SlideShare une entreprise Scribd logo
1  sur  37
Implementing a Simple Corrosion Test Method for Early Detection of “Black Pad” Phenomenon In ENIG Plating BabHui Lee 11th Dec 2003 HKPCA-IPC Conference
Introduction ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],What’s “Black Pad”?
Introduction What’s “Black Pad”? On bare board level… Electroless nickel pad surface appears “black” after stripping off immersion gold layer under visual inspection
Introduction What’s “Black Pad”? On bare board level… Electroless nickel pad surface exhibiting “mud-crack” signature after stripping off immersion gold layer under SEM, top scan (6,000X)
Introduction What’s “Black Pad”? On assembly level… Brittle solder joint showing separation  Pin lifted from SMT pad Solder joint failure Solder joint failure
Introduction What’s “Black Pad”? On assembly level… Pin side (SEM 6,000X)   Pad side (SEM 6,000X) Nickel-like nodular interfaces with “mud cracks” are exposed
Introduction What’s “Black Pad”? Cross-Section/SEM Large regions of severe black pad with spikes protruding into nickel layer
Introduction Upon solder reflow, interconnects are wetted and solder joints appear in normal form What’s “Black Pad”? Cross-Section/SEM
Introduction Failure occurs after reflow, resulting in open joints What’s “Black Pad”? Cross-Section/SEM
Introduction After assembly,  esp. on BGA…
Introduction ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],What causes “Black Pad”?
Introduction The Ni layer is more susceptible to corrosion if •  It is thin, < 120 µ” •  P < 6 wt % •  High level of micro- structure defects  such as    nodule    layer    grain boundaries What causes “Black Pad”?
Background ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Constraints on current common “Black Pad” detecting methods:
Objective To devise & implement an optimum acid corrosion test methodology for early detection of “black pad” phenomenon prevalent in the PCB industry pertaining to the use of ENIG. The preferred method should have the following characteristics: ,[object Object],[object Object],[object Object],[object Object]
Test Methodology ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],20 ml 40 ml 60 ml 80 ml 100 ml 2.0 cm 6.0 cm 2.0 cm
Test Results – MTO vs. HNO 3  Time From the box plots, there is a clear influence of Ni MTO on the time to fail (ie. for the nickel strip sample to turn “black”), esp. at 5 MTO – this is affirmed with one-way ANOVA analysis with Tukey’s pairwise comparisons. 25 34 33 25 32 33 24 35 34 22 35 36 24 32 26 22 41 44 25 33 33 23 33 28 24 36 37 27 33 32 25 32 37 23 25 43 24 28 36 28 34 35 27 30 44 23 33 31 24 27 38 27 25 39 5.0 MTO 2.5 MTO 0 MTO
Statistically, 5 MTO samples have lower mean time to failure than 0 & 2.5 MTOs (around 10 sec less). The general trend is that the acid corrosion resistance of the as-plated EN surface reduces as Ni MTO rises. Repeatability is also better at 5 MTO from the obvious lower standard deviation attained. This may be attributed to a more steady state reached towards the end of the useful electroless nickel bath life (just an attempted theorized explanation). One-way ANOVA: Time (sec) versus Ni MTO Analysis of Variance for Time (sec) Source  DF  SS  MS  F  P Ni MTO  2  1130.1  565.1  38.59  0.000 Error  51  746.7  14.6 Total  53  1876.8 Individual 95% CIs For Mean Based on Pooled StDev Level  N  Mean  StDev  ----+---------+---------+-------- 0 MTO  18  35.500  4.997  (----*---)  2.5 MTO  18  32.111  3.984  (---*----)  5 MTO  18  24.556   1.756   (---*----)  ----+---------+---------+---------+---------+ Pooled StDev =  3.826  24.0  28.0  32.0  36.0 Test Results – MTO vs. HNO 3  Time
Test Results – Reliability Plots As expected, 5 MTO has the most hazardous function, and all 5 MTO samples are expected to fail within 30 sec.
More than 90% of the samples (across the full Ni MTO range) should be able to survive the 40% nitric acid test for at least 20 sec. Test Results – Reliability Plots
SEM Scan/EDX Analysis (%P) For each Ni MTO (0, 2.5 & 5) and at an interval of 5 sec (up to 30 sec) of 40% nitric acid dip test, the following were obtained: These shall be used (in parallel with the predicted reliability data) as a basis for the acceptance level of the degree of nickel corrosion subjected to nitric acid test, and as a quick indication of the corrosion resistance of the as-plated electroless nickel surface under normal production conditions. ,[object Object],[object Object]
SEM/EDX – As Is (Before Test) 0 MTO, 9.41%P 2.5 MTO, 7.81%P 5 MTO, 9.46%P Clean nickel surfaces
SEM/EDX – 5 sec HNO 3  Dip 0 MTO, 8.79%P 2.5 MTO, 9.16%P 5 MTO, 8.37%P Clean nickel surfaces
SEM/EDX – 10 sec HNO 3  Dip 0 MTO, 7.82%P 2.5 MTO, 9.66%P 5 MTO, 8.05%P Signs of minor attack at 5 MTO
SEM/EDX – 15 sec HNO 3  Dip 0 MTO, 8.46%P 2.5 MTO, 9.81%P 5 MTO, 10.42%P Signs of slight attack at 5 MTO
SEM/EDX – 20 sec HNO 3  Dip 0 MTO, 7.87%P 2.5 MTO, 9.36%P 5 MTO, 10.36%P Signs of some attack at 5 MTO
SEM/EDX – 25 sec HNO 3  Dip 0 MTO, 8.28%P 2.5 MTO, 10.64%P 5 MTO, 8.59%P Signs of heavier attack at 5 MTO
SEM/EDX – 30 sec HNO 3  Dip 0 MTO, 10.38%P 2.5 MTO, 11.94%P 5 MTO, 10.20%P Signs of heavier attack at 5 MTO
Test Results - %P vs. MTO, HNO 3 Statistically, the Ni MTOs & nitric acid dip time do not seem to affect %P content significantly in the Ni deposits within the ranges under test. However, caution should be exercised as residual analysis only indicates some reasonable fit. General Linear Model: %P versus Ni MTO, HNO 3  Time Factor  Type Levels Values  Ni MTO  fixed  3 0.0 2.5 5.0 HNO3 Tim  fixed  7  0  5 10 15 20 25 30 Analysis of Variance for %P, using Adjusted SS for Tests Source  DF  Seq SS  Adj SS  Adj MS  F  P Ni MTO  2  3.9341  3.9341  1.9670  2.26  0.146 HNO3 Time  6  10.5961  10.5961  1.7660  2.03  0.139 Error  12  10.4230  10.4230  0.8686 Total  20  24.9531
Nonetheless, from the main effects & interaction plots, it’s discernible that prolonged nitric acid at 30 sec tends to induce phosphorus enrichment at the attacked nickel surface (which is not difficult to predict by intuition) – this is especially pronounced at 2.5 Ni MTO. Test Results - %P vs. MTO, HNO 3
Test Results - %P vs. MTO, HNO 3
Test Results - %P vs. MTO, HNO 3
Conclusion & Summary ,[object Object],[object Object],[object Object]
Recommendation From the standpoint of reliability performance, a minimum nitric acid (40% v/v) withstanding timing of 20 sec can be stipulated based on the highest Ni MTO at 5 (the normal useful life of the electroless nickel bath), and the acceptable nickel surface topography (degree of corrosion) & %P content after 20 sec exposure to the nitric acid attack.  This will depict an average failure rate probability of at most 3% (from the reliability probability plot for the worst case scenario, ie. at 5 Ni MTO). Sample size determination, frequency of test and the acceptance judgement are proposed on the following slides.
Power and Sample Size One-way ANOVA Sigma = 3.826  Alpha = 0.05  Number of Levels = 3 Sample  Target  Actual  Maximum SS Means  Size  Power  Power  Difference 12.5  13  0.8000  0.8235  5 12.5  14  0.8500  0.8545  5 12.5  16  0.9000  0.9027  5 18.0  9  0.8000  0.8046  6 18.0  10  0.8500  0.8519  6 18.0  12  0.9000  0.9175  6 24.5  7  0.8000  0.8101  7 24.5  8  0.8500  0.8704  7 24.5  9  0.9000  0.9133  7 32.0  6  0.8000  0.8407  8 32.0  7  0.8500  0.9051  8 32.0  7  0.9000  0.9051  8 40.5  5  0.8000  0.8403  9 40.5  6  0.8500  0.9178  9 40.5  6  0.9000  0.9178  9 50.0  5  0.8000  0.9103  10 50.0  5  0.8500  0.9103  10 50.0  5  0.9000  0.9103  10 Sample Size Determination A test of power was conducted based on the original test results, and it’s gathered that a sample size of 10 should suffice for a power target of 85% with detectability of maximum difference of 6 sec (which makes practical sense too, considering the variation within the samples). Hence it’s recommended that the sample size to be consisted of   10  freshly prepared Ni strips per test (in accordance to the test methodology as outlined in the beginning).
Frequency of Test A test frequency is proposed at  once/week  for a start – this also serves to supplement the current SEM/EDX analyses that have been put in place on a monthly basis. Based on the past historical data collected over a prolonged period of time, our current tight process control on ENIG bath does not warrant a more stringent & frequent check of this additional control item to be implemented soon. As the sample is easy to prepare, and the test itself is quick and simple, once/week test frequency will not incur too much burden on the current workload. It’s also suggested that Chem Lab shall schedule & conduct this test weekly. Of course, for troubleshooting purpose, whenever there is doubt cast on poor Ni bath performance or suspected “black pad” issue, this test should be carried out immediately.
Acceptance Criteria As mentioned earlier, a minimum of 20 sec nitric acid resistance time is proposed based on the test results and the associated reliability probability plots. The nitric acid resistance time is defined as the time taken for the nickel strip sample exposed to the 40% nitric acid to turn “black” completely under the stipulated test conditions. For a sample size of 10, the acceptance judgement is based on the fact that the  min. average acid resistance of the 10 samples shall exceed 20 sec, with at most  one  strip below 20 sec , correlating to a failure rate of 10% over the full range of the nickel bath conditions over its useful bath life – we can also infer from the probability plots that more than 90% of the samples (across the full Ni MTO range) should be able to survive the 40% nitric acid test for at least 20 sec.
Acknowledgement ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Contenu connexe

Tendances

Guide RAGE Systemes Photovoltaiques pour toitures inclinees 2013-03
Guide RAGE Systemes Photovoltaiques pour toitures inclinees 2013-03Guide RAGE Systemes Photovoltaiques pour toitures inclinees 2013-03
Guide RAGE Systemes Photovoltaiques pour toitures inclinees 2013-03Build Green
 
Nf en-10025
Nf en-10025Nf en-10025
Nf en-10025siheme
 
engineering - fracture mechanics
engineering - fracture mechanicsengineering - fracture mechanics
engineering - fracture mechanicsAbbas Ameri
 
Test Plan Development using Physics of Failure: The DfR Solutions Approach
Test Plan Development using Physics of Failure: The DfR Solutions ApproachTest Plan Development using Physics of Failure: The DfR Solutions Approach
Test Plan Development using Physics of Failure: The DfR Solutions ApproachCheryl Tulkoff
 
Abaqusfracture mechanics
Abaqusfracture mechanicsAbaqusfracture mechanics
Abaqusfracture mechanicsimransuces
 
12 fatigue of metals
12 fatigue of metals12 fatigue of metals
12 fatigue of metalsRajeev Ranjan
 
DEFLECTION AND STRESS ANALYSIS OF A BEAM ON DIFFERENT ELEMENTS USING ANSYS APDL
DEFLECTION AND STRESS ANALYSIS OF A BEAM ON DIFFERENT ELEMENTS USING ANSYS APDL DEFLECTION AND STRESS ANALYSIS OF A BEAM ON DIFFERENT ELEMENTS USING ANSYS APDL
DEFLECTION AND STRESS ANALYSIS OF A BEAM ON DIFFERENT ELEMENTS USING ANSYS APDL IAEME Publication
 
Komatsu hm400 3 articulated dump truck parts catalogue manual - sn3001 and up
Komatsu hm400 3 articulated dump truck parts catalogue manual - sn3001 and upKomatsu hm400 3 articulated dump truck parts catalogue manual - sn3001 and up
Komatsu hm400 3 articulated dump truck parts catalogue manual - sn3001 and upfjjskekmsemm
 
Trinca induzida pelo hidrogenio seminario
Trinca induzida pelo hidrogenio seminarioTrinca induzida pelo hidrogenio seminario
Trinca induzida pelo hidrogenio seminarioRony De Santana Silva
 

Tendances (16)

Guide RAGE Systemes Photovoltaiques pour toitures inclinees 2013-03
Guide RAGE Systemes Photovoltaiques pour toitures inclinees 2013-03Guide RAGE Systemes Photovoltaiques pour toitures inclinees 2013-03
Guide RAGE Systemes Photovoltaiques pour toitures inclinees 2013-03
 
Fracture Mechanics & Failure Analysis Lecture 1
Fracture Mechanics & Failure Analysis Lecture 1Fracture Mechanics & Failure Analysis Lecture 1
Fracture Mechanics & Failure Analysis Lecture 1
 
Nf en-10025
Nf en-10025Nf en-10025
Nf en-10025
 
engineering - fracture mechanics
engineering - fracture mechanicsengineering - fracture mechanics
engineering - fracture mechanics
 
Fatiga
FatigaFatiga
Fatiga
 
Test Plan Development using Physics of Failure: The DfR Solutions Approach
Test Plan Development using Physics of Failure: The DfR Solutions ApproachTest Plan Development using Physics of Failure: The DfR Solutions Approach
Test Plan Development using Physics of Failure: The DfR Solutions Approach
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Abaqusfracture mechanics
Abaqusfracture mechanicsAbaqusfracture mechanics
Abaqusfracture mechanics
 
Ch 8 slides_m
Ch 8 slides_mCh 8 slides_m
Ch 8 slides_m
 
4.hafta.ppt
4.hafta.ppt4.hafta.ppt
4.hafta.ppt
 
12 fatigue of metals
12 fatigue of metals12 fatigue of metals
12 fatigue of metals
 
DEFLECTION AND STRESS ANALYSIS OF A BEAM ON DIFFERENT ELEMENTS USING ANSYS APDL
DEFLECTION AND STRESS ANALYSIS OF A BEAM ON DIFFERENT ELEMENTS USING ANSYS APDL DEFLECTION AND STRESS ANALYSIS OF A BEAM ON DIFFERENT ELEMENTS USING ANSYS APDL
DEFLECTION AND STRESS ANALYSIS OF A BEAM ON DIFFERENT ELEMENTS USING ANSYS APDL
 
Komatsu hm400 3 articulated dump truck parts catalogue manual - sn3001 and up
Komatsu hm400 3 articulated dump truck parts catalogue manual - sn3001 and upKomatsu hm400 3 articulated dump truck parts catalogue manual - sn3001 and up
Komatsu hm400 3 articulated dump truck parts catalogue manual - sn3001 and up
 
Trinca induzida pelo hidrogenio seminario
Trinca induzida pelo hidrogenio seminarioTrinca induzida pelo hidrogenio seminario
Trinca induzida pelo hidrogenio seminario
 
Double yield point
Double yield pointDouble yield point
Double yield point
 
Fatigue & Fracture
Fatigue & Fracture Fatigue & Fracture
Fatigue & Fracture
 

Similaire à HKPCA_IPC 2003_BHLee

Sputtering for radiopharmaceutical application
Sputtering for radiopharmaceutical applicationSputtering for radiopharmaceutical application
Sputtering for radiopharmaceutical applicationmineralochka
 
EBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW SensorEBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW SensorElizabeth Buitrago, PhD
 
Wettable Flank - Laser cutting.pdf
Wettable Flank - Laser cutting.pdfWettable Flank - Laser cutting.pdf
Wettable Flank - Laser cutting.pdfssuser668a58
 
TiN-C60 - Thesis Presentation (Yan Valsky)
TiN-C60 - Thesis Presentation (Yan Valsky)TiN-C60 - Thesis Presentation (Yan Valsky)
TiN-C60 - Thesis Presentation (Yan Valsky)Yan Valsky, MSc, MBA
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidescdtpv
 
Patented way to create Silicon Controlled Rectifiers in SOI technology
Patented way to create Silicon Controlled Rectifiers in SOI technology Patented way to create Silicon Controlled Rectifiers in SOI technology
Patented way to create Silicon Controlled Rectifiers in SOI technology Sofics
 
Imaps 2010 Mohammad Chowdhury
Imaps 2010 Mohammad ChowdhuryImaps 2010 Mohammad Chowdhury
Imaps 2010 Mohammad Chowdhurykamruzzaman1
 
Webinar2020 nithep talk 1-ppt.ppt
Webinar2020 nithep talk 1-ppt.pptWebinar2020 nithep talk 1-ppt.ppt
Webinar2020 nithep talk 1-ppt.pptRene Kotze
 
2012 TPCA presentation _New process
2012 TPCA presentation _New process2012 TPCA presentation _New process
2012 TPCA presentation _New process? ??
 
34 ciscc susceptibility and cgr testing sindelar srnl sti-2017-00323
34 ciscc susceptibility and cgr testing sindelar srnl sti-2017-0032334 ciscc susceptibility and cgr testing sindelar srnl sti-2017-00323
34 ciscc susceptibility and cgr testing sindelar srnl sti-2017-00323leann_mays
 
Measle Effect Rev 2
Measle Effect Rev 2Measle Effect Rev 2
Measle Effect Rev 2Paul Rouse
 
Solving Problems with Reliability in the Lead-Free Era
Solving Problems with Reliability in the Lead-Free EraSolving Problems with Reliability in the Lead-Free Era
Solving Problems with Reliability in the Lead-Free EraCheryl Tulkoff
 
PlasmaChem_20090930-2_ppt_ver2
PlasmaChem_20090930-2_ppt_ver2PlasmaChem_20090930-2_ppt_ver2
PlasmaChem_20090930-2_ppt_ver2Ashish K Mahaseth
 
Metallographic sample prepartion
Metallographic sample prepartionMetallographic sample prepartion
Metallographic sample prepartionvinodav4
 
Ultrafine Electrode Printing Technology
Ultrafine Electrode Printing TechnologyUltrafine Electrode Printing Technology
Ultrafine Electrode Printing TechnologyJanice Yichen Pan
 
Introduction to NDE automation1.pdf
Introduction to NDE automation1.pdfIntroduction to NDE automation1.pdf
Introduction to NDE automation1.pdfYung how Wu
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerationscdtpv
 

Similaire à HKPCA_IPC 2003_BHLee (20)

Sputtering for radiopharmaceutical application
Sputtering for radiopharmaceutical applicationSputtering for radiopharmaceutical application
Sputtering for radiopharmaceutical application
 
Santosh_Kr_Yadav_RAIM08
Santosh_Kr_Yadav_RAIM08Santosh_Kr_Yadav_RAIM08
Santosh_Kr_Yadav_RAIM08
 
EBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW SensorEBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW Sensor
 
Wettable Flank - Laser cutting.pdf
Wettable Flank - Laser cutting.pdfWettable Flank - Laser cutting.pdf
Wettable Flank - Laser cutting.pdf
 
TiN-C60 - Thesis Presentation (Yan Valsky)
TiN-C60 - Thesis Presentation (Yan Valsky)TiN-C60 - Thesis Presentation (Yan Valsky)
TiN-C60 - Thesis Presentation (Yan Valsky)
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxides
 
Lightning arresters
Lightning arrestersLightning arresters
Lightning arresters
 
Patented way to create Silicon Controlled Rectifiers in SOI technology
Patented way to create Silicon Controlled Rectifiers in SOI technology Patented way to create Silicon Controlled Rectifiers in SOI technology
Patented way to create Silicon Controlled Rectifiers in SOI technology
 
Imaps 2010 Mohammad Chowdhury
Imaps 2010 Mohammad ChowdhuryImaps 2010 Mohammad Chowdhury
Imaps 2010 Mohammad Chowdhury
 
Webinar2020 nithep talk 1-ppt.ppt
Webinar2020 nithep talk 1-ppt.pptWebinar2020 nithep talk 1-ppt.ppt
Webinar2020 nithep talk 1-ppt.ppt
 
2012 TPCA presentation _New process
2012 TPCA presentation _New process2012 TPCA presentation _New process
2012 TPCA presentation _New process
 
34 ciscc susceptibility and cgr testing sindelar srnl sti-2017-00323
34 ciscc susceptibility and cgr testing sindelar srnl sti-2017-0032334 ciscc susceptibility and cgr testing sindelar srnl sti-2017-00323
34 ciscc susceptibility and cgr testing sindelar srnl sti-2017-00323
 
Measle Effect Rev 2
Measle Effect Rev 2Measle Effect Rev 2
Measle Effect Rev 2
 
Solving Problems with Reliability in the Lead-Free Era
Solving Problems with Reliability in the Lead-Free EraSolving Problems with Reliability in the Lead-Free Era
Solving Problems with Reliability in the Lead-Free Era
 
PlasmaChem_20090930-2_ppt_ver2
PlasmaChem_20090930-2_ppt_ver2PlasmaChem_20090930-2_ppt_ver2
PlasmaChem_20090930-2_ppt_ver2
 
Metallographic sample prepartion
Metallographic sample prepartionMetallographic sample prepartion
Metallographic sample prepartion
 
Ultrafine Electrode Printing Technology
Ultrafine Electrode Printing TechnologyUltrafine Electrode Printing Technology
Ultrafine Electrode Printing Technology
 
Normarieli's final presentation
Normarieli's final presentation Normarieli's final presentation
Normarieli's final presentation
 
Introduction to NDE automation1.pdf
Introduction to NDE automation1.pdfIntroduction to NDE automation1.pdf
Introduction to NDE automation1.pdf
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
 

Dernier

Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Delhi Call girls
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLSeo
 
Value Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsValue Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsP&CO
 
HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsMichael W. Hawkins
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...Paul Menig
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
A305_A2_file_Batkhuu progress report.pdf
A305_A2_file_Batkhuu progress report.pdfA305_A2_file_Batkhuu progress report.pdf
A305_A2_file_Batkhuu progress report.pdftbatkhuu1
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...Any kyc Account
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayNZSG
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 
Best Basmati Rice Manufacturers in India
Best Basmati Rice Manufacturers in IndiaBest Basmati Rice Manufacturers in India
Best Basmati Rice Manufacturers in IndiaShree Krishna Exports
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒anilsa9823
 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxpriyanshujha201
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...amitlee9823
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...anilsa9823
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876dlhescort
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
Event mailer assignment progress report .pdf
Event mailer assignment progress report .pdfEvent mailer assignment progress report .pdf
Event mailer assignment progress report .pdftbatkhuu1
 

Dernier (20)

Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
 
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
 
Value Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsValue Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and pains
 
HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael Hawkins
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors Data
 
A305_A2_file_Batkhuu progress report.pdf
A305_A2_file_Batkhuu progress report.pdfA305_A2_file_Batkhuu progress report.pdf
A305_A2_file_Batkhuu progress report.pdf
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through Cartoons
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 May
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
Best Basmati Rice Manufacturers in India
Best Basmati Rice Manufacturers in IndiaBest Basmati Rice Manufacturers in India
Best Basmati Rice Manufacturers in India
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
 
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow 💋 Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
 
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Navi Mumbai Just Call 9907093804 Top Class Call Girl Service Avail...
 
Event mailer assignment progress report .pdf
Event mailer assignment progress report .pdfEvent mailer assignment progress report .pdf
Event mailer assignment progress report .pdf
 

HKPCA_IPC 2003_BHLee

  • 1. Implementing a Simple Corrosion Test Method for Early Detection of “Black Pad” Phenomenon In ENIG Plating BabHui Lee 11th Dec 2003 HKPCA-IPC Conference
  • 2.
  • 3. Introduction What’s “Black Pad”? On bare board level… Electroless nickel pad surface appears “black” after stripping off immersion gold layer under visual inspection
  • 4. Introduction What’s “Black Pad”? On bare board level… Electroless nickel pad surface exhibiting “mud-crack” signature after stripping off immersion gold layer under SEM, top scan (6,000X)
  • 5. Introduction What’s “Black Pad”? On assembly level… Brittle solder joint showing separation Pin lifted from SMT pad Solder joint failure Solder joint failure
  • 6. Introduction What’s “Black Pad”? On assembly level… Pin side (SEM 6,000X) Pad side (SEM 6,000X) Nickel-like nodular interfaces with “mud cracks” are exposed
  • 7. Introduction What’s “Black Pad”? Cross-Section/SEM Large regions of severe black pad with spikes protruding into nickel layer
  • 8. Introduction Upon solder reflow, interconnects are wetted and solder joints appear in normal form What’s “Black Pad”? Cross-Section/SEM
  • 9. Introduction Failure occurs after reflow, resulting in open joints What’s “Black Pad”? Cross-Section/SEM
  • 11.
  • 12. Introduction The Ni layer is more susceptible to corrosion if • It is thin, < 120 µ” • P < 6 wt % • High level of micro- structure defects such as  nodule  layer  grain boundaries What causes “Black Pad”?
  • 13.
  • 14.
  • 15.
  • 16. Test Results – MTO vs. HNO 3 Time From the box plots, there is a clear influence of Ni MTO on the time to fail (ie. for the nickel strip sample to turn “black”), esp. at 5 MTO – this is affirmed with one-way ANOVA analysis with Tukey’s pairwise comparisons. 25 34 33 25 32 33 24 35 34 22 35 36 24 32 26 22 41 44 25 33 33 23 33 28 24 36 37 27 33 32 25 32 37 23 25 43 24 28 36 28 34 35 27 30 44 23 33 31 24 27 38 27 25 39 5.0 MTO 2.5 MTO 0 MTO
  • 17. Statistically, 5 MTO samples have lower mean time to failure than 0 & 2.5 MTOs (around 10 sec less). The general trend is that the acid corrosion resistance of the as-plated EN surface reduces as Ni MTO rises. Repeatability is also better at 5 MTO from the obvious lower standard deviation attained. This may be attributed to a more steady state reached towards the end of the useful electroless nickel bath life (just an attempted theorized explanation). One-way ANOVA: Time (sec) versus Ni MTO Analysis of Variance for Time (sec) Source DF SS MS F P Ni MTO 2 1130.1 565.1 38.59 0.000 Error 51 746.7 14.6 Total 53 1876.8 Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev ----+---------+---------+-------- 0 MTO 18 35.500 4.997 (----*---) 2.5 MTO 18 32.111 3.984 (---*----) 5 MTO 18 24.556 1.756 (---*----) ----+---------+---------+---------+---------+ Pooled StDev = 3.826 24.0 28.0 32.0 36.0 Test Results – MTO vs. HNO 3 Time
  • 18. Test Results – Reliability Plots As expected, 5 MTO has the most hazardous function, and all 5 MTO samples are expected to fail within 30 sec.
  • 19. More than 90% of the samples (across the full Ni MTO range) should be able to survive the 40% nitric acid test for at least 20 sec. Test Results – Reliability Plots
  • 20.
  • 21. SEM/EDX – As Is (Before Test) 0 MTO, 9.41%P 2.5 MTO, 7.81%P 5 MTO, 9.46%P Clean nickel surfaces
  • 22. SEM/EDX – 5 sec HNO 3 Dip 0 MTO, 8.79%P 2.5 MTO, 9.16%P 5 MTO, 8.37%P Clean nickel surfaces
  • 23. SEM/EDX – 10 sec HNO 3 Dip 0 MTO, 7.82%P 2.5 MTO, 9.66%P 5 MTO, 8.05%P Signs of minor attack at 5 MTO
  • 24. SEM/EDX – 15 sec HNO 3 Dip 0 MTO, 8.46%P 2.5 MTO, 9.81%P 5 MTO, 10.42%P Signs of slight attack at 5 MTO
  • 25. SEM/EDX – 20 sec HNO 3 Dip 0 MTO, 7.87%P 2.5 MTO, 9.36%P 5 MTO, 10.36%P Signs of some attack at 5 MTO
  • 26. SEM/EDX – 25 sec HNO 3 Dip 0 MTO, 8.28%P 2.5 MTO, 10.64%P 5 MTO, 8.59%P Signs of heavier attack at 5 MTO
  • 27. SEM/EDX – 30 sec HNO 3 Dip 0 MTO, 10.38%P 2.5 MTO, 11.94%P 5 MTO, 10.20%P Signs of heavier attack at 5 MTO
  • 28. Test Results - %P vs. MTO, HNO 3 Statistically, the Ni MTOs & nitric acid dip time do not seem to affect %P content significantly in the Ni deposits within the ranges under test. However, caution should be exercised as residual analysis only indicates some reasonable fit. General Linear Model: %P versus Ni MTO, HNO 3 Time Factor Type Levels Values Ni MTO fixed 3 0.0 2.5 5.0 HNO3 Tim fixed 7 0 5 10 15 20 25 30 Analysis of Variance for %P, using Adjusted SS for Tests Source DF Seq SS Adj SS Adj MS F P Ni MTO 2 3.9341 3.9341 1.9670 2.26 0.146 HNO3 Time 6 10.5961 10.5961 1.7660 2.03 0.139 Error 12 10.4230 10.4230 0.8686 Total 20 24.9531
  • 29. Nonetheless, from the main effects & interaction plots, it’s discernible that prolonged nitric acid at 30 sec tends to induce phosphorus enrichment at the attacked nickel surface (which is not difficult to predict by intuition) – this is especially pronounced at 2.5 Ni MTO. Test Results - %P vs. MTO, HNO 3
  • 30. Test Results - %P vs. MTO, HNO 3
  • 31. Test Results - %P vs. MTO, HNO 3
  • 32.
  • 33. Recommendation From the standpoint of reliability performance, a minimum nitric acid (40% v/v) withstanding timing of 20 sec can be stipulated based on the highest Ni MTO at 5 (the normal useful life of the electroless nickel bath), and the acceptable nickel surface topography (degree of corrosion) & %P content after 20 sec exposure to the nitric acid attack. This will depict an average failure rate probability of at most 3% (from the reliability probability plot for the worst case scenario, ie. at 5 Ni MTO). Sample size determination, frequency of test and the acceptance judgement are proposed on the following slides.
  • 34. Power and Sample Size One-way ANOVA Sigma = 3.826 Alpha = 0.05 Number of Levels = 3 Sample Target Actual Maximum SS Means Size Power Power Difference 12.5 13 0.8000 0.8235 5 12.5 14 0.8500 0.8545 5 12.5 16 0.9000 0.9027 5 18.0 9 0.8000 0.8046 6 18.0 10 0.8500 0.8519 6 18.0 12 0.9000 0.9175 6 24.5 7 0.8000 0.8101 7 24.5 8 0.8500 0.8704 7 24.5 9 0.9000 0.9133 7 32.0 6 0.8000 0.8407 8 32.0 7 0.8500 0.9051 8 32.0 7 0.9000 0.9051 8 40.5 5 0.8000 0.8403 9 40.5 6 0.8500 0.9178 9 40.5 6 0.9000 0.9178 9 50.0 5 0.8000 0.9103 10 50.0 5 0.8500 0.9103 10 50.0 5 0.9000 0.9103 10 Sample Size Determination A test of power was conducted based on the original test results, and it’s gathered that a sample size of 10 should suffice for a power target of 85% with detectability of maximum difference of 6 sec (which makes practical sense too, considering the variation within the samples). Hence it’s recommended that the sample size to be consisted of 10 freshly prepared Ni strips per test (in accordance to the test methodology as outlined in the beginning).
  • 35. Frequency of Test A test frequency is proposed at once/week for a start – this also serves to supplement the current SEM/EDX analyses that have been put in place on a monthly basis. Based on the past historical data collected over a prolonged period of time, our current tight process control on ENIG bath does not warrant a more stringent & frequent check of this additional control item to be implemented soon. As the sample is easy to prepare, and the test itself is quick and simple, once/week test frequency will not incur too much burden on the current workload. It’s also suggested that Chem Lab shall schedule & conduct this test weekly. Of course, for troubleshooting purpose, whenever there is doubt cast on poor Ni bath performance or suspected “black pad” issue, this test should be carried out immediately.
  • 36. Acceptance Criteria As mentioned earlier, a minimum of 20 sec nitric acid resistance time is proposed based on the test results and the associated reliability probability plots. The nitric acid resistance time is defined as the time taken for the nickel strip sample exposed to the 40% nitric acid to turn “black” completely under the stipulated test conditions. For a sample size of 10, the acceptance judgement is based on the fact that the min. average acid resistance of the 10 samples shall exceed 20 sec, with at most one strip below 20 sec , correlating to a failure rate of 10% over the full range of the nickel bath conditions over its useful bath life – we can also infer from the probability plots that more than 90% of the samples (across the full Ni MTO range) should be able to survive the 40% nitric acid test for at least 20 sec.
  • 37.