential and Logarithmic Functions
5. Mathematics of Finance
6. Matrix Algebra
7. Linear Programming
8. Introduction to Probability and Statistics
©2007 Pearson Education Asia
9. Additional Topics in Probability
10. Limits and Continuity
11. Differentiation
12. Additional Differentiation Topics
13. Curve Sketching
14. Integration
15. Methods and Applications of Integration
16. Continuous Random Variables
17. Multivariable Calculus
INTRODUCTORY MATHEMATICAL
ANALYSIS
©2007 Pearson Education Asia
• To find critical values, to locate relative maxima
and relative minima of a curve.
• To find extreme values on a closed interval.
• To test a function for concavity and inflection
points.
• To locate relative extrema by applying the
second-derivative test.
• To sketch the graphs of functions having
asymptotes.
• To model situations involving maximizing or
minimizing a quantity.
Chapter 13: Curve Sketching
Chapter ObjectivesChapter Objectives
©2007 Pearson Education Asia
Relative Extrema
Absolute Extrema on a Closed Interval
Concavity
The Second-Derivative Test
Asymptotes
Applied Maxima and Minima
13.1)
13.2)
13.3)
Chapter 13: Curve Sketching
Chapter OutlineChapter Outline
13.4)
13.5)
13.6)
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.1 Relative Extrema13.1 Relative Extrema
Increasing or Decreasing Nature of a Function
• Increasing f(x) if x1 < x2 and f(x1) < f(x2).
• Decreasing f(x) if x1 < x2 and f(x1) > f(x2).
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.1 Relative Extrema
Extrema
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.1 Relative Extrema
RULE 1 - Criteria for Increasing or Decreasing Function
• f is increasing on (a, b) when f’(x) > 0
• f is decreasing on (a, b) when f’(x) < 0
RULE 2 - A Necessary Condition for Relative Extrema
( )
( )



 =
⇒



existnotdoes'
or
0'
at
extremumrelative
af
af
a
implies
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.1 Relative Extrema
RULE 3 - Criteria for Relative Extrema
1. If f’(x) changes from +ve to –ve, then f has a
relative maximum at a.
2. If f’(x) changes from -ve to +ve, then f has a
relative minimum at a.
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.1 Relative Extrema
First-Derivative Test for Relative Extrema
1. Find f’(x).
2. Determine all critical values of f.
3. For each critical value a at which f is continuous,
determine whether f’(x) changes sign as x
increases through a.
4. For critical values a at which f is not continuous,
analyze the situation by using the definitions of
extrema directly.
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.1 Relative Extrema
Example 1 - First-Derivative Test
If , use the first-derivative test
to find where relative extrema occur.
Solution:
STEP 1 -
STEP 2 - Setting f’(x) = 0 gives x = −3, 1.
STEP 3 - Conclude that at−3, there is a relative
maximum.
STEP 4 – There are no critical values at which f is not
( ) 1for
1
4
≠
+
+== x
x
xxfy
( )
( )
( )( )
( )
1for
1
13
1
32
' 22
2
−≠
+
−+
=
+
−+
= x
x
xx
x
xx
xf
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.1 Relative Extrema
Example 3 - Finding Relative Extrema
Test for relative extrema.
Solution: By product rule,
Relative maximum when x = −2
Relative minimum when x = 0.
( ) x
exxfy 2
==
( ) ( )2' += xxexf x
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.2 Absolute Extrema on a Closed Interval13.2 Absolute Extrema on a Closed Interval
Extreme-Value Theorem
• If a function is continuous on a closed interval,
then the function has a maximum value and a
minimum value on that interval.
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.2 Absolute Extrema on a Closed Interval
Procedure to Find Absolute Extrema for a
Function f That Is Continuous on [a, b]
1. Find the critical values of f .
2. Evaluate f(x) at the endpoints a and b and at the
critical values in (a, b).
3. The maximum value of f is the greatest value
found in step 2. The minimum value is the least
value found in step 2.
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.2 Absolute Extrema on a Closed Interval
Example 1 - Finding Extreme Values on a Closed Interval
Find absolute extrema for over the
closed interval [1, 4].
Solution:
Step 1:
Step 2:
Step 3:
( ) 542
+−= xxxf
( ) ( )2242' −=−= xxxxf
( )
( ) endpointsatofvalues54
21
ff
f
=
=
( ) ( )41,in2valuecriticalatofvalues12 ff =
( ) ( ) 12isminand54ismax == ff
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.3 Concavity13.3 Concavity
• Cases where curves concave upward:
• Cases where curves concave downward:
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.3 Concavity
• f is said to be concave up on (a, b) if f is
increasing on (a, b).
• f is said to be concave down on (a, b) if f is
decreasing on (a, b).
• f has an inflection point at a if it is continuous at a
and f changes concavity at a.
Criteria for Concavity
• If f’’(x) > 0, f is concave up on (a, b).
• If f”(x) < 0, f is concave down on (a, b).
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.3 Concavity
Example 1 - Testing for Concavity
Determine where the given function is concave up
and where it is concave down.
Solution:
Applying the rule,
Concave up when 6(x − 1) > 0 as x > 1.
Concave down when 6(x − 1) < 0 as x < 1.
( ) ( ) 11a.
3
+−== xxfy
( )
( )16''
13'
2
−=
−=
xy
xy
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.3 Concavity
Example 1 - Testing for Concavity
Solution:
Applying the rule,
As y’’ is always positive, y = x2
is always concave up.
2
b. xy =
2''
2'
=
=
y
xy
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.3 Concavity
Example 3 - A Change in Concavity with No Inflection Point
Discuss concavity and find all inflection points for
f(x) = 1/x.
Solution:
x > 0 f”(x) > 0 and x < 0  f”(x) < 0.
f is concave up on (0,∞) and
concave down on (−∞, 0)
f is not continuous at 0  no inflection point
( )
( ) 0for2''
0for'
3
2
≠=
≠−=
−
−
xxxf
xxxf
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.4 The Second-Derivative Test13.4 The Second-Derivative Test
• The test is used to test certain critical values for
relative extrema.
Suppose f’(a) = 0.
• If f’’(a) < 0, then f has a relative maximum at a.
• If f’’(a) > 0, then f has a relative minimum at a.
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.4 The Second-Derivative Test
Example 1 - Second-Derivative Test
Test the following for relative maxima and minima.
Use the second-derivative test, if possible.
Solution:
Relative minimum when x = −3.
3
3
2
18. xxya −=
( )( )
xy
xxy
4''
332'
−=
−+=
3havewe,0'When ±== xy
( )
( ) 01234'',3When
01234'',3When
>=−−=−=
<−=−=+=
yx
yx
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.4 The Second-Derivative Test
Example 1 - Second-Derivative Test
Solution:
No maximum or minimum
exists when x = 0.
186. 34
+−= xxyb
( )
xxy
xxxxy
4872''
1242424'
2
223
−=
−=−=
1,0havewe,0'When == xy
0'',1When
0'',0When
>=
==
yx
yx
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.5 Asymptotes13.5 Asymptotes
Vertical Asymptotes
• The line x = a is a vertical asymptote if at least
one of the following is true:
Vertical-Asymptote Rule for Rational Functions
• P and Q are polynomial functions and the quotient
is in lowest terms.
( )
( ) ±∞=
±∞=
−
+
→
→
xf
xf
ax
ax
lim
lim
( ) ( )
( )xQ
xP
xf =
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.5 Asymptotes
Example 1 - Finding Vertical Asymptotes
Determine vertical asymptotes for the graph of
Solution: Since f is a rational function,
Denominator is 0 when x is 3 or 1.
The lines x = 3 and x = 1
are vertical asymptotes.
( )
34
4
2
2
+−
−
=
xx
xx
xf
( )
( )( )13
42
−−
−
=
xx
xx
xf
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.5 Asymptotes
Horizontal and Oblique Asymptotes
• The line y = b is a horizontal asymptote if at least
one of the following is true:
Nonvertical asymptote
• The line y = mx +b is a nonvertical asymptote if
at least one of the following is true:
( ) ( ) bxfbxf
xx
==
−∞→∞→
limorlim
( ) ( )( ) ( ) ( )( ) 0limor0lim =+−=+−
−∞→∞→
bmxxfbmxxf
xx
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.5 Asymptotes
Example 3 - Finding an Oblique Asymptote
Find the oblique asymptote for the graph of the
rational function
Solution:
y = 2x + 1 is an oblique asymptote.
( )
25
5910 2
+
++
==
x
xx
xfy
( )
25
3
12
25
5910 2
+
++=
+
++
=
x
x
x
xx
xf
( )( ) 0
25
3
lim12lim =
+
=+−
±∞→±∞→ x
xxf
xx
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.5 Asymptotes
Example 5 - Finding Horizontal and Vertical Asymptotes
Find horizontal and vertical asymptotes for the graph
Solution: Testing for horizontal asymptotes,
The line y = −1 is a horizontal asymptote.
( ) 1−== x
exfy
( )
( ) 1101limlim1lim
1lim
−=−=−=−
∞=−
−∞→−∞→−∞→
∞→
x
x
x
x
x
x
x
ee
e
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.5 Asymptotes
Example 7 - Curve Sketching
Sketch the graph of .
Solution:
Intercepts (0, 0) is the only intercept.
Symmetry There is only symmetry about the origin.
Asymptotes Denominator ≠ 0  No vertical asymptote
Since
y = 0 is the only non-vertical asymptote
Max and Min For , relative maximum is (1, 2).
Concavity For , inflection points are
(-√ 3, -√3), (0, 0), (√3, √3).
1
4
2
+
=
x
x
y
0
1
4
lim 2
=
+∞→ x
x
x
( )( )
( )22
1
114
'
+
−+
=
x
xx
y
( )( )
( )32
1
338
''
+
−+
=
x
xxx
y
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.5 Asymptotes
Example 7 - Curve Sketching
Solution: Graph
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.6 Applied Maxima and Minima13.6 Applied Maxima and Minima
Example 1 - Minimizing the Cost of a Fence
• Use absolute maxima and minima to explain the
endpoints of the domain of the function.
A manufacturer plans to fence in a 10,800-ft2
rectangular
storage area adjacent to a building by using the building as
one side of the enclosed area. The fencing parallel to the
building faces a highway and will cost $3 per foot installed,
whereas the fencing for the other two sides costs $2 per foot
installed. Find the amount of each type of fence so that the
total cost of the fence will be a minimum.
What is the minimum cost?
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.6 Applied Maxima and Minima
Example 1 - Minimizing the Cost of a Fence
Solution:
Cost function is
Storage area is
Analyzing the equations,
Thus,
yxCyyxC 43223 +=⇒++=
x
yxy
10800
800,10 =⇒=
( )
x
x
x
xxC
43200
3
10800
43 +=





+=
0since120
43200
30 2
>=
−==
xx
xdx
dC
0,120When
86400
2
2
32
2
>=
=
dx
Cd
x
xdx
Cd
and
Only critical value is
120.
x =120 gives a relative minimum.
( ) 720
120
43200
3120 =+= xC
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.6 Applied Maxima and Minima
Example 3 - Minimizing Average Cost
A manufacturer’s total-cost function is given by
where c is the total cost of producing q units. At what
level of output will average cost per unit be a
minimum? What is this minimum?
( ) 4003
4
2
++== q
q
qcc
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.6 Applied Maxima and Minima
Example 3 - Minimizing Average Cost
Solution:
Average-cost function is
To find critical values, we set
is positive when q = 40, which is the only relative
extremum.
The minimum average cost is
( )
q
q
q
q
q
q
c
qcc
400
3
4
4003
4
2
++=
++
===
0since40
4
1600
0 2
2
>=⇒
−
== qq
q
q
dq
cd
32
2
800
qdq
cd
=
( ) 23
40
400
3
4
40
40 =++=c
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.6 Applied Maxima and Minima
Example 5 - Economic Lot Size
A company annually produces and sells 10,000 units of a
product. Sales are uniformly distributed throughout the
year. The company wishes to determine the number of
units to be manufactured in each production run in order
to minimize total annual setup costs and carrying costs.
The same number of units is produced in each run. This
number is referred to as the economic lot size or
economic order quantity. The production cost of each
unit is $20, and carrying costs (insurance, interest,
storage, etc.) are estimated to be 10% of the value of the
average inventory. Setup costs per production run are
$40. Find the economic lot size.
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.6 Applied Maxima and Minima
Example 5 - Economic Lot Size
Solution:
Let q be the number of units in a production run.
Total of the annual carrying costs and setup is
Setting dC/dq = 0, we get
Since q > 0, there is an absolute minimum at q = 632.5.
Number of production runs = 10,000/632.5 ≈ 15.8
16 lots  Economic size = 625 units
( )
2
2
2
400000400000
1
4000010000
40
2
201.0
q
q
qdq
dC
q
q
q
q
C
−
=−=
+=





+





=
5.632400000
400000
0 2
2
≈=
−
==
q
q
q
dq
dC
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.6 Applied Maxima and Minima
Example 7 - Maximizing the Number of Recipients of
Health-Care Benefits
An article in a sociology journal stated that if a
particular health-care program for the elderly were
initiated, then t years after its start, n thousand elderly
people would receive direct benefits, where
For what value of t does the maximum number
receive benefits?
120326
3
2
3
≤≤+−= ttt
t
n
©2007 Pearson Education Asia
Chapter 13: Curve Sketching
13.6 Applied Maxima and Minima
Example 7 - Maximizing the Number of Recipients of Health-Care Benefits
Solution: Setting dn/dt = 0, we have
Absolute maximum value of n must occur at t = 0, 4,
8, or 12:
Absolute maximum occurs when t = 12.
120326
3
2
3
≤≤+−= ttt
t
n
8or4
32120 2
==
+−==
tt
tt
dt
dn
( ) ( ) ( ) ( ) 9612,
3
128
8,
3
160
4,00 ==== nnnn

Contenu connexe

Tendances

Introductory maths analysis chapter 06 official
Introductory maths analysis   chapter 06 officialIntroductory maths analysis   chapter 06 official
Introductory maths analysis chapter 06 officialEvert Sandye Taasiringan
 
Introductory maths analysis chapter 12 official
Introductory maths analysis   chapter 12 officialIntroductory maths analysis   chapter 12 official
Introductory maths analysis chapter 12 officialEvert Sandye Taasiringan
 
Introductory maths analysis chapter 01 official
Introductory maths analysis   chapter 01 officialIntroductory maths analysis   chapter 01 official
Introductory maths analysis chapter 01 officialEvert Sandye Taasiringan
 
Chapter 15 - Methods and Applications of Integration
Chapter 15 - Methods and Applications of IntegrationChapter 15 - Methods and Applications of Integration
Chapter 15 - Methods and Applications of IntegrationMuhammad Bilal Khairuddin
 
Introductory maths analysis chapter 03 official
Introductory maths analysis   chapter 03 officialIntroductory maths analysis   chapter 03 official
Introductory maths analysis chapter 03 officialEvert Sandye Taasiringan
 
Chapter 4 - Exponential and Logarithmic Functions
Chapter 4 - Exponential and Logarithmic FunctionsChapter 4 - Exponential and Logarithmic Functions
Chapter 4 - Exponential and Logarithmic FunctionsMuhammad Bilal Khairuddin
 
Introductory maths analysis chapter 05 official
Introductory maths analysis   chapter 05 officialIntroductory maths analysis   chapter 05 official
Introductory maths analysis chapter 05 officialEvert Sandye Taasiringan
 
Introductory maths analysis chapter 02 official
Introductory maths analysis   chapter 02 officialIntroductory maths analysis   chapter 02 official
Introductory maths analysis chapter 02 officialEvert Sandye Taasiringan
 
5.3 integration by substitution dfs-102
5.3 integration by substitution dfs-1025.3 integration by substitution dfs-102
5.3 integration by substitution dfs-102Farhana Shaheen
 
Simpson's rule of integration
Simpson's rule of integrationSimpson's rule of integration
Simpson's rule of integrationVARUN KUMAR
 
Lesson30 First Order Difference Equations Handout
Lesson30   First Order Difference Equations HandoutLesson30   First Order Difference Equations Handout
Lesson30 First Order Difference Equations HandoutMatthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
MATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and IntegrationMATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and IntegrationAinul Islam
 
CHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfCHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfmekkimekki5
 
4.1 the chain rule
4.1 the chain rule4.1 the chain rule
4.1 the chain ruleAron Dotson
 

Tendances (20)

Chapter 10 - Limit and Continuity
Chapter 10 - Limit and ContinuityChapter 10 - Limit and Continuity
Chapter 10 - Limit and Continuity
 
Chapter 2 - Functions and Graphs
Chapter 2 - Functions and GraphsChapter 2 - Functions and Graphs
Chapter 2 - Functions and Graphs
 
Introductory maths analysis chapter 06 official
Introductory maths analysis   chapter 06 officialIntroductory maths analysis   chapter 06 official
Introductory maths analysis chapter 06 official
 
Introductory maths analysis chapter 12 official
Introductory maths analysis   chapter 12 officialIntroductory maths analysis   chapter 12 official
Introductory maths analysis chapter 12 official
 
Introductory maths analysis chapter 01 official
Introductory maths analysis   chapter 01 officialIntroductory maths analysis   chapter 01 official
Introductory maths analysis chapter 01 official
 
Chapter 14 - Integration
Chapter 14 - IntegrationChapter 14 - Integration
Chapter 14 - Integration
 
Chapter 15 - Methods and Applications of Integration
Chapter 15 - Methods and Applications of IntegrationChapter 15 - Methods and Applications of Integration
Chapter 15 - Methods and Applications of Integration
 
Introductory maths analysis chapter 03 official
Introductory maths analysis   chapter 03 officialIntroductory maths analysis   chapter 03 official
Introductory maths analysis chapter 03 official
 
Chapter 4 - Exponential and Logarithmic Functions
Chapter 4 - Exponential and Logarithmic FunctionsChapter 4 - Exponential and Logarithmic Functions
Chapter 4 - Exponential and Logarithmic Functions
 
Introductory maths analysis chapter 05 official
Introductory maths analysis   chapter 05 officialIntroductory maths analysis   chapter 05 official
Introductory maths analysis chapter 05 official
 
Introductory maths analysis chapter 02 official
Introductory maths analysis   chapter 02 officialIntroductory maths analysis   chapter 02 official
Introductory maths analysis chapter 02 official
 
5.3 integration by substitution dfs-102
5.3 integration by substitution dfs-1025.3 integration by substitution dfs-102
5.3 integration by substitution dfs-102
 
Chapter 1 - Applications and More Algebra
Chapter 1 - Applications and More AlgebraChapter 1 - Applications and More Algebra
Chapter 1 - Applications and More Algebra
 
Simpson's rule of integration
Simpson's rule of integrationSimpson's rule of integration
Simpson's rule of integration
 
Lesson30 First Order Difference Equations Handout
Lesson30   First Order Difference Equations HandoutLesson30   First Order Difference Equations Handout
Lesson30 First Order Difference Equations Handout
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
MATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and IntegrationMATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and Integration
 
CHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfCHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdf
 
Curve sketching
Curve sketchingCurve sketching
Curve sketching
 
4.1 the chain rule
4.1 the chain rule4.1 the chain rule
4.1 the chain rule
 

Similaire à Chapter 13 - Curve Sketching

Chapter10 limitandcontinuity-151003153921-lva1-app6891
Chapter10 limitandcontinuity-151003153921-lva1-app6891Chapter10 limitandcontinuity-151003153921-lva1-app6891
Chapter10 limitandcontinuity-151003153921-lva1-app6891Cleophas Rwemera
 
Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721Glicerio Gavilan
 
Derivatives in graphing-dfs
Derivatives in graphing-dfsDerivatives in graphing-dfs
Derivatives in graphing-dfsFarhana Shaheen
 
Group No 05, calculus.pptx
Group No 05, calculus.pptxGroup No 05, calculus.pptx
Group No 05, calculus.pptxEmonKundu
 
STA003_WK4_L.pptx
STA003_WK4_L.pptxSTA003_WK4_L.pptx
STA003_WK4_L.pptxMAmir23
 
Chapter11 differentiation-151003160732-lva1-app6891
Chapter11 differentiation-151003160732-lva1-app6891Chapter11 differentiation-151003160732-lva1-app6891
Chapter11 differentiation-151003160732-lva1-app6891Cleophas Rwemera
 
Limit 140929031133-phpapp01
Limit 140929031133-phpapp01Limit 140929031133-phpapp01
Limit 140929031133-phpapp01rakambantah
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivativesindu thakur
 
Lecture 7 quadratic equations
Lecture 7   quadratic equationsLecture 7   quadratic equations
Lecture 7 quadratic equationsnjit-ronbrown
 
Introduction to comp.physics ch 3.pdf
Introduction to comp.physics ch 3.pdfIntroduction to comp.physics ch 3.pdf
Introduction to comp.physics ch 3.pdfJifarRaya
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcupatrickpaz
 

Similaire à Chapter 13 - Curve Sketching (20)

Chapter10 limitandcontinuity-151003153921-lva1-app6891
Chapter10 limitandcontinuity-151003153921-lva1-app6891Chapter10 limitandcontinuity-151003153921-lva1-app6891
Chapter10 limitandcontinuity-151003153921-lva1-app6891
 
Limits and continuity
Limits and continuityLimits and continuity
Limits and continuity
 
Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721
 
AppsDiff3c.pdf
AppsDiff3c.pdfAppsDiff3c.pdf
AppsDiff3c.pdf
 
Derivatives in graphing-dfs
Derivatives in graphing-dfsDerivatives in graphing-dfs
Derivatives in graphing-dfs
 
Group No 05, calculus.pptx
Group No 05, calculus.pptxGroup No 05, calculus.pptx
Group No 05, calculus.pptx
 
Limit and continuity
Limit and continuityLimit and continuity
Limit and continuity
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
 
Lecture co3 math21-1
Lecture co3 math21-1Lecture co3 math21-1
Lecture co3 math21-1
 
R lecture co4_math 21-1
R lecture co4_math 21-1R lecture co4_math 21-1
R lecture co4_math 21-1
 
STA003_WK4_L.pptx
STA003_WK4_L.pptxSTA003_WK4_L.pptx
STA003_WK4_L.pptx
 
Chapter 11 - Differentiation
Chapter 11 - DifferentiationChapter 11 - Differentiation
Chapter 11 - Differentiation
 
Chapter11 differentiation-151003160732-lva1-app6891
Chapter11 differentiation-151003160732-lva1-app6891Chapter11 differentiation-151003160732-lva1-app6891
Chapter11 differentiation-151003160732-lva1-app6891
 
Unit 1.2
Unit 1.2Unit 1.2
Unit 1.2
 
Limit 140929031133-phpapp01
Limit 140929031133-phpapp01Limit 140929031133-phpapp01
Limit 140929031133-phpapp01
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivatives
 
Lecture 7 quadratic equations
Lecture 7   quadratic equationsLecture 7   quadratic equations
Lecture 7 quadratic equations
 
03 optimization
03 optimization03 optimization
03 optimization
 
Introduction to comp.physics ch 3.pdf
Introduction to comp.physics ch 3.pdfIntroduction to comp.physics ch 3.pdf
Introduction to comp.physics ch 3.pdf
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcu
 

Plus de Muhammad Bilal Khairuddin

Plus de Muhammad Bilal Khairuddin (7)

Chapter 17 - Multivariable Calculus
Chapter 17 - Multivariable CalculusChapter 17 - Multivariable Calculus
Chapter 17 - Multivariable Calculus
 
Chapter 16 - Continuous Random Variables
Chapter 16 - Continuous Random VariablesChapter 16 - Continuous Random Variables
Chapter 16 - Continuous Random Variables
 
Chapter 9 - Additional Topics in Probability
Chapter 9 - Additional Topics in ProbabilityChapter 9 - Additional Topics in Probability
Chapter 9 - Additional Topics in Probability
 
Chapter 6 - Matrix Algebra
Chapter 6 - Matrix AlgebraChapter 6 - Matrix Algebra
Chapter 6 - Matrix Algebra
 
Chapter 8 - Introduction to Probability and Statistics
Chapter 8 - Introduction to Probability and StatisticsChapter 8 - Introduction to Probability and Statistics
Chapter 8 - Introduction to Probability and Statistics
 
Chapter 7 - Linear Programming
Chapter 7 - Linear ProgrammingChapter 7 - Linear Programming
Chapter 7 - Linear Programming
 
Chapter 5 - Mathematics of Finance
Chapter 5 - Mathematics of FinanceChapter 5 - Mathematics of Finance
Chapter 5 - Mathematics of Finance
 

Dernier

Powerpoint showing results from tik tok metrics
Powerpoint showing results from tik tok metricsPowerpoint showing results from tik tok metrics
Powerpoint showing results from tik tok metricsCaitlinCummins3
 
Shots fired Budget Presentation.pdf12312
Shots fired Budget Presentation.pdf12312Shots fired Budget Presentation.pdf12312
Shots fired Budget Presentation.pdf12312LR1709MUSIC
 
Hyundai capital 2024 1q Earnings release
Hyundai capital 2024 1q Earnings releaseHyundai capital 2024 1q Earnings release
Hyundai capital 2024 1q Earnings releaseirhcs
 
Toyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & TransformationsToyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & TransformationsStefan Wolpers
 
MEANING AND CHARACTERISTICS OF TAXATION.
MEANING AND CHARACTERISTICS OF TAXATION.MEANING AND CHARACTERISTICS OF TAXATION.
MEANING AND CHARACTERISTICS OF TAXATION.abejeblooda
 
Inside the Black Box of Venture Capital (VC)
Inside the Black Box of Venture Capital (VC)Inside the Black Box of Venture Capital (VC)
Inside the Black Box of Venture Capital (VC)Alejandro Cremades
 
Pitch Deck Teardown: Goodcarbon's $5.5m Seed deck
Pitch Deck Teardown: Goodcarbon's $5.5m Seed deckPitch Deck Teardown: Goodcarbon's $5.5m Seed deck
Pitch Deck Teardown: Goodcarbon's $5.5m Seed deckHajeJanKamps
 
A BUSINESS PROPOSAL FOR SLAUGHTER HOUSE WASTE MANAGEMENT IN MYSORE MUNICIPAL ...
A BUSINESS PROPOSAL FOR SLAUGHTER HOUSE WASTE MANAGEMENT IN MYSORE MUNICIPAL ...A BUSINESS PROPOSAL FOR SLAUGHTER HOUSE WASTE MANAGEMENT IN MYSORE MUNICIPAL ...
A BUSINESS PROPOSAL FOR SLAUGHTER HOUSE WASTE MANAGEMENT IN MYSORE MUNICIPAL ...prakheeshc
 
Stages of Startup Funding - An Explainer
Stages of Startup Funding - An ExplainerStages of Startup Funding - An Explainer
Stages of Startup Funding - An ExplainerAlejandro Cremades
 
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportFuture of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportDubai Multi Commodity Centre
 
Series A Fundraising Guide (Investing Individuals Improving Our World) by Accion
Series A Fundraising Guide (Investing Individuals Improving Our World) by AccionSeries A Fundraising Guide (Investing Individuals Improving Our World) by Accion
Series A Fundraising Guide (Investing Individuals Improving Our World) by AccionAlejandro Cremades
 
Raising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE VenturesRaising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE VenturesAlejandro Cremades
 
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg PfizerJual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg PfizerPusat Herbal Resmi BPOM
 
Presentation4 (2) survey responses clearly labelled
Presentation4 (2) survey responses clearly labelledPresentation4 (2) survey responses clearly labelled
Presentation4 (2) survey responses clearly labelledCaitlinCummins3
 
1Q24_EN hyundai capital 1q performance
1Q24_EN   hyundai capital 1q performance1Q24_EN   hyundai capital 1q performance
1Q24_EN hyundai capital 1q performanceirhcs
 
Top^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In Harare
Top^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In HarareTop^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In Harare
Top^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In Hararedoctorjoe1984
 
Elevate Your Online Presence with SEO Services
Elevate Your Online Presence with SEO ServicesElevate Your Online Presence with SEO Services
Elevate Your Online Presence with SEO ServicesHaseebBashir5
 
hyundai capital 2023 consolidated financial statements
hyundai capital 2023 consolidated financial statementshyundai capital 2023 consolidated financial statements
hyundai capital 2023 consolidated financial statementsirhcs
 
00971508021841 حبوب الإجهاض في دبي | أبوظبي | الشارقة | السطوة |❇ ❈ ((![© ر
00971508021841 حبوب الإجهاض في دبي | أبوظبي | الشارقة | السطوة |❇ ❈ ((![©  ر00971508021841 حبوب الإجهاض في دبي | أبوظبي | الشارقة | السطوة |❇ ❈ ((![©  ر
00971508021841 حبوب الإجهاض في دبي | أبوظبي | الشارقة | السطوة |❇ ❈ ((![© رnafizanafzal
 

Dernier (20)

Powerpoint showing results from tik tok metrics
Powerpoint showing results from tik tok metricsPowerpoint showing results from tik tok metrics
Powerpoint showing results from tik tok metrics
 
Shots fired Budget Presentation.pdf12312
Shots fired Budget Presentation.pdf12312Shots fired Budget Presentation.pdf12312
Shots fired Budget Presentation.pdf12312
 
Hyundai capital 2024 1q Earnings release
Hyundai capital 2024 1q Earnings releaseHyundai capital 2024 1q Earnings release
Hyundai capital 2024 1q Earnings release
 
Toyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & TransformationsToyota Kata Coaching for Agile Teams & Transformations
Toyota Kata Coaching for Agile Teams & Transformations
 
MEANING AND CHARACTERISTICS OF TAXATION.
MEANING AND CHARACTERISTICS OF TAXATION.MEANING AND CHARACTERISTICS OF TAXATION.
MEANING AND CHARACTERISTICS OF TAXATION.
 
Inside the Black Box of Venture Capital (VC)
Inside the Black Box of Venture Capital (VC)Inside the Black Box of Venture Capital (VC)
Inside the Black Box of Venture Capital (VC)
 
Pitch Deck Teardown: Goodcarbon's $5.5m Seed deck
Pitch Deck Teardown: Goodcarbon's $5.5m Seed deckPitch Deck Teardown: Goodcarbon's $5.5m Seed deck
Pitch Deck Teardown: Goodcarbon's $5.5m Seed deck
 
A BUSINESS PROPOSAL FOR SLAUGHTER HOUSE WASTE MANAGEMENT IN MYSORE MUNICIPAL ...
A BUSINESS PROPOSAL FOR SLAUGHTER HOUSE WASTE MANAGEMENT IN MYSORE MUNICIPAL ...A BUSINESS PROPOSAL FOR SLAUGHTER HOUSE WASTE MANAGEMENT IN MYSORE MUNICIPAL ...
A BUSINESS PROPOSAL FOR SLAUGHTER HOUSE WASTE MANAGEMENT IN MYSORE MUNICIPAL ...
 
Stages of Startup Funding - An Explainer
Stages of Startup Funding - An ExplainerStages of Startup Funding - An Explainer
Stages of Startup Funding - An Explainer
 
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot ReportFuture of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
Future of Trade 2024 - Decoupled and Reconfigured - Snapshot Report
 
Series A Fundraising Guide (Investing Individuals Improving Our World) by Accion
Series A Fundraising Guide (Investing Individuals Improving Our World) by AccionSeries A Fundraising Guide (Investing Individuals Improving Our World) by Accion
Series A Fundraising Guide (Investing Individuals Improving Our World) by Accion
 
Raising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE VenturesRaising Seed Capital by Steve Schlafman at RRE Ventures
Raising Seed Capital by Steve Schlafman at RRE Ventures
 
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg PfizerJual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
Jual Obat Aborsi Di Sibolga wa 0851/7541/5434 Cytotec Misoprostol 200mcg Pfizer
 
Presentation4 (2) survey responses clearly labelled
Presentation4 (2) survey responses clearly labelledPresentation4 (2) survey responses clearly labelled
Presentation4 (2) survey responses clearly labelled
 
1Q24_EN hyundai capital 1q performance
1Q24_EN   hyundai capital 1q performance1Q24_EN   hyundai capital 1q performance
1Q24_EN hyundai capital 1q performance
 
Top^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In Harare
Top^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In HarareTop^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In Harare
Top^Clinic ^%[+27785538335__Safe*Women's clinic//Abortion Pills In Harare
 
Elevate Your Online Presence with SEO Services
Elevate Your Online Presence with SEO ServicesElevate Your Online Presence with SEO Services
Elevate Your Online Presence with SEO Services
 
hyundai capital 2023 consolidated financial statements
hyundai capital 2023 consolidated financial statementshyundai capital 2023 consolidated financial statements
hyundai capital 2023 consolidated financial statements
 
00971508021841 حبوب الإجهاض في دبي | أبوظبي | الشارقة | السطوة |❇ ❈ ((![© ر
00971508021841 حبوب الإجهاض في دبي | أبوظبي | الشارقة | السطوة |❇ ❈ ((![©  ر00971508021841 حبوب الإجهاض في دبي | أبوظبي | الشارقة | السطوة |❇ ❈ ((![©  ر
00971508021841 حبوب الإجهاض في دبي | أبوظبي | الشارقة | السطوة |❇ ❈ ((![© ر
 
Obat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di Pasuruan
Obat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di PasuruanObat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di Pasuruan
Obat Aborsi Pasuruan 0851\7696\3835 Jual Obat Cytotec Di Pasuruan
 

Chapter 13 - Curve Sketching

  • 1. INTRODUCTORY MATHEMATICALINTRODUCTORY MATHEMATICAL ANALYSISANALYSISFor Business, Economics, and the Life and Social Sciences ©2007 Pearson Education Asia Chapter 13Chapter 13 Curve SketchingCurve Sketching
  • 2. ©2007 Pearson Education Asia INTRODUCTORY MATHEMATICAL ANALYSIS 0. Review of Algebra 1. Applications and More Algebra 2. Functions and Graphs 3. Lines, Parabolas, and Systems 4. Exponential and Logarithmic Functions 5. Mathematics of Finance 6. Matrix Algebra 7. Linear Programming 8. Introduction to Probability and Statistics
  • 3. ©2007 Pearson Education Asia 9. Additional Topics in Probability 10. Limits and Continuity 11. Differentiation 12. Additional Differentiation Topics 13. Curve Sketching 14. Integration 15. Methods and Applications of Integration 16. Continuous Random Variables 17. Multivariable Calculus INTRODUCTORY MATHEMATICAL ANALYSIS
  • 4. ©2007 Pearson Education Asia • To find critical values, to locate relative maxima and relative minima of a curve. • To find extreme values on a closed interval. • To test a function for concavity and inflection points. • To locate relative extrema by applying the second-derivative test. • To sketch the graphs of functions having asymptotes. • To model situations involving maximizing or minimizing a quantity. Chapter 13: Curve Sketching Chapter ObjectivesChapter Objectives
  • 5. ©2007 Pearson Education Asia Relative Extrema Absolute Extrema on a Closed Interval Concavity The Second-Derivative Test Asymptotes Applied Maxima and Minima 13.1) 13.2) 13.3) Chapter 13: Curve Sketching Chapter OutlineChapter Outline 13.4) 13.5) 13.6)
  • 6. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.1 Relative Extrema13.1 Relative Extrema Increasing or Decreasing Nature of a Function • Increasing f(x) if x1 < x2 and f(x1) < f(x2). • Decreasing f(x) if x1 < x2 and f(x1) > f(x2).
  • 7. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.1 Relative Extrema Extrema
  • 8. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.1 Relative Extrema RULE 1 - Criteria for Increasing or Decreasing Function • f is increasing on (a, b) when f’(x) > 0 • f is decreasing on (a, b) when f’(x) < 0 RULE 2 - A Necessary Condition for Relative Extrema ( ) ( )     = ⇒    existnotdoes' or 0' at extremumrelative af af a implies
  • 9. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.1 Relative Extrema RULE 3 - Criteria for Relative Extrema 1. If f’(x) changes from +ve to –ve, then f has a relative maximum at a. 2. If f’(x) changes from -ve to +ve, then f has a relative minimum at a.
  • 10. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.1 Relative Extrema First-Derivative Test for Relative Extrema 1. Find f’(x). 2. Determine all critical values of f. 3. For each critical value a at which f is continuous, determine whether f’(x) changes sign as x increases through a. 4. For critical values a at which f is not continuous, analyze the situation by using the definitions of extrema directly.
  • 11. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.1 Relative Extrema Example 1 - First-Derivative Test If , use the first-derivative test to find where relative extrema occur. Solution: STEP 1 - STEP 2 - Setting f’(x) = 0 gives x = −3, 1. STEP 3 - Conclude that at−3, there is a relative maximum. STEP 4 – There are no critical values at which f is not ( ) 1for 1 4 ≠ + +== x x xxfy ( ) ( ) ( )( ) ( ) 1for 1 13 1 32 ' 22 2 −≠ + −+ = + −+ = x x xx x xx xf
  • 12. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.1 Relative Extrema Example 3 - Finding Relative Extrema Test for relative extrema. Solution: By product rule, Relative maximum when x = −2 Relative minimum when x = 0. ( ) x exxfy 2 == ( ) ( )2' += xxexf x
  • 13. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.2 Absolute Extrema on a Closed Interval13.2 Absolute Extrema on a Closed Interval Extreme-Value Theorem • If a function is continuous on a closed interval, then the function has a maximum value and a minimum value on that interval.
  • 14. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.2 Absolute Extrema on a Closed Interval Procedure to Find Absolute Extrema for a Function f That Is Continuous on [a, b] 1. Find the critical values of f . 2. Evaluate f(x) at the endpoints a and b and at the critical values in (a, b). 3. The maximum value of f is the greatest value found in step 2. The minimum value is the least value found in step 2.
  • 15. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.2 Absolute Extrema on a Closed Interval Example 1 - Finding Extreme Values on a Closed Interval Find absolute extrema for over the closed interval [1, 4]. Solution: Step 1: Step 2: Step 3: ( ) 542 +−= xxxf ( ) ( )2242' −=−= xxxxf ( ) ( ) endpointsatofvalues54 21 ff f = = ( ) ( )41,in2valuecriticalatofvalues12 ff = ( ) ( ) 12isminand54ismax == ff
  • 16. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.3 Concavity13.3 Concavity • Cases where curves concave upward: • Cases where curves concave downward:
  • 17. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.3 Concavity • f is said to be concave up on (a, b) if f is increasing on (a, b). • f is said to be concave down on (a, b) if f is decreasing on (a, b). • f has an inflection point at a if it is continuous at a and f changes concavity at a. Criteria for Concavity • If f’’(x) > 0, f is concave up on (a, b). • If f”(x) < 0, f is concave down on (a, b).
  • 18. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.3 Concavity Example 1 - Testing for Concavity Determine where the given function is concave up and where it is concave down. Solution: Applying the rule, Concave up when 6(x − 1) > 0 as x > 1. Concave down when 6(x − 1) < 0 as x < 1. ( ) ( ) 11a. 3 +−== xxfy ( ) ( )16'' 13' 2 −= −= xy xy
  • 19. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.3 Concavity Example 1 - Testing for Concavity Solution: Applying the rule, As y’’ is always positive, y = x2 is always concave up. 2 b. xy = 2'' 2' = = y xy
  • 20. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.3 Concavity Example 3 - A Change in Concavity with No Inflection Point Discuss concavity and find all inflection points for f(x) = 1/x. Solution: x > 0 f”(x) > 0 and x < 0  f”(x) < 0. f is concave up on (0,∞) and concave down on (−∞, 0) f is not continuous at 0  no inflection point ( ) ( ) 0for2'' 0for' 3 2 ≠= ≠−= − − xxxf xxxf
  • 21. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.4 The Second-Derivative Test13.4 The Second-Derivative Test • The test is used to test certain critical values for relative extrema. Suppose f’(a) = 0. • If f’’(a) < 0, then f has a relative maximum at a. • If f’’(a) > 0, then f has a relative minimum at a.
  • 22. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.4 The Second-Derivative Test Example 1 - Second-Derivative Test Test the following for relative maxima and minima. Use the second-derivative test, if possible. Solution: Relative minimum when x = −3. 3 3 2 18. xxya −= ( )( ) xy xxy 4'' 332' −= −+= 3havewe,0'When ±== xy ( ) ( ) 01234'',3When 01234'',3When >=−−=−= <−=−=+= yx yx
  • 23. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.4 The Second-Derivative Test Example 1 - Second-Derivative Test Solution: No maximum or minimum exists when x = 0. 186. 34 +−= xxyb ( ) xxy xxxxy 4872'' 1242424' 2 223 −= −=−= 1,0havewe,0'When == xy 0'',1When 0'',0When >= == yx yx
  • 24. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.5 Asymptotes13.5 Asymptotes Vertical Asymptotes • The line x = a is a vertical asymptote if at least one of the following is true: Vertical-Asymptote Rule for Rational Functions • P and Q are polynomial functions and the quotient is in lowest terms. ( ) ( ) ±∞= ±∞= − + → → xf xf ax ax lim lim ( ) ( ) ( )xQ xP xf =
  • 25. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.5 Asymptotes Example 1 - Finding Vertical Asymptotes Determine vertical asymptotes for the graph of Solution: Since f is a rational function, Denominator is 0 when x is 3 or 1. The lines x = 3 and x = 1 are vertical asymptotes. ( ) 34 4 2 2 +− − = xx xx xf ( ) ( )( )13 42 −− − = xx xx xf
  • 26. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.5 Asymptotes Horizontal and Oblique Asymptotes • The line y = b is a horizontal asymptote if at least one of the following is true: Nonvertical asymptote • The line y = mx +b is a nonvertical asymptote if at least one of the following is true: ( ) ( ) bxfbxf xx == −∞→∞→ limorlim ( ) ( )( ) ( ) ( )( ) 0limor0lim =+−=+− −∞→∞→ bmxxfbmxxf xx
  • 27. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.5 Asymptotes Example 3 - Finding an Oblique Asymptote Find the oblique asymptote for the graph of the rational function Solution: y = 2x + 1 is an oblique asymptote. ( ) 25 5910 2 + ++ == x xx xfy ( ) 25 3 12 25 5910 2 + ++= + ++ = x x x xx xf ( )( ) 0 25 3 lim12lim = + =+− ±∞→±∞→ x xxf xx
  • 28. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.5 Asymptotes Example 5 - Finding Horizontal and Vertical Asymptotes Find horizontal and vertical asymptotes for the graph Solution: Testing for horizontal asymptotes, The line y = −1 is a horizontal asymptote. ( ) 1−== x exfy ( ) ( ) 1101limlim1lim 1lim −=−=−=− ∞=− −∞→−∞→−∞→ ∞→ x x x x x x x ee e
  • 29. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.5 Asymptotes Example 7 - Curve Sketching Sketch the graph of . Solution: Intercepts (0, 0) is the only intercept. Symmetry There is only symmetry about the origin. Asymptotes Denominator ≠ 0  No vertical asymptote Since y = 0 is the only non-vertical asymptote Max and Min For , relative maximum is (1, 2). Concavity For , inflection points are (-√ 3, -√3), (0, 0), (√3, √3). 1 4 2 + = x x y 0 1 4 lim 2 = +∞→ x x x ( )( ) ( )22 1 114 ' + −+ = x xx y ( )( ) ( )32 1 338 '' + −+ = x xxx y
  • 30. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.5 Asymptotes Example 7 - Curve Sketching Solution: Graph
  • 31. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.6 Applied Maxima and Minima13.6 Applied Maxima and Minima Example 1 - Minimizing the Cost of a Fence • Use absolute maxima and minima to explain the endpoints of the domain of the function. A manufacturer plans to fence in a 10,800-ft2 rectangular storage area adjacent to a building by using the building as one side of the enclosed area. The fencing parallel to the building faces a highway and will cost $3 per foot installed, whereas the fencing for the other two sides costs $2 per foot installed. Find the amount of each type of fence so that the total cost of the fence will be a minimum. What is the minimum cost?
  • 32. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.6 Applied Maxima and Minima Example 1 - Minimizing the Cost of a Fence Solution: Cost function is Storage area is Analyzing the equations, Thus, yxCyyxC 43223 +=⇒++= x yxy 10800 800,10 =⇒= ( ) x x x xxC 43200 3 10800 43 +=      += 0since120 43200 30 2 >= −== xx xdx dC 0,120When 86400 2 2 32 2 >= = dx Cd x xdx Cd and Only critical value is 120. x =120 gives a relative minimum. ( ) 720 120 43200 3120 =+= xC
  • 33. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.6 Applied Maxima and Minima Example 3 - Minimizing Average Cost A manufacturer’s total-cost function is given by where c is the total cost of producing q units. At what level of output will average cost per unit be a minimum? What is this minimum? ( ) 4003 4 2 ++== q q qcc
  • 34. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.6 Applied Maxima and Minima Example 3 - Minimizing Average Cost Solution: Average-cost function is To find critical values, we set is positive when q = 40, which is the only relative extremum. The minimum average cost is ( ) q q q q q q c qcc 400 3 4 4003 4 2 ++= ++ === 0since40 4 1600 0 2 2 >=⇒ − == qq q q dq cd 32 2 800 qdq cd = ( ) 23 40 400 3 4 40 40 =++=c
  • 35. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.6 Applied Maxima and Minima Example 5 - Economic Lot Size A company annually produces and sells 10,000 units of a product. Sales are uniformly distributed throughout the year. The company wishes to determine the number of units to be manufactured in each production run in order to minimize total annual setup costs and carrying costs. The same number of units is produced in each run. This number is referred to as the economic lot size or economic order quantity. The production cost of each unit is $20, and carrying costs (insurance, interest, storage, etc.) are estimated to be 10% of the value of the average inventory. Setup costs per production run are $40. Find the economic lot size.
  • 36. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.6 Applied Maxima and Minima Example 5 - Economic Lot Size Solution: Let q be the number of units in a production run. Total of the annual carrying costs and setup is Setting dC/dq = 0, we get Since q > 0, there is an absolute minimum at q = 632.5. Number of production runs = 10,000/632.5 ≈ 15.8 16 lots  Economic size = 625 units ( ) 2 2 2 400000400000 1 4000010000 40 2 201.0 q q qdq dC q q q q C − =−= +=      +      = 5.632400000 400000 0 2 2 ≈= − == q q q dq dC
  • 37. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.6 Applied Maxima and Minima Example 7 - Maximizing the Number of Recipients of Health-Care Benefits An article in a sociology journal stated that if a particular health-care program for the elderly were initiated, then t years after its start, n thousand elderly people would receive direct benefits, where For what value of t does the maximum number receive benefits? 120326 3 2 3 ≤≤+−= ttt t n
  • 38. ©2007 Pearson Education Asia Chapter 13: Curve Sketching 13.6 Applied Maxima and Minima Example 7 - Maximizing the Number of Recipients of Health-Care Benefits Solution: Setting dn/dt = 0, we have Absolute maximum value of n must occur at t = 0, 4, 8, or 12: Absolute maximum occurs when t = 12. 120326 3 2 3 ≤≤+−= ttt t n 8or4 32120 2 == +−== tt tt dt dn ( ) ( ) ( ) ( ) 9612, 3 128 8, 3 160 4,00 ==== nnnn