SlideShare une entreprise Scribd logo
1  sur  22
Fin500J Mathematical Foundations in Finance
Topic 1: Matrix Algebra
Philip H. Dybvig
Reference: Mathematics for Economists, Carl Simon and Lawrence Blume, Chapter 8 Chapter 9
and Chapter 16
Slides designed by Yajun Wang
1
Fall 2010 Olin Business School
Fin500J Topic 1
Outline
 Definition of a Matrix
 Operations of Matrices
 Determinants
 Inverse of a Matrix
 Linear System
 Matrix Definiteness
Fall 2010 Olin Business School 2
Fin500J Topic 1
Matrix (Basic Definitions)
 
ij
kn
k
n
n
A
a
a
a
a
a
a
,
,
,
,
,
,
1
2
21
1
11























A
An k × n matrix A is a rectangular array of numbers with k rows and n
columns. (Rows are horizontal and columns are vertical.) The numbers k and n
are the dimensions of A. The numbers in the matrix are called its entries. The
entry in row i and column j is called aij .
3
Fall 2010 Olin Business School
Fin500J Topic 1
Operations with Matrices (Sum, Difference)
Sum, Difference
If A and B have the same dimensions, then their sum, A + B, is obtained by
adding corresponding entries. In symbols, (A + B)ij = aij + bij . If A and B
have the same dimensions, then their difference, A − B, is obtained by
subtracting corresponding entries. In symbols, (A - B)ij = aij - bij .
Example:
4
Fall 2010 Olin Business School
A
A 



























0
A
all
for
Then,
zero.
all
are
entries
whose
0
matrix
The
1
12
12
8
4
2
1
5
6
7
0
1
0
7
6
1
4
3
Fin500J Topic 1
Operations with Matrices (Scalar Multiple)
Scalar Multiple
If A is a matrix and r is a number (sometimes called a scalar in this
context), then the scalar multiple, rA, is obtained by multiplying every
entry in A by r. In symbols, (rA)ij = raij .
Example:
5
Fall 2010 Olin Business School

















0
14
12
2
8
6
0
7
6
1
4
3
2
Fin500J Topic 1
Operations with Matrices (Product)
Product
If A has dimensions k × m and B has dimensions m × n, then the product
AB is defined, and has dimensions k × n. The entry (AB)ij is obtained
by multiplying row i of A by column j of B, which is done by multiplying
corresponding entries together and then adding the results i.e.,
6
Fall 2010 Olin Business School
B.
IB
B,
matrix
m
n
any
for
and
A
AI
A,
matrix
n
m
any
for
1
0
0
0
1
0
0
0
1
I
matrix
Identity
.
Example
.
...
)
...
( 2
2
1
1
2
1
2
1








































































n
n
mj
im
j
i
j
i
mj
j
j
im
i
i
fD
eB
fC
eA
dD
cB
dC
cA
bD
aB
bC
aA
D
C
B
A
f
e
d
c
b
a
b
a
b
a
b
a
b
b
b
a
a
a








Fin500J Topic 1
Laws of Matrix Algebra
 The matrix addition, subtraction, scalar multiplication and matrix
multiplication, have the following properties.
Fall 2010 Olin Business School 7
BC.
AC
B)C
AC, (A
AB
C)
A(B
A
B
B
A
A(BC).
C, (AB)C
B)
(A
C)
(B
A















:
Laws
ve
Distributi
:
Addition
for
Law
e
Commutativ
:
Laws
e
Associativ
Fin500J Topic 1
Operations with Matrices (Transpose)
Transpose
The transpose, AT , of a matrix A is the matrix obtained from A by
writing its rows as columns. If A is an k×n matrix and B = AT then
B is the n×k matrix with bij = aji. If AT=A, then A is symmetric.
Example:
8
Fall 2010 Olin Business School
,
C
D
(CD)
rA
(rA)
A,
)
(A
,
B
A
B)
(A
,
B
A
B)
(A
a
a
a
a
a
a
a
a
a
a
a
a
T
T
T
T
T
T
T
T
T
T
T
T
T
T































Then,
matrix.
n
m
an
be
D
and
matrix
m
k
a
be
C
Let
scalar.
a
is
r
and
n
k
are
B
and
A
where
:
verify
easy to
it
It
23
13
22
12
21
11
23
22
21
13
12
11
Fin500J Topic 1
Determinants
 Determinant is a scalar
 Defined for a square matrix
 Is the sum of selected products of the elements of the matrix, each
product being multiplied by +1 or -1
11 12 1
21 22 2
1 1
1 2
det( ) ( 1) ( 1)
n
n n
n i j i j
ij ij ij ij
j i
n n nn
a a a
a a a
A a M a M
a a a
 
 
    
 
9
Fall 2010 Olin Business School
• Mij=det(Aij), Aij is the (n-1)×(n-1)
submatrix obtained by deleting row
i and column j from A.
Fin500J Topic 1
Determinants
 The determinant of a 3 ×3 matrix is
11 12 13
22 23 21 23 21 22
1 1 1 2 1 3
21 22 23 11 12 13
31 32
32 33 31 33
31 32 33
( 1) ( 1) ( 1)
a a a
a a a a a a
a a a a a a
a a
a a a a
a a a
  
     
 Example
10
1 1 1 2 1 3
1 2 3
5 6 4 6 4 5
4 5 6 1( 1) 2( 1) 3( 1)
8 10 7 10 7 8
7 8 10
50 48 2(40 42) 3(32 35) 3
  
     
       
10
bc
ad
d
c
b
a
A 


)
det(
 The determinant of a 2 ×2 matrix A is
• In Matlab: det(A) = det(A)
Fall 2010 Olin Business School
Fin500J Topic 1
Inverse of a Matrix
 Definition. If A is a square matrix, i.e., A has dimensions n×n. Matrix
A is nonsingular or invertible if there exists a matrix B such that
AB=BA=In. For example.
 Common notation for the inverse of a matrix A is A-1
 If A is an invertible matrix, then (AT)-1 = (A-1)T
 The inverse matrix A-1 is unique when it exists.
 If A is invertible, A-1 is also invertible  A is the inverse matrix of A-1.
(A-1)-1=A.
• In Matlab: A-1 = inv(A)
• Matrix division:
A/B = AB-1
11
Fall 2010 Olin Business School


















































 1
0
0
1
3
2
3
1
3
2
3
2
3
1
3
1
3
1
3
2
3
1
3
1
3
1
3
2
2
1
1
1
Fin500J Topic 1
Calculation of Inversion using Determinants
Def: For any n×n matrix A, let Cij denote the (i,j) th cofactor of A, that is, (-1)i+j
times the determinant of the submatrix obtained by deleting row i and column j
form A, i.e., Cij = (-1)i+j Mij . The n×n matrix whose (i,j)th entry is Cji, the (j,i)th
cofactor of A is called the adjoint of A and is written adj A.
thus
-1
Thm: Let A be a nonsingular matrix. Then,
1
A .
det
adj A
A

12
12
Fall 2010 Olin Business School
Fin500J Topic 1
Calculation of Inversion using Determinants
thus
Example: find the inverse of the matrix
Solve:
2 4 5
0 3 0
1 0 1
A
 
 
  
 
 
11 12 13
21 22 23
31 32 33
11 21 31
12 22 32
13 23 33
1
3 0 0 0 0 3
3, 0, 3,
0 1 1 1 1 0
4 5 2 5 2 4
4, 3, 4,
0 1 1 1 1 0
4 5 2 5 2 4
15, 0, 6,
3 0 0 0 0 3
det 9,
3 4 15
0 3 0 .
3 4 6
3
1
,
9
C C C
C C C
C C C
A
C C C
adjA C C C
C C C
So A
         
          
         
 
 
   
   
  
   
   

   
 
4 15
0 3 0 .
3 4 6
 
 
 

 
 

 
13
Using Determinants to find the
inverse of a matrix can be very
complicated. Gaussian elimination is
more efficient for high dimension matrix.
13
Fall 2010 Olin Business School
Fin500J Topic 1
Calculation of Inversion using Gaussian Elimination
14
 Elementary row operations:
o Interchange two rows of a matrix
o Change a row by adding to it a multiple of another row
o Multiply each element in a row by the same nonzero number
• To calculate the inverse of matrix A, we apply the elementary row
operations on the augmented matrix [A I] and reduce this matrix to the
form of [I B]
• The right half of this augmented matrix B is the inverse of A
14
Fall 2010 Olin Business School
Fin500J Topic 1
Calculation of inversion using Gaussian elimination
I is the identity matrix, and use Gaussian elimination to obtain a matrix of the form
The matrix


























1
0
0
,
,
0
1
0
,
,
0
0
1
,
,
]
[
1
2
21
1
11



nn
n
n
n
a
a
a
a
a
a
I
A
15
Fall 2010 Olin Business School






















nn
n
n
n
a
a
a
a
a
a
,
,
,
,
,
,
1
2
21
1
11
A

























nn
n
n
n
n
b
b
b
b
b
b
b
b
b
1
0
0
0
1
0
0
0
1
2
1
2
22
21
1
12
11


























nn
n
n
n
n
b
b
b
b
b
b
b
b
b
B
2
1
2
22
21
1
12
11
is then the matrix inverse of A
Fin500J Topic 1
Example
The matrix
1 1 1 |1 0 0
[ | ] 12 2 3 |0 1 0
3 4 1 |0 0 1
A I
 
 
 
 
 
 
16
1 1 1
12 2 3
3 4 1
 
 
 
 
 
 
A
is then the matrix inverse of A
1 1 1 | 1 0 0
0 10 15 | 12 1 0
0 0 3.5 | 4.2 0.1 1
 
 
  
 
 
 
 
3 1
1 0 0 | 0.4
35 7
2 3
0 1 0 | 0.6
35 7
1 2
0 0 1 | 1.2
35 7
 

 
 
 
 
 
 
 
 
 
 
(ii)+(-12)×(i), (iii)+(-3) ×(i), (iii)+(ii) ×(1/10)
3 1
0.4
35 7
2 3
0.6
35 7
1 2
1.2
35 7
 

 
 
 
 
 
 
 
 
 
 
16
Fall 2010 Olin Business School
Fin500J Topic 1
The system of linear equations
17
Fall 2010 Olin Business School
Systems of Equations in Matrix Form
11 1 12 2 13 3 1 1
21 1 22 2 23 3 2 2
1 1 2 2 3 3
n n
n n
k k k kn n k
a x a x a x a x b
a x a x a x a x b
a x a x a x a x b
    
    
    
can be rewritten as the matrix equation Ax=b, where
1 1
11 1
2 2
1
, , .
n
k kn
n k
x b
a a
x b
A x b
a a
x b
   
     
     
  
     
     
     
   
If an n×n matrix A is invertible, then it is nonsingular, and the
unique solution to the system of linear equations Ax=b is x=A-1b.
Fin500J Topic 1
Example: solve the linear system
1
-1
Matrix Inversion
4 1 2 x 4
5 2 1 ; X y ; b 4
1 0 3 z 3
6 -3 -3
1
A -14 10 6
6
-2 1 3
x 6 -3 -3 4
1
y -14 10 6 4
6
z -2 1 3 3
1 2; y 1 3; z 5 6
AX d
A
X A b
x


     
     
  
     
     
     

 
 
  
 
 
     
     

     
     
     
  
18
4 2 4
5 2 4
3 3
x y z
x y z
x z
  


  

  

Fall 2010 Olin Business School
• In Matlab
>>x=inv(A)*b
or
>> x=Ab
b
Fin500J Topic 1
19
Fall 2010 Olin Business School
Matrix Operations in Matlab
>> A=[2 3; 1 1; 1 0]
A =
2 3
1 1
1 0
>> B1=[1 1; 0 1; 2 4]
B1 =
1 1
0 1
2 4
>> B2=[1 1 1; 1 0 2]
B2 =
1 1 1
1 0 2
>> A+B1
ans =
3 4
1 2
3 4
>> A-B1
ans =
1 2
1 0
-1 -4
>> A*B2
ans =
5 2 8
2 1 3
1 1 1
Sum
Difference
Product
Fin500J Topic 1
20
Fall 2010 Olin Business School
Matrix Operations in Matlab
>> C=[1 1 1; 12 2 -3;
3 4 1]
C =
1 1 1
12 2 -3
3 4 1
>> C'
ans =
1 12 3
1 2 4
1 -3 1
>> det(C)
ans =
35
>> inv(C)
ans =
0.4000 0.0857 -0.1429
-0.6000 -0.0571 0.4286
1.2000 -0.0286 -0.2857
transpose
determinant
inverse
Fin500J Topic 1
Positive Definite Matrix
Fall 2010 Olin Business School 21
Fin500J Topic 1
Negative Definite, Positive Semidefinite, Negative
Semidefinite, Indefinite Matrix
Fall 2010 Olin Business School 22
Let A be an N×N symmetric matrix, then A is
• negative definite if and only if vTAv <0 for all v≠0 in RN
• positive semidefinite if and only if vTAv ≥0 for all v≠0, in RN
• negative semidefinite if and only if vTAv ≤0 for all v≠0, in
RN
• indefinite if and only if vTAv >0 for some v in RN and <0 for
other v in RN
Fin500J Topic 1

Contenu connexe

Similaire à Matrix Algebra

CMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: MatricesCMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: Matricesallyn joy calcaben
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notesVICTOROGOT4
 
chap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptchap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptadonyasdd
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxAlokSingh205089
 
Matrix and its operations
Matrix and its operationsMatrix and its operations
Matrix and its operationsPankaj Das
 
1 of 11UMGC College Algebra MATH 107 6980 - Fall 2020 – Instruct.docx
1 of 11UMGC College Algebra MATH 107 6980 - Fall 2020 – Instruct.docx1 of 11UMGC College Algebra MATH 107 6980 - Fall 2020 – Instruct.docx
1 of 11UMGC College Algebra MATH 107 6980 - Fall 2020 – Instruct.docxteresehearn
 
Mat 223_Ch3-Determinants.ppt
Mat 223_Ch3-Determinants.pptMat 223_Ch3-Determinants.ppt
Mat 223_Ch3-Determinants.pptTigabu Yaya
 
Appliacation of Matrix.pptx
Appliacation of Matrix.pptxAppliacation of Matrix.pptx
Appliacation of Matrix.pptxPSIT kanpur
 
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
297Source NASA.5.1 Rules for Exponents5.2  Addition.docx297Source NASA.5.1 Rules for Exponents5.2  Addition.docx
297Source NASA.5.1 Rules for Exponents5.2 Addition.docxgilbertkpeters11344
 
Lecture 07 graphing linear equations
Lecture 07 graphing linear equationsLecture 07 graphing linear equations
Lecture 07 graphing linear equationsHazel Joy Chong
 
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.pptALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.pptssuser2e348b
 

Similaire à Matrix Algebra (20)

Matrices
MatricesMatrices
Matrices
 
matrix
matrixmatrix
matrix
 
matrices basic operation.ppt
matrices basic operation.pptmatrices basic operation.ppt
matrices basic operation.ppt
 
Unit 7.2
Unit 7.2Unit 7.2
Unit 7.2
 
CMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: MatricesCMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: Matrices
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
 
chap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptchap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.ppt
 
Matrices
MatricesMatrices
Matrices
 
Matrices
Matrices Matrices
Matrices
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptx
 
Matrix and its operations
Matrix and its operationsMatrix and its operations
Matrix and its operations
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 
1 of 11UMGC College Algebra MATH 107 6980 - Fall 2020 – Instruct.docx
1 of 11UMGC College Algebra MATH 107 6980 - Fall 2020 – Instruct.docx1 of 11UMGC College Algebra MATH 107 6980 - Fall 2020 – Instruct.docx
1 of 11UMGC College Algebra MATH 107 6980 - Fall 2020 – Instruct.docx
 
Mat 223_Ch3-Determinants.ppt
Mat 223_Ch3-Determinants.pptMat 223_Ch3-Determinants.ppt
Mat 223_Ch3-Determinants.ppt
 
Appliacation of Matrix.pptx
Appliacation of Matrix.pptxAppliacation of Matrix.pptx
Appliacation of Matrix.pptx
 
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
297Source NASA.5.1 Rules for Exponents5.2  Addition.docx297Source NASA.5.1 Rules for Exponents5.2  Addition.docx
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
 
Lecture 07 graphing linear equations
Lecture 07 graphing linear equationsLecture 07 graphing linear equations
Lecture 07 graphing linear equations
 
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.pptALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
 
A.B. .docx
A.B. .docxA.B. .docx
A.B. .docx
 
Indices
IndicesIndices
Indices
 

Dernier

一比一原版(CQU毕业证书)中央昆士兰大学毕业证如何办理
一比一原版(CQU毕业证书)中央昆士兰大学毕业证如何办理一比一原版(CQU毕业证书)中央昆士兰大学毕业证如何办理
一比一原版(CQU毕业证书)中央昆士兰大学毕业证如何办理Airst S
 
Contract law. Indemnity
Contract law.                     IndemnityContract law.                     Indemnity
Contract law. Indemnitymahikaanand16
 
Audience profile - SF.pptxxxxxxxxxxxxxxxxxxxxxxxxxxx
Audience profile - SF.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxAudience profile - SF.pptxxxxxxxxxxxxxxxxxxxxxxxxxxx
Audience profile - SF.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxMollyBrown86
 
COPYRIGHTS - PPT 01.12.2023 part- 2.pptx
COPYRIGHTS - PPT 01.12.2023 part- 2.pptxCOPYRIGHTS - PPT 01.12.2023 part- 2.pptx
COPYRIGHTS - PPT 01.12.2023 part- 2.pptxRRR Chambers
 
3 Formation of Company.www.seribangash.com.ppt
3 Formation of Company.www.seribangash.com.ppt3 Formation of Company.www.seribangash.com.ppt
3 Formation of Company.www.seribangash.com.pptseri bangash
 
MOCK GENERAL MEETINGS (SS-2)- PPT- Part 2.pptx
MOCK GENERAL MEETINGS (SS-2)- PPT- Part 2.pptxMOCK GENERAL MEETINGS (SS-2)- PPT- Part 2.pptx
MOCK GENERAL MEETINGS (SS-2)- PPT- Part 2.pptxRRR Chambers
 
Shubh_Burden of proof_Indian Evidence Act.pptx
Shubh_Burden of proof_Indian Evidence Act.pptxShubh_Burden of proof_Indian Evidence Act.pptx
Shubh_Burden of proof_Indian Evidence Act.pptxShubham Wadhonkar
 
Relationship Between International Law and Municipal Law MIR.pdf
Relationship Between International Law and Municipal Law MIR.pdfRelationship Between International Law and Municipal Law MIR.pdf
Relationship Between International Law and Municipal Law MIR.pdfKelechi48
 
Transferable and Non-Transferable Property.pptx
Transferable and Non-Transferable Property.pptxTransferable and Non-Transferable Property.pptx
Transferable and Non-Transferable Property.pptx2020000445musaib
 
The doctrine of harmonious construction under Interpretation of statute
The doctrine of harmonious construction under Interpretation of statuteThe doctrine of harmonious construction under Interpretation of statute
The doctrine of harmonious construction under Interpretation of statuteDeepikaK245113
 
PPT- Voluntary Liquidation (Under section 59).pptx
PPT- Voluntary Liquidation (Under section 59).pptxPPT- Voluntary Liquidation (Under section 59).pptx
PPT- Voluntary Liquidation (Under section 59).pptxRRR Chambers
 
The Active Management Value Ratio: The New Science of Benchmarking Investment...
The Active Management Value Ratio: The New Science of Benchmarking Investment...The Active Management Value Ratio: The New Science of Benchmarking Investment...
The Active Management Value Ratio: The New Science of Benchmarking Investment...James Watkins, III JD CFP®
 
Appeal and Revision in Income Tax Act.pdf
Appeal and Revision in Income Tax Act.pdfAppeal and Revision in Income Tax Act.pdf
Appeal and Revision in Income Tax Act.pdfPoojaGadiya1
 
$ Love Spells^ 💎 (310) 882-6330 in Utah, UT | Psychic Reading Best Black Magi...
$ Love Spells^ 💎 (310) 882-6330 in Utah, UT | Psychic Reading Best Black Magi...$ Love Spells^ 💎 (310) 882-6330 in Utah, UT | Psychic Reading Best Black Magi...
$ Love Spells^ 💎 (310) 882-6330 in Utah, UT | Psychic Reading Best Black Magi...PsychicRuben LoveSpells
 
一比一原版赫瑞瓦特大学毕业证如何办理
一比一原版赫瑞瓦特大学毕业证如何办理一比一原版赫瑞瓦特大学毕业证如何办理
一比一原版赫瑞瓦特大学毕业证如何办理Airst S
 
一比一原版伦敦南岸大学毕业证如何办理
一比一原版伦敦南岸大学毕业证如何办理一比一原版伦敦南岸大学毕业证如何办理
一比一原版伦敦南岸大学毕业证如何办理Airst S
 
Municipal-Council-Ratlam-vs-Vardi-Chand-A-Landmark-Writ-Case.pptx
Municipal-Council-Ratlam-vs-Vardi-Chand-A-Landmark-Writ-Case.pptxMunicipal-Council-Ratlam-vs-Vardi-Chand-A-Landmark-Writ-Case.pptx
Municipal-Council-Ratlam-vs-Vardi-Chand-A-Landmark-Writ-Case.pptxSHIVAMGUPTA671167
 
一比一原版赫尔大学毕业证如何办理
一比一原版赫尔大学毕业证如何办理一比一原版赫尔大学毕业证如何办理
一比一原版赫尔大学毕业证如何办理Airst S
 
BPA GROUP 7 - DARIO VS. MISON REPORTING.pdf
BPA GROUP 7 - DARIO VS. MISON REPORTING.pdfBPA GROUP 7 - DARIO VS. MISON REPORTING.pdf
BPA GROUP 7 - DARIO VS. MISON REPORTING.pdflaysamaeguardiano
 
一比一原版(ECU毕业证书)埃迪斯科文大学毕业证如何办理
一比一原版(ECU毕业证书)埃迪斯科文大学毕业证如何办理一比一原版(ECU毕业证书)埃迪斯科文大学毕业证如何办理
一比一原版(ECU毕业证书)埃迪斯科文大学毕业证如何办理Airst S
 

Dernier (20)

一比一原版(CQU毕业证书)中央昆士兰大学毕业证如何办理
一比一原版(CQU毕业证书)中央昆士兰大学毕业证如何办理一比一原版(CQU毕业证书)中央昆士兰大学毕业证如何办理
一比一原版(CQU毕业证书)中央昆士兰大学毕业证如何办理
 
Contract law. Indemnity
Contract law.                     IndemnityContract law.                     Indemnity
Contract law. Indemnity
 
Audience profile - SF.pptxxxxxxxxxxxxxxxxxxxxxxxxxxx
Audience profile - SF.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxAudience profile - SF.pptxxxxxxxxxxxxxxxxxxxxxxxxxxx
Audience profile - SF.pptxxxxxxxxxxxxxxxxxxxxxxxxxxx
 
COPYRIGHTS - PPT 01.12.2023 part- 2.pptx
COPYRIGHTS - PPT 01.12.2023 part- 2.pptxCOPYRIGHTS - PPT 01.12.2023 part- 2.pptx
COPYRIGHTS - PPT 01.12.2023 part- 2.pptx
 
3 Formation of Company.www.seribangash.com.ppt
3 Formation of Company.www.seribangash.com.ppt3 Formation of Company.www.seribangash.com.ppt
3 Formation of Company.www.seribangash.com.ppt
 
MOCK GENERAL MEETINGS (SS-2)- PPT- Part 2.pptx
MOCK GENERAL MEETINGS (SS-2)- PPT- Part 2.pptxMOCK GENERAL MEETINGS (SS-2)- PPT- Part 2.pptx
MOCK GENERAL MEETINGS (SS-2)- PPT- Part 2.pptx
 
Shubh_Burden of proof_Indian Evidence Act.pptx
Shubh_Burden of proof_Indian Evidence Act.pptxShubh_Burden of proof_Indian Evidence Act.pptx
Shubh_Burden of proof_Indian Evidence Act.pptx
 
Relationship Between International Law and Municipal Law MIR.pdf
Relationship Between International Law and Municipal Law MIR.pdfRelationship Between International Law and Municipal Law MIR.pdf
Relationship Between International Law and Municipal Law MIR.pdf
 
Transferable and Non-Transferable Property.pptx
Transferable and Non-Transferable Property.pptxTransferable and Non-Transferable Property.pptx
Transferable and Non-Transferable Property.pptx
 
The doctrine of harmonious construction under Interpretation of statute
The doctrine of harmonious construction under Interpretation of statuteThe doctrine of harmonious construction under Interpretation of statute
The doctrine of harmonious construction under Interpretation of statute
 
PPT- Voluntary Liquidation (Under section 59).pptx
PPT- Voluntary Liquidation (Under section 59).pptxPPT- Voluntary Liquidation (Under section 59).pptx
PPT- Voluntary Liquidation (Under section 59).pptx
 
The Active Management Value Ratio: The New Science of Benchmarking Investment...
The Active Management Value Ratio: The New Science of Benchmarking Investment...The Active Management Value Ratio: The New Science of Benchmarking Investment...
The Active Management Value Ratio: The New Science of Benchmarking Investment...
 
Appeal and Revision in Income Tax Act.pdf
Appeal and Revision in Income Tax Act.pdfAppeal and Revision in Income Tax Act.pdf
Appeal and Revision in Income Tax Act.pdf
 
$ Love Spells^ 💎 (310) 882-6330 in Utah, UT | Psychic Reading Best Black Magi...
$ Love Spells^ 💎 (310) 882-6330 in Utah, UT | Psychic Reading Best Black Magi...$ Love Spells^ 💎 (310) 882-6330 in Utah, UT | Psychic Reading Best Black Magi...
$ Love Spells^ 💎 (310) 882-6330 in Utah, UT | Psychic Reading Best Black Magi...
 
一比一原版赫瑞瓦特大学毕业证如何办理
一比一原版赫瑞瓦特大学毕业证如何办理一比一原版赫瑞瓦特大学毕业证如何办理
一比一原版赫瑞瓦特大学毕业证如何办理
 
一比一原版伦敦南岸大学毕业证如何办理
一比一原版伦敦南岸大学毕业证如何办理一比一原版伦敦南岸大学毕业证如何办理
一比一原版伦敦南岸大学毕业证如何办理
 
Municipal-Council-Ratlam-vs-Vardi-Chand-A-Landmark-Writ-Case.pptx
Municipal-Council-Ratlam-vs-Vardi-Chand-A-Landmark-Writ-Case.pptxMunicipal-Council-Ratlam-vs-Vardi-Chand-A-Landmark-Writ-Case.pptx
Municipal-Council-Ratlam-vs-Vardi-Chand-A-Landmark-Writ-Case.pptx
 
一比一原版赫尔大学毕业证如何办理
一比一原版赫尔大学毕业证如何办理一比一原版赫尔大学毕业证如何办理
一比一原版赫尔大学毕业证如何办理
 
BPA GROUP 7 - DARIO VS. MISON REPORTING.pdf
BPA GROUP 7 - DARIO VS. MISON REPORTING.pdfBPA GROUP 7 - DARIO VS. MISON REPORTING.pdf
BPA GROUP 7 - DARIO VS. MISON REPORTING.pdf
 
一比一原版(ECU毕业证书)埃迪斯科文大学毕业证如何办理
一比一原版(ECU毕业证书)埃迪斯科文大学毕业证如何办理一比一原版(ECU毕业证书)埃迪斯科文大学毕业证如何办理
一比一原版(ECU毕业证书)埃迪斯科文大学毕业证如何办理
 

Matrix Algebra

  • 1. Fin500J Mathematical Foundations in Finance Topic 1: Matrix Algebra Philip H. Dybvig Reference: Mathematics for Economists, Carl Simon and Lawrence Blume, Chapter 8 Chapter 9 and Chapter 16 Slides designed by Yajun Wang 1 Fall 2010 Olin Business School Fin500J Topic 1
  • 2. Outline  Definition of a Matrix  Operations of Matrices  Determinants  Inverse of a Matrix  Linear System  Matrix Definiteness Fall 2010 Olin Business School 2 Fin500J Topic 1
  • 3. Matrix (Basic Definitions)   ij kn k n n A a a a a a a , , , , , , 1 2 21 1 11                        A An k × n matrix A is a rectangular array of numbers with k rows and n columns. (Rows are horizontal and columns are vertical.) The numbers k and n are the dimensions of A. The numbers in the matrix are called its entries. The entry in row i and column j is called aij . 3 Fall 2010 Olin Business School Fin500J Topic 1
  • 4. Operations with Matrices (Sum, Difference) Sum, Difference If A and B have the same dimensions, then their sum, A + B, is obtained by adding corresponding entries. In symbols, (A + B)ij = aij + bij . If A and B have the same dimensions, then their difference, A − B, is obtained by subtracting corresponding entries. In symbols, (A - B)ij = aij - bij . Example: 4 Fall 2010 Olin Business School A A                             0 A all for Then, zero. all are entries whose 0 matrix The 1 12 12 8 4 2 1 5 6 7 0 1 0 7 6 1 4 3 Fin500J Topic 1
  • 5. Operations with Matrices (Scalar Multiple) Scalar Multiple If A is a matrix and r is a number (sometimes called a scalar in this context), then the scalar multiple, rA, is obtained by multiplying every entry in A by r. In symbols, (rA)ij = raij . Example: 5 Fall 2010 Olin Business School                  0 14 12 2 8 6 0 7 6 1 4 3 2 Fin500J Topic 1
  • 6. Operations with Matrices (Product) Product If A has dimensions k × m and B has dimensions m × n, then the product AB is defined, and has dimensions k × n. The entry (AB)ij is obtained by multiplying row i of A by column j of B, which is done by multiplying corresponding entries together and then adding the results i.e., 6 Fall 2010 Olin Business School B. IB B, matrix m n any for and A AI A, matrix n m any for 1 0 0 0 1 0 0 0 1 I matrix Identity . Example . ... ) ... ( 2 2 1 1 2 1 2 1                                                                         n n mj im j i j i mj j j im i i fD eB fC eA dD cB dC cA bD aB bC aA D C B A f e d c b a b a b a b a b b b a a a         Fin500J Topic 1
  • 7. Laws of Matrix Algebra  The matrix addition, subtraction, scalar multiplication and matrix multiplication, have the following properties. Fall 2010 Olin Business School 7 BC. AC B)C AC, (A AB C) A(B A B B A A(BC). C, (AB)C B) (A C) (B A                : Laws ve Distributi : Addition for Law e Commutativ : Laws e Associativ Fin500J Topic 1
  • 8. Operations with Matrices (Transpose) Transpose The transpose, AT , of a matrix A is the matrix obtained from A by writing its rows as columns. If A is an k×n matrix and B = AT then B is the n×k matrix with bij = aji. If AT=A, then A is symmetric. Example: 8 Fall 2010 Olin Business School , C D (CD) rA (rA) A, ) (A , B A B) (A , B A B) (A a a a a a a a a a a a a T T T T T T T T T T T T T T                                Then, matrix. n m an be D and matrix m k a be C Let scalar. a is r and n k are B and A where : verify easy to it It 23 13 22 12 21 11 23 22 21 13 12 11 Fin500J Topic 1
  • 9. Determinants  Determinant is a scalar  Defined for a square matrix  Is the sum of selected products of the elements of the matrix, each product being multiplied by +1 or -1 11 12 1 21 22 2 1 1 1 2 det( ) ( 1) ( 1) n n n n i j i j ij ij ij ij j i n n nn a a a a a a A a M a M a a a            9 Fall 2010 Olin Business School • Mij=det(Aij), Aij is the (n-1)×(n-1) submatrix obtained by deleting row i and column j from A. Fin500J Topic 1
  • 10. Determinants  The determinant of a 3 ×3 matrix is 11 12 13 22 23 21 23 21 22 1 1 1 2 1 3 21 22 23 11 12 13 31 32 32 33 31 33 31 32 33 ( 1) ( 1) ( 1) a a a a a a a a a a a a a a a a a a a a a a a a           Example 10 1 1 1 2 1 3 1 2 3 5 6 4 6 4 5 4 5 6 1( 1) 2( 1) 3( 1) 8 10 7 10 7 8 7 8 10 50 48 2(40 42) 3(32 35) 3                  10 bc ad d c b a A    ) det(  The determinant of a 2 ×2 matrix A is • In Matlab: det(A) = det(A) Fall 2010 Olin Business School Fin500J Topic 1
  • 11. Inverse of a Matrix  Definition. If A is a square matrix, i.e., A has dimensions n×n. Matrix A is nonsingular or invertible if there exists a matrix B such that AB=BA=In. For example.  Common notation for the inverse of a matrix A is A-1  If A is an invertible matrix, then (AT)-1 = (A-1)T  The inverse matrix A-1 is unique when it exists.  If A is invertible, A-1 is also invertible  A is the inverse matrix of A-1. (A-1)-1=A. • In Matlab: A-1 = inv(A) • Matrix division: A/B = AB-1 11 Fall 2010 Olin Business School                                                    1 0 0 1 3 2 3 1 3 2 3 2 3 1 3 1 3 1 3 2 3 1 3 1 3 1 3 2 2 1 1 1 Fin500J Topic 1
  • 12. Calculation of Inversion using Determinants Def: For any n×n matrix A, let Cij denote the (i,j) th cofactor of A, that is, (-1)i+j times the determinant of the submatrix obtained by deleting row i and column j form A, i.e., Cij = (-1)i+j Mij . The n×n matrix whose (i,j)th entry is Cji, the (j,i)th cofactor of A is called the adjoint of A and is written adj A. thus -1 Thm: Let A be a nonsingular matrix. Then, 1 A . det adj A A  12 12 Fall 2010 Olin Business School Fin500J Topic 1
  • 13. Calculation of Inversion using Determinants thus Example: find the inverse of the matrix Solve: 2 4 5 0 3 0 1 0 1 A            11 12 13 21 22 23 31 32 33 11 21 31 12 22 32 13 23 33 1 3 0 0 0 0 3 3, 0, 3, 0 1 1 1 1 0 4 5 2 5 2 4 4, 3, 4, 0 1 1 1 1 0 4 5 2 5 2 4 15, 0, 6, 3 0 0 0 0 3 det 9, 3 4 15 0 3 0 . 3 4 6 3 1 , 9 C C C C C C C C C A C C C adjA C C C C C C So A                                                              4 15 0 3 0 . 3 4 6               13 Using Determinants to find the inverse of a matrix can be very complicated. Gaussian elimination is more efficient for high dimension matrix. 13 Fall 2010 Olin Business School Fin500J Topic 1
  • 14. Calculation of Inversion using Gaussian Elimination 14  Elementary row operations: o Interchange two rows of a matrix o Change a row by adding to it a multiple of another row o Multiply each element in a row by the same nonzero number • To calculate the inverse of matrix A, we apply the elementary row operations on the augmented matrix [A I] and reduce this matrix to the form of [I B] • The right half of this augmented matrix B is the inverse of A 14 Fall 2010 Olin Business School Fin500J Topic 1
  • 15. Calculation of inversion using Gaussian elimination I is the identity matrix, and use Gaussian elimination to obtain a matrix of the form The matrix                           1 0 0 , , 0 1 0 , , 0 0 1 , , ] [ 1 2 21 1 11    nn n n n a a a a a a I A 15 Fall 2010 Olin Business School                       nn n n n a a a a a a , , , , , , 1 2 21 1 11 A                          nn n n n n b b b b b b b b b 1 0 0 0 1 0 0 0 1 2 1 2 22 21 1 12 11                           nn n n n n b b b b b b b b b B 2 1 2 22 21 1 12 11 is then the matrix inverse of A Fin500J Topic 1
  • 16. Example The matrix 1 1 1 |1 0 0 [ | ] 12 2 3 |0 1 0 3 4 1 |0 0 1 A I             16 1 1 1 12 2 3 3 4 1             A is then the matrix inverse of A 1 1 1 | 1 0 0 0 10 15 | 12 1 0 0 0 3.5 | 4.2 0.1 1                3 1 1 0 0 | 0.4 35 7 2 3 0 1 0 | 0.6 35 7 1 2 0 0 1 | 1.2 35 7                        (ii)+(-12)×(i), (iii)+(-3) ×(i), (iii)+(ii) ×(1/10) 3 1 0.4 35 7 2 3 0.6 35 7 1 2 1.2 35 7                        16 Fall 2010 Olin Business School Fin500J Topic 1
  • 17. The system of linear equations 17 Fall 2010 Olin Business School Systems of Equations in Matrix Form 11 1 12 2 13 3 1 1 21 1 22 2 23 3 2 2 1 1 2 2 3 3 n n n n k k k kn n k a x a x a x a x b a x a x a x a x b a x a x a x a x b                can be rewritten as the matrix equation Ax=b, where 1 1 11 1 2 2 1 , , . n k kn n k x b a a x b A x b a a x b                                          If an n×n matrix A is invertible, then it is nonsingular, and the unique solution to the system of linear equations Ax=b is x=A-1b. Fin500J Topic 1
  • 18. Example: solve the linear system 1 -1 Matrix Inversion 4 1 2 x 4 5 2 1 ; X y ; b 4 1 0 3 z 3 6 -3 -3 1 A -14 10 6 6 -2 1 3 x 6 -3 -3 4 1 y -14 10 6 4 6 z -2 1 3 3 1 2; y 1 3; z 5 6 AX d A X A b x                                                                                  18 4 2 4 5 2 4 3 3 x y z x y z x z              Fall 2010 Olin Business School • In Matlab >>x=inv(A)*b or >> x=Ab b Fin500J Topic 1
  • 19. 19 Fall 2010 Olin Business School Matrix Operations in Matlab >> A=[2 3; 1 1; 1 0] A = 2 3 1 1 1 0 >> B1=[1 1; 0 1; 2 4] B1 = 1 1 0 1 2 4 >> B2=[1 1 1; 1 0 2] B2 = 1 1 1 1 0 2 >> A+B1 ans = 3 4 1 2 3 4 >> A-B1 ans = 1 2 1 0 -1 -4 >> A*B2 ans = 5 2 8 2 1 3 1 1 1 Sum Difference Product Fin500J Topic 1
  • 20. 20 Fall 2010 Olin Business School Matrix Operations in Matlab >> C=[1 1 1; 12 2 -3; 3 4 1] C = 1 1 1 12 2 -3 3 4 1 >> C' ans = 1 12 3 1 2 4 1 -3 1 >> det(C) ans = 35 >> inv(C) ans = 0.4000 0.0857 -0.1429 -0.6000 -0.0571 0.4286 1.2000 -0.0286 -0.2857 transpose determinant inverse Fin500J Topic 1
  • 21. Positive Definite Matrix Fall 2010 Olin Business School 21 Fin500J Topic 1
  • 22. Negative Definite, Positive Semidefinite, Negative Semidefinite, Indefinite Matrix Fall 2010 Olin Business School 22 Let A be an N×N symmetric matrix, then A is • negative definite if and only if vTAv <0 for all v≠0 in RN • positive semidefinite if and only if vTAv ≥0 for all v≠0, in RN • negative semidefinite if and only if vTAv ≤0 for all v≠0, in RN • indefinite if and only if vTAv >0 for some v in RN and <0 for other v in RN Fin500J Topic 1