Publicité
The effect of varying flow rate-parallel flow double pipe heat exchanger
The effect of varying flow rate-parallel flow double pipe heat exchanger
The effect of varying flow rate-parallel flow double pipe heat exchanger
The effect of varying flow rate-parallel flow double pipe heat exchanger
Publicité
The effect of varying flow rate-parallel flow double pipe heat exchanger
Prochain SlideShare
The effect of varying flow rate-counter flow double pipe heat exchangerThe effect of varying flow rate-counter flow double pipe heat exchanger
Chargement dans ... 3
1 sur 5
Publicité

Contenu connexe

Plus de Barhm Mohamad(20)

Publicité

The effect of varying flow rate-parallel flow double pipe heat exchanger

  1. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 4 Page 1 EXPERIMENT NO. 4 ((The effect of varying flow rate-parallel flow double pipe heat exchanger)) Aim: To show how different cold flow rates affect the performance of the heat exchanger in parallel flow connection. 1. Theory & procedure 1.1 Heat transfer, energy balance and efficiency In heat exchangers, heat transfers or flows from the hot water circuit to the cold-water circuit. The heat transfer rate is a function of the fluid mass flow rate, the temperature change and the specific heat capacity of the fluid (at mean temperature). m Cp ΔT (1) In an ideal heat exchanger, that does not lose or absorb heat from its surroundings, the cool fluid absorbs all the heat from the hot fluid [1-4] . So, the heat transfer rate is: = mH CpH ΔTH = mc Cpc ΔTc (2) Fig. 1 Parallel flow scheme
  2. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 4 Page 2 Table 1 Notation
  3. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 4 Page 3 Fig. 2 Specific heat capacity of water at constant pressure [1] Fig. 3 Water density [1]
  4. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 4 Page 4 2. Reading table & calculation Table 2 Reading table 10 L.min-1 = 0.0001667 m3 .s-1 ∆TH = TH1 - TH2 (3) ∆TC = TC2 - TC1 (4) Mean heat transfer area = 0.02 m2 Overall heat transfer coefficient: (5) Temperature efficiency: (6) (7) (8) (9) (10) (11)
  5. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 4 Page 5 3. Discussion questions a) Why we get different mean temperature efficiency? b) Draw a simple temperature chart for each condition. c) Discuss the effects of the flow rate on the rate of heat transfer. d) Why we have errors? Fig. 4 Double pipe – Parallel flow heat exchanger apparatus [1] References 1. TecQuipment Ltd, Concentric tube heat exchanger apparatus, Model: VDAS-F TD360A. 2. Мохамед Б, Кароли Я, Зеленцов А.А. (2020) Трехмерное моделирование течения газа во впускной системе автомобиля «формулы студент» Журнал Сибирского федерального университета, 13(5); pp. 597-610. https://doi.org/10.17516/1999-494X- 0249. 3. Mohamad B., Karoly J., Zelentsov A.A. (2020) Hangtompító akusztikai tervezése hibrid módszerrel, Multidiszciplináris Tudományok, 9(4), pp. 548-555. https://doi.org/10.35925/j.multi.2019.4.58. 4. Yunus Cengel, Heat Transfer: A Practical Approach, 2nd ed., McGraw-Hill Education – Europe, 1997. Barhm Abdullah Mohamad Erbil Polytechnic University LinkedIn: https://www.linkedin.com/in/barhm-mohamad-900b1b138/ Google Scholar: https://scholar.google.com/citations?user=KRQ96qgAAAAJ&hl=en ResearchGate: https://www.researchgate.net/profile/Barhm_Mohamad YouTube channel: https://www.youtube.com/channel/UC16-u0i4mxe6TmAUQH0kmNw
Publicité